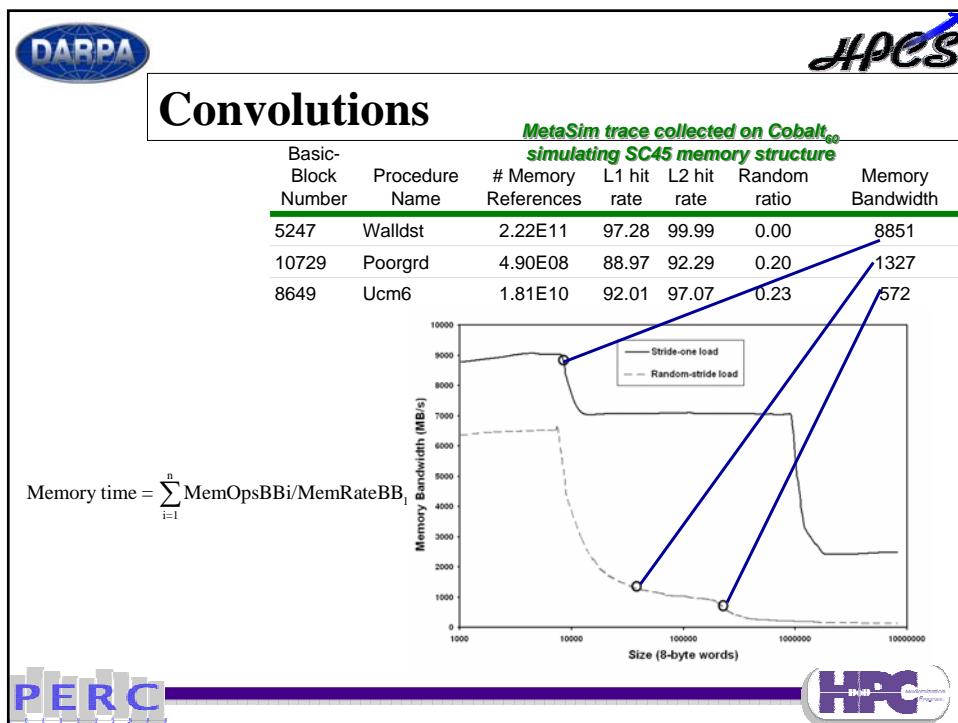
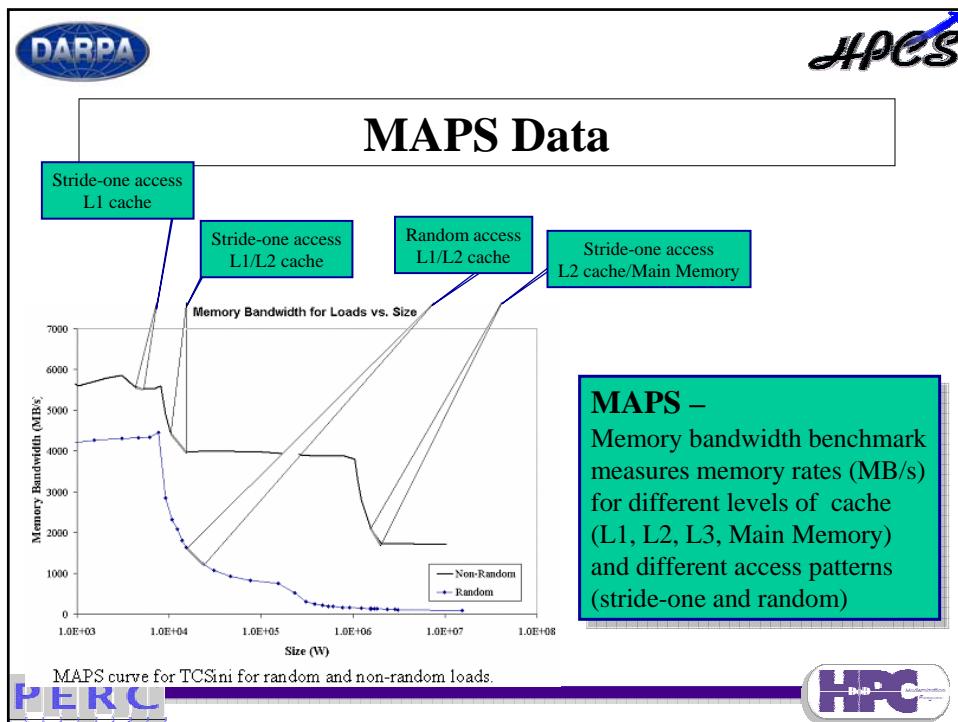


The HPC Challenge Benchmarks and the PMaC project

- Certificates of relevance for benchmarks
 - Do they cover a useful performance space?
 - Do they enable reasoning about expected app. Performance?
- How *practically* to measure memory access patterns in nature
- Useful performance taxonomy



Components of a Performance Prediction Framework

- *Machine Profile* - characterizations of the rates at which a machine can (or is projected to) carry out fundamental operations abstract from the particular application
- *Application Signature* - detailed summaries of the fundamental operations to be carried out by the application independent of any particular machine

Combine Machine Profile and Application Signature using:

- *Convolution Method* - algebraic mapping of the application signature onto the machine profile to calculate a performance prediction

DARPA *HPCs*

Results-Predictions for AVUS (Cobalt60)

AVUS TI-05 standard data set on 64 CPUs

System	Actual time (s)	Predicted time (s)	% Error
NAVO IBM PWR3 (Habu)	8,601	11,180	+30%
ARL IBM PWR3 (Brainerd)	10,675	10,385	-3%
MHPCC IBM PWR3 (Tempest)	8,354	9,488	+14%
MHPCC IBM PWR4 (Hurricane)	4,932	4,258	-14%
NAVO IBM PWR4 (Marcellus)	4,375	4,445	+2%
ARL IBM PWR4 (Shelton)		6,192	
NAVO IBM PWR4+ (Romulus)	3,272	3,239	-1%
ASC HP SC45	3,334	2,688	-19%
ARL Linux Networx Xeon Cluster		3,459	

PERC **HPC**

DARPA *HPCs*

Spatial and Temporal Locality

How could one Quantify the Spatial and Temporal Locality in a Real Code?

$$\text{SpatialScore}(N) = \sum_{i=1}^N (\text{Refs Stride } i / i) / \text{Total Refs}$$

$$\text{TemporalScore}(N) = \frac{\text{Observed Reuse}}{(\text{Total Refs} - \text{Spatial Refs})}$$

PERC **HPC**

DAI **es**

It's Harder Than it Looks

Where does one plot RandomAccess?

```
for ( i = 0; i < N; i++) {
    add = random_number;
    table[add] ^= random_number;
}
```

Update (design goal)
 Load + Store (temporal)
 Load + Store (spatial)
 Two loads + Store

PERC **HPC**

DARPA **HPCs**

HPC Challenge Benchmarks on axes of spatial and temporal locality

Benchmark	Spatial	Temporal
AVUS	0.81	0.58
NAS CG C	0.85	0.58
Random Access	0.80	0.00
FFT	0.90	0.65
HPL	0.91	0.85
Streams	1.00	0.00

PERC **HPC**