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Abstract—Recently, the Open Multi-Processing (OpenMP) standard has incorporated task-based programming, where a function call
with input and output data is treated as a task. At run time, OpenMP’s superscalar scheduler tracks the data dependencies among the
tasks and executes the tasks as their dependencies are resolved. On a shared-memory architecture with multiple cores, the
independent tasks are executed on different cores in parallel, thereby enabling parallel execution of a seemingly sequential code. With
the emergence of many-core architectures, this type of programming paradigm is gaining attention—not only because of its simplicity,
but also because it breaks the artificial synchronization points of the program and improves its thread-level parallelization. In this paper,
we use these new OpenMP features to develop a portable high-performance implementation of a dense symmetric indefinite linear
solver. Obtaining high performance from this kind of solver is a challenge because the symmetric pivoting, which is required to maintain
numerical stability, leads to data dependencies that prevent us from using some common performance-improving techniques. To fully
utilize a large number of cores through tasking, while conforming to the OpenMP standard, we describe several techniques. Our
performance results on current many-core architectures—including Intel’s Broadwell, Intel’s Knights Landing, IBM’s Power8, and Arm’s
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ARMv8—demonstrate the portable and superior performance of our implementation compared with the Linear Algebra PACKage
(LAPACK). The resulting solver is now available as a part of the PLASMA software package.

Index Terms—Linear algebra, symmetric indefinite matrices, multithreading, Runtime

1 INTRODUCTION

SOLVING dense symmetric-indefinite linear systems of
equations is relevant to many scientific and engineering
problems, including physics of structures, acoustics, and
electromagnetism. Such linear solvers are also needed for
unconstrained or constrained optimization problems or for
solving the augmented system for general least squares dis-
cretized—incompressible Navier-Stokes equations. A few
algorithms have been proposed for solving such linear sys-
tems (including the Bunch Kaufman [1], rook pivoting [2],
and Aasen’s algorithms [3] implemented in the Linear Alge-
bra PACKage [LAPACK] [4]). Compared to the non-sym-
metric linear solver, the symmetric solver has several
advantages in terms of storage and floating point operation
(FLOP) count (i.e., only the triangular part of the matrix
needs to be stored and computed), spectral properties (e.g.,
the inertia remains the same under the symmetric transfor-
mation), and structure (e.g., the symmetry of the whole
matrix is preserved when factorizing the dense diagonal
blocks of a dense or sparse symmetric matrix).
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However, the symmetric pivoting required to maintain
the numerical stability of the solver leads to the data depen-
dencies that prevent us from using some of the standard
techniques to enhance the solver performance (e.g., look-
ahead). As a result, developing a scalable symmetric linear
solver still presents a significant problem (e.g., the Scalable
Linear Algebra PACKage [ScaLAPACK] still does not sup-
port such a solver). At the same time, the demand for a scal-
able symmetric solver is growing because of emerging
hardware like shared memory many-core computers, accel-
erators, and extreme scale distributed—-memory computers.
To address this demand, we focused on improving the per-
formance of the solver on the many-core architectures.

In this paper, to provide a portable high-performance of
solving a symmetric-indefinite linear system on many-core
architectures, we rely on Open Multi Processing’s (Open-
MP’s) new dataflow-based task scheduling, and we imple-
ment the “communication-avoiding” variant of Aasen’s
algorithm [5]. This algorithm can be implemented using
the Basic Linear Algebra Subroutines (BLAS) and the
LAPACK routines. Hence, to obtain high performance, we
do not need to develop new optimized kernels to, for
example, factorize a block column of the symmetric indefi-
nite matrix—which could be difficult because of symmetric
pivoting—but instead rely on the standard software pack-
ages whose high-performance implementations are readily
available on many architectures. This decision improves
the portability of our solver. Though a similar implementa-
tion of the algorithm has been previously developed using
the QUeuing And Runtime for Kernels (QUARK) [6] run-
time system, this paper contains several new contributions,
as listed in Section 3.

1045-9219 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0002-6196-2508
https://orcid.org/0000-0002-6196-2508
https://orcid.org/0000-0002-6196-2508
https://orcid.org/0000-0002-6196-2508
https://orcid.org/0000-0002-6196-2508
https://orcid.org/0000-0002-9697-0145
https://orcid.org/0000-0002-9697-0145
https://orcid.org/0000-0002-9697-0145
https://orcid.org/0000-0002-9697-0145
https://orcid.org/0000-0002-9697-0145
https://orcid.org/0000-0003-1859-3580
https://orcid.org/0000-0003-1859-3580
https://orcid.org/0000-0003-1859-3580
https://orcid.org/0000-0003-1859-3580
https://orcid.org/0000-0003-1859-3580
https://orcid.org/0000-0002-6955-1500
https://orcid.org/0000-0002-6955-1500
https://orcid.org/0000-0002-6955-1500
https://orcid.org/0000-0002-6955-1500
https://orcid.org/0000-0002-6955-1500
https://orcid.org/0000-0003-3247-1782
https://orcid.org/0000-0003-3247-1782
https://orcid.org/0000-0003-3247-1782
https://orcid.org/0000-0003-3247-1782
https://orcid.org/0000-0003-3247-1782
mailto:
mailto:
mailto:
mailto:
mailto:

1880

The rest of the paper is organized as follows. Sections 2
and 3 list the related works and this paper’s contributions,
respectively. Section 4 describes our new OpenMP-based
PLASMA framework. Section 5 presents the algorithms
studied in this paper. Section 6 describes our implementa-
tion. Section 7 outlines our experiments’ configuration, and
Section 8 presents our results. Final remarks are listed in
Section 9. Throughout the paper, we use a; ; and a; to denote
the (7, j)th entry and the jth column of the matrix A, while
Arg, A, ;,and A;; are the (I, J)th square block, the Jth block
column, and the /th block row of A, respectively. In addi-
tion, we use n to denote the dimension of the coefficient
matrix, while n; is the block size, and n; is the number of
block columns or rows in the matrix (i.e., n; = %). We used
random matrices for our performance studies and com-
puted the GFlop/s for all the symmetric indefinite factoriza-
tion using the FLOP count needed for the factorization
without pivoting (i.e., $n® +$n? +§ FLOPs).

2 RELATED WORKS

2.1 Symmetric Indefinite Solvers

The availability of the symmetric indefinite linear solvers
vary in the numerical linear algebra packages that are pub-
licly available today. For solving the symmetric indefinite
linear system of equations on the shared-memory com-
puters, LAPACK is still the de facto package, and at the
time of preparing this paper, it implements the blocked var-
iants of the Bunch-Kaufman [1], rook pivoting [2], and
Aasen’s [7] algorithms (see Section 5.1). Among these three
algorithms, the Bunch-Kaufman is often the fastest [8] and
is used to compare the performance of our solver against.'
A commercial implementation of LAPACK, such as Intel
MKL or IBM ESSL, may provide the vendor-optimized ver-
sions of the solvers on the specific architecture.

In contrast, many of the popular open-source linear alge-
bra packages, such as ATLAS [9], OpenBLAS [10], lib-
FLAME [11], and Eigen [12], still do not support the
symmetric indefinite solver (with pivoting to ensure the
numerical stability). Only exception is Elemental [13] which
implements, beside the Bunch-Kaufman algorithm, the
unblocked variant of the Bunch-Parlett algorithm [14]
(hence it may be more accurate but slower than the Bunch-
Kaufman implementation).

2.2 Runtime Systems

The superscalar scheduling technique was pioneered by the
software projects at the Barcelona Supercomputer Center.
These projects include GridSs, CellSs, OMPSs, and StarSs,
where “Ss” stands for the superscalar [15], [16], [17]. The
researchers at INRIA and the Uppsala University have been
also developing their own superscalar runtimes called StarPU
and SuperGlue [18], [19], respectively. Finally, QUARK [20]
was developed at the University of Tennessee, mainly for the
development of the shared-memory dense linear algebra
packages. The effectiveness of the superscalar schedulers to
improve the parallel scalability of the algorithms has been
demonstrated on many modern architectures including on

1. After the completion of this paper, the latest release of LAPACK,
version 3.8.0, now includes the two-stage variant of the Aasen’s algo-
rithm studied in this paper (see [8] for the performance comparison).
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the manycore architecture. These studies have lead to the
recent adaptation of the techniques in the OpenMP standard.
In this paper, we test these new OpenMP features for develop-
ing the portable high-performance symmetric indefinite lin-
ear solver on the manycore architecture.

3 CONTRIBUTIONS

Though a similar implementation of the algorithm has been
previously developed using the QUeuing And Runtime for
Kernels [6] runtime system, this paper contains several new
contributions, listed below.

e We developed a production-ready symmetric indefi-
nite linear solver. Previous studies only imple-
mented Aasen’s algorithm and relied on LAPACK
for the rest of the solver stages. As a result, the previ-
ous solver was not production ready and was not
publicly released. The new OpenMP-based solver,
on the other hand, is now available on our Parallel
Linear Algebra Software for Multicore Architectures
(PLASMA) project’s Bitbucket repository [21].

e We improved the software portability and sustain-
ability by relying on well-established standards like
BLAS, LAPACK, and OpenMP instead of proprie-
tary solutions like QUARK.

e We provided a comprehensive description of all the
stages of our new implementation. Also, to conform
to the OpenMP standard, several changes were
made to our new Aasen’s implementation compared
with our original QUARK-based implementation
(e.g., nested parallelization). In addition, for the com-
plete solver to utilize many-core architectures, it
needed to be implemented with care (e.g., merging
the multiple stages of the solver).

e We tested our solver performance on new many-core
architectures, including Intel’s Broadwell, Intel’s
Knights Landing (KNL), IBM’s Power8, and Arm’s
ARMVS. Our experimental results demonstrate the
improved portability and superior performance of
our implementation compared to vendor-optimized
implementations of LAPACK.

4 PLASMA OPENMP FRAMEWORK

In this section, we provide an overview of our new
OpenMP-based PLASMA framework, including details on
the tile layout, tile algorithm, and the OpenMP standard.

4.1 Tile Layout

PLASMA uses a special matrix layout to exploit the memory
hierarchy of modern computers and to generate enough
independent tasks conforming to the OpenMP standard.

4.1.1  General Matrix

While LAPACK stores the matrix in a column-major order,
PLASMA stores the matrix in tiles, which are small square
blocks of the matrix stored in a contiguous memory region.
These tiles can be loaded into the cache memory efficiently
and operated on with little risk of eviction. Hence, the use
of the tile layout minimizes the number of cache misses and
of translation lookaside buffer (TLB) misses, reduces false
sharing, and maximizes the potential for prefetching.
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(a) LAPACK layout. (b) PLASMA layout.
Fig. 1. Matrix layouts used in LAPACK and PLASMA.
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PLASMA contains parallel and cache-efficient routines
that convert LAPACK layouts to PLASMA layouts. These
routines are currently implemented in an out-of-place fash-
ion. Therefore, to convert from an LAPACK layout to a
PLASMA layout, PLASMA uses a separate memory alloca-
tion to store the matrix in tiles—first storing the leading sub-
matrix whose dimension is the largest multiple of the tile
size that is less than or equal to n (ie., the dimension of
n — (n mod ny)), followed by the leftover tiles (Fig. 1b). The
matrix entries of each tile are stored in the column-major
order, and the tiles in each submatrix are stored in column-
major order. For all of our performance results, our input
and output matrices are in the LAPACK layout, and—
unless otherwise noted—the timing results include the time
required for the layout conversion.

4.1.2 Triangular Matrix

For a symmetric matrix, PLASMA only stores the tiles in the
triangular part of the matrix, which reduces the memory
storage by roughly half of that required to store the full
matrix layout (Fig. 2).

Our OpenMP-based solver often generates nested tasks
that operate on a submatrix. This symmetric tile layout
makes it easy to pass the trailing submatrix to the nested
tasks (e.g., for symmetric pivoting) since the tiles in the sub-
matrix are stored in the contiguous memory regions. On the
other hand, since the tiles are stored in the column-major
order in the full matrix layout, the tiles in each block column
of the trailing submatrix are separated by the tiles on top of
the submatrix (see Fig. 1b).

4.1.3 Band Matrix

To reduce the storage cost, LAPACK compactly stores a
band matrix in a (k¢ + k;, + 1)-by-n array, where k; and k,

Il

Fig. 2. PLASMA triangular format.
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Full layout

aiil  Ga1,2
az1 G232 0G23
asi1 a3z2 0a33 G34

Qg2 Q43 G444 G455

as3 G54 0455

Band layout
* Q12 G23 34 Q45
ai1 G2 az3 G44 0Aas55
21 G332 (43 G54 *
as,;1 G472 0as53 * *

Fig. 3. LAPACK’s band matrix layouts.

are the numbers of the subdiagonal and superdiagonal
entries, respectively, within the band (see Fig. 3). For a sym-
metric matrix, only the upper or lower triangular part of the
band matrix is stored.

PLASMA'’s band matrix layout uses the same band lay-
out as LAPACK, but each element ¢; ; becomes an n,-by-n,
tile Ay ;. To simplify the implementation, the leftover tiles
have the leading dimension of n,; for the band matrix. For
instance, for the full matrix, the leading dimension of each
tile depends on the block row index, while in the band
matrix, it depends on both the block and column indices
(i.e., Ay is stored in the (ﬁ—j + I — J + 1)th block row in the
band layout, where ™ is the number of tiles above the diago-
nal). By having the fixed leading dimension of the tiles in
the band matrix, we can simplify our macro that returns the
leading dimension, plasma_tile_mmain (A, i), where A
is a structure and stores the matrix type, and i is the block
row index.

4.2 Tile Algorithm and Runtime

PLASMA implements LAPACK routines based on tiled
algorithms that break a given algorithm into fine-grained
computational tasks that operate on tiles. Fig. 4 shows the
tiled implementation of the matrix-matrix multiply (ZGEMM)
where each call to the core_omp_zgemm routine represents
a task. Operations on small tiles create fine-grained

for (int i = 0; i < C.mt; i++) {
int mvci = plasma_tile mview(C, 1i);
int ldci = plasma_tile_mmain(C, 1i);
int ldai = plasma_tile_mmain(a, 1i);
for (int j = 0; j < C.nt; J++) {
int nvcj = plasma_tile_nview(C, 7j);
for (int k = 0; k < A.nt; k++) {

int nvak = plasma_tile_nview (A, k);
int 1ldbk = plasma_tile_mmain (B, k);

plasma_complex64_t zbeta = k == 0 ? beta : 1.0
core_omp_zgemm (
transa, transb,
mvci, nvcn, nvak,
alpha, A(i, k), ldai,
B(k, 3j), 1ldbk,
zbeta, C(i, j), ldci,

sequence, request);

}

Fig. 4. Tile ZGEMM algorithm where A (i, j) is a macro returning the
starting memory location of the tile A; ;. In addition, plasma_tile_
mview(A, i) and plasma_tile_nview (A, j) return the numbers
of the rows and columns of a tile in the ith block row and the jth block
column of A, respectively, while plasma_tile_mmain (A, i) returns
the leading dimension of a tile in the ith block row.
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#pragma omp task depend(in:A[0:ldaxak]) \
depend (in:B[0:1dbxbk]) \
depend (inout:C[0:1dcx*n])

if (sequence->status == PlasmaSuccess)
core_zgemm (transa, transb,
m, n, k,
alpha, A, 1lda,
B, 1ldb,
beta, C, 1ldc);
}

Fig. 5. OpenMP ZGEMM task core_omp_zgemm wWhere core_zgemm
is simply a wrapper around the BLAS ZGEMM.

parallelism that provides enough independent tasks to keep
a large number of cores busy. In addition, each task operates
on the tiles in the cache before the tiles are evicted back to
the main memory. Hence, this implementation improves
overall performance because it maximizes the data reuse—
where compared to the arithmetic operations on the tiles,
the data movement through the memory hierarchy can be
more expensive.

PLASMA relies on a runtime system to dynamically
schedule computational tasks on physical cores based on
the availability of required data. For this reason, it is also
referred to as “data-driven scheduling.” The concept of
data-driven scheduling, in practice, is often described as
expressing the algorithm as a directed acyclic graph
(DAG) that consists of the tasks (vertices) and their data-
dependencies (edges). At run time, these tasks are exe-
cuted on different cores as their data dependencies are sat-
isfied (see Section 4.3 for the details of our PLASMA
implementation using OpenMP). In contrast, LAPACK is
based on fork-join scheduling, where artificial joints
expose synchronization points. As a result, with the fork-
join scheduling, when each forked computation does not
provide enough parallelism to utilize many cores, multiple
cores will be idle waiting for the other cores to finish proc-
essing the assigned work.

4.3 OpenMP Standard

OpenMP 3.0 introduced tasking that followed the simple Cilk
model, which was then extended by OpenMP 4.0 to define
the data dependencies among the tasks and enable dataflow-
based task scheduling. OpenMP 4.5 further extended the task-
ing capabilities. For example, OpenMP 4.5 added task priori-
ties that are critical for obtaining high performance using
some of our PLASMA routines [22]. These OpenMP stand-
ards are supported by popular compilers, including the GNU
Compiler Collection (GCC) and the Intel C Compiler (ICC).
PLASMA now relies on these OpenMP features for portable
performance on a wide range of many-core architectures.

Fig. 5 shows an OpenMP task for computing ZGEMM on
tiles. The #pragma omp task clause informs the compiler
that the following code segment is a task. To define the data
dependencies, the task’s required data is provided by a
memory pointer, an offset, a data size, and a type (e.g.,
type:Aloffset:size]), where the data type can be
either input, output, or input and output. For instance, the
in tag specifies that the data is input, and in the DAG, the
task becomes a descendant of all the previously inserted
tasks that list the data as an output (specified by the out
tag) or an input and output (specified by the inout tag).
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2. Panel
Factorization

1. Panel
Factorization

(a) Right-looking.

(b) Left-looking.

Fig. 6. Two different updating schemes.

On the other hand, the inout or out dependence makes
the task a descendant of the previously inserted tasks that
lists the data as in, inout, or out.

Then, at runtime, OpenMP keeps track of the data depen-
dencies among the tasks and dynamically schedules the tasks
on the many-core architecture while avoiding data hazards.
In other words, a task is not scheduled until all of its ancestor
tasks have completed and all of its data dependencies are sat-
istied. When the task completes, it then releases the data
dependencies of its descendant tasks. Note that PLASMA’s
tile layout enables efficient data dependency tracking through
OpenMP, which requires that each datum be stored in a con-
tiguous memory region. It would be difficult to generate fine-
grained tasks using the LAPACK column-major layout.

5 ALGORITHMS

In this section, we describe the algorithms that LAPACK
and PLASMA implement for solving the symmetric indefi-
nite-linear system of equations.

5.1 LAPACK

For solving the symmetric indefinite linear system Ax =b,
LAPACK factorizes the dense symmetric matrix A using
either the Bunch-Kaufman [1], rook pivoting [2], or Aasen’s
algorithm [3], [7]. To improve the data locality and the perfor-
mance of the factorization, the algorithms follow block factori-
zation procedures. Specifically, the algorithms first factorize
the leading block column (i.e., the panel), the result of which
is then used to update the trailing submatrix. The same proce-
dure is applied repeatedly to the trailing submatrix to factor-
ize the entire matrix. This procedure is referred to as “right
looking” because the panel is used to update the trailing sub-
matrix, which is on the right side of the panel (Fig. 6a).

Most of the FLOPS needed to factorize the matrix are per-
formed for the trailing submatrix update where the level
3 BLAS matrix-matrix operations can be used. In particular,
if n is the number of columns in A and n,, is the panel width,
then the panel factorization of both the Bunch-Kaufman
algorithm and Aasen’s algorithm need a total of O(n,n?)
FLOPS, which is the lower term in the total number of FLOPS
needed to factorize the whole matrix: 1 n® + O(n?n;) FLOPS
in the Bunch-Kaufman algorithm and (1 + %)nd + O(n’ny)
FLOPS in Aasen’s algorithm. Aasen’s algorithm has the
additional % factor in the leading term of the FLOP count
because it requires an additional rank-one update for each
trailing submatrix update. In order to maintain the symme-
try during the trailing submatrix update, LAPACK updates



YAMAZAKI ETAL.: SYMMETRIC INDEFINITE LINEAR SOLVER USING OPENMP TASK ON MULTICORE ARCHITECTURES

1: forJ =1,2,...,n¢ do

2: for/=2,3,...,J —1do

3 Hypj:= T1,1—1L§’,,1 +TI,1L§, + TI,I+1L§I+1
4: end for

5:

6: if J > 2 then

7 Ayyi=Asg = Lyzg-1Hag-1,0 —LyyTsaLY ;|
8: end if

9: TJVJ = L;’IJA‘]”]L;};

10:

11: if J < n; then

12: if J > 1 then

13: HJVJ = TJ7J71L§J71+TJ,]’LZ-—:]-

14: end if

15:

16: Ajitmg,g = Ajyiing,g — Livin, 2:.0H2.55
gi [Losting,d+1, Hit1,0, P = LU(Ags1im,,)
19: Tyi1,5 = Hyp1,gL75
20:
21: LJ+1:nt,2:J = P(J)LJ+1:nt,2:J
22: A.7+1:nt,.7+1:nt =P J A.I+1:nt,.7+1:ntP<‘])T
23: Pritmgim, =P Pri1in, 1,
24: end if
25: end for

Fig. 7. CA Aasen’s [5], where the first block column L., ; is the first n,
columns of the identity matrix and [L,U, P| = LU(A1.,.) returns the
LU factors of A, 1.,,,; With partial pivoting such that LU = PAj1.,,..

one block column at a time (one column at a time to update
the diagonal block). Since LAPACK uses the threaded BLAS
to parallelize the factorization, it has the artificial synchroni-
zation point at the end of each BLAS call, and its parallelism
is limited to that to update each block column.

To factorize each column of the panel, the Bunch-Kauf-
man algorithm and Aasen’s algorithm both select a pivot
from the remaining diagonals and then swap the corre-
sponding row and column in a way that maintains the
numerical stability and the symmetry of the factors (see
Fig. 11b). Since any remaining diagonal may be selected as
the pivot, the entire trailing submatrix must be updated
before the panel factorization can begin. On many-core
architectures, the panel factorization could play a significant
role in the factorization time since the level 2 BLAS matrix
vector (or the level 1 BLAS vector operations) used to factor-
ize the panel often obtains only a small fraction of the per-
formance possible with level 3 BLAS.

5.2 PLASMA

To solve the symmetric indefinite-linear system of equa-
tions, PLASMA implements the CA variant of Aasen’s algo-
rithm [5], which computes the LTL” factorization of the
coefficient matrix A

PAPT = LTLT,

where P is a row permutation matrix constructed to main-
tain the numerical stability of the factorization, L is a lower
triangular matrix with unit diagonals, and 7" is a symmetric
band matrix with a band width equal to the block size 7,

The Jth step of the algorithm computes the jth block col-
umn of an auxiliary Hessenberg matrix, H = TLT, and uses
the block column to update the panel

AJ+1:nt:,J = AJ+1:ntA.] - L«]+1:nt,1:JH1:J,J-
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i H istond... j-th T in LT
\
(a) Computation of H. ;.
L it H A
|j-th j~th
N

(b) Panel update.

Fig. 8. lllustration of Aasen’s algorithm.

Then, the LU factorization of the panel is computed to gen-
erate the (J + 1)th block column of L:

J
LycimgiHyog =PYAzq 0,

where P'Y) denotes the partial pivoting used for the numeri-
cal stability of the factorization. Fig. 7 shows the pseudo-
code of the algorithm, and Fig. 8 illustrates the main phases
of the algorithm. The algorithm performs roughly the same
number of FLOPS as the Bunch-Kaufman algorithm dis-
cussed in Section 5.1.

Unlike the right-looking algorithms in LAPACK that
update each block column one panel at a time, this is a left-
looking algorithm, where each step of the factorization uses
level 3 BLAS to update the panel all at once using all of the
previous block columns (see Fig. 6b). However, the tiled
implementation must be carefully designed because of the
limited parallelism associated with potential write conflicts
when updating each tile of the panel—a problem that we
address in the next section.

6 IMPLEMENTATIONS

In this section, we describe our PLASMA symmetric-indefi-
nite solver that consists of the following stages:

(1) Factorization
a) Aasen’s LTL” factorization (Section 6.2)
with LU panel factorization (Section 6.1)
b) Band LU factorization (Section 6.3)
(2) Solve
a) Forward substitution with the lower-triangular
L-factor from Aasen’s factorization, interleaved
with the row pivoting (Section 6.5)
b) Forward substitution with the L-factor from the
band LU, interleaved with the partial pivoting
(Section 6.4)
¢) Backward substitution with the upper-triangular
U-factor from the band LU (Section 6.4)
d) Backward substitution with the U-factor from
Aasen’s factorization (Section 6.5)
e) Row interchange of the solution vectors with
column pivoting from Aasen’s factorization
(Section 6.5)
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G ok —o— PLASMA(nb=m/mtpf) |
—o— PLASMA(nb=256)
—=—LAPACK DGETRF
20+ —v—MKL DGETRF
——MKL DGETF2
10

ol : n n ;
24 8 16 32 48 64
Number of threads
Fig. 9. Performance comparison of LU solver panel, excluding data layer
translation (m = 20000, n = 256, and “mtpf” stands for the maximum

number of threads used for the panel factorization and is the same as
the number of threads in this figure).

6.1 LU Panel Factorization

One of the critical components of our solver is the LU
panel factorization (Line 17 of Fig. 7) which has been
extensively studied and optimized in the past. The cur-
rent tile implementation of the LU panel factorization in
PLASMA is influenced, in particular, by the parallel
cache assignment (PCA) [23] and parallel recursive panel
factorization [24]. Some of our earlier work also provides
a good overview of different implementations of the LU
factorization in general [25].

Our LU panel factorization routine, discussed here, relies
on internal blocking and persistent assignment of tiles to
threads. Unlike past implementations, our LU panel factori-
zation routine uses blocking instead of the relatively inferior
plain recursion. Memory residency provides cache reuse for
the factorization of sub-panels, while inner-blocking pro-
vides some level of compute intensity for the sub-tile update
operations. The result is an implementation that is not mem-
ory bound and scales well with the number of cores.

Since panel factorization affects the entire block column,
data-dependent tasks are created for the block column oper-
ations and not for tile operations. Hence, the dependency
tracking is resolved at the granularity of the block columns,
not at the granularity of the individual tiles. Because we
store the tiles in column-major order, the tiles in each panel
are stored contiguously in memory. Nested tasks are then
created within each panel factorization and internally syn-
chronized using thread barriers.

To improve the core utilization of symmetric indefinite
factorization, we merge Aasen’s algorithm with the band
LU factorization, both of which use this LU panel factoriza-
tion routine. Since the LU panel factorization from these
two different stages of the algorithm may be executed con-
currently, our LU panel routine ensures thread safety by
using private workspaces and a private variable for syn-
chronizing its nested tasks.

Fig. 9 compares the performance of our LU panel factori-
zation with that of Intel’s Math Kernel Library (MKL) on
Knights Landing. Though our LU routine obtained lower
performance than the vendor-optimized MKL, it was more
scalable than LAPACK linked to the threaded BLAS from
MKL. Section 7 describes our experimental setups in details.
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for (int j = 1; J <= k; J++) {
// update L(:,k+1) using L(:,7) //
// > block column to update with
plasma_complex64_t *al = L(k, J);
plasma_complex64_t *a2 L(A.mt-1, j); // left-over tile
plasma_complex64_t *b H(3, k);
// > block column to be updated
plasma_complex64_t *cl_in = A(k, k);
plasma_complex64_t *c2_in = A(A.mt-1,
plasma_complex64_t *c_out = A(k+1l, k);

k); // left-over tile
// panel

int mvan = plasma_tile_mview(A, 3J);

#pragma omp task depend(in:al[0O:malxnal) \
depend(in:a2[0:ma2*nal) \
depend (in:b[0:A.mb*mvak]) \
depend(in:cl_in[0O:mcl_inxnc])
depend (in:c2_in[0:mc2_inxnc])
depend (out:c_out [0:mc_out+*nc])

\
\

for (int 1 = k+1; i < A.mt; i++) {
int mvai = plasma_tile_mview (A, 1)
int ldai = plasma_tile_mmain (A, 1)
#pragma omp task
{

7
7

core_zgemm (
PlasmaNoTrans, PlasmaNoTrans,
mvai, mvak, mvan,
-1.0, L(i, 3j), ldai,
H(j, k), A.mb,
1.0, A(i, k), 1ldai);
}
}
#pragma omp taskwait

}

Fig. 10. Left-looking update of (k + 1)th panel with nested parallelization.

6.2 Aasen’s Factorization

The panel update and the panel factorization are the two main
computational kernels of Aasen’s algorithm (Lines 16 and 17
of Fig. 7). For the panel factorization, we used the LU routine
from Section 6.1, which takes the tiles in the panel as input
and generates the nested tasks. Therefore, when updating the
panel, we also generate the nested tasks on the block columns
such that we can then define the data dependencies between
the panel update and the factorization without using the
explicit synchronization with #taskwait (the panel factori-
zation task must wait for the completion of all the tasks that
update the panel tiles). Fig. 10 shows our panel update code.

The left-looking update of the panel dominates the
computational cost of Aasen’s algorithm. Though all of the
panel’s tiles can be independently updated in parallel, all the
updates on each tile have write conflicts. Hence, its parallel-
ism is inherently limited by the number of tiles in the panel.
To increase the parallelism for updating each tile, we apply a
parallel reduction; we first accumulate sets of independent
updates into separate workspaces, and then—based on the
binary-tree reduction—update the panel with the accumu-
lated updates in the workspaces (see Fig. 11a). The amount
of parallelism that the algorithm can exploit depends on the
number of tiles in the panel and the amount of the workspace
provided. Our implementation allocates the workspace of
size 3n,n? for the parallel reduction by default.

After the LU panel factorization, the selected pivots are
applied symmetrically to the trailing submatrix. Our sym-
metric pivoting routine takes the triangular part of the
whole trailing submatrix as an input and generates the
nested tasks. At each step, each thread is assigned with a
subset of tiles in the current column, to which the pivot is
applied (see Fig. 11b). After each pivot is applied to the trail-
ing submatrix, these nested tasks are synchronized before
moving on to the next pivot. Since we store the matrix in the
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Fig. 11. Optimization techniques for SYTRF.

symmetric tile layout as shown in Section 4.1, these trailing
submatrix tiles are stored contiguously in the memory.
Fig. 12 shows the effects of the parallel reduction and the
parallel pivot on the factorization performance.

Fig. 13 illustrates the task dependency graph of Aasen’s
algorithm at the 4th step of factorizing A with 6-by-6 tiles.
The figure shows that the algorithm has several indepen-
dent tasks, which the OpenMP runtime can schedule in par-
allel as soon as all of the data dependencies are satisfied.
This parallel execution of the independent tasks is critical
for utilizing a large number of cores. In contrast, LAPACK'’s
fork-join paradigm relies on multi-threaded BLAS to exploit
the parallelism and introduces the explicit join at the end of
each BLAS call. This fork-join paradigm creates unnecessary
synchronization points and limits the amount of work that
many-core architectures can execute at a time, which then
limits the parallel efficiency and scalability of the program.
Fig. 14 compares the performance of our PLASMA imple-
mentation of Aasen’s algorithm to our LAPACK implemen-
tation of Aasen’s algorithm. Though some computational
kernels like LU panel factorization from the vendor-opti-
mized LAPACK or BLAS may obtain higher performance,
PLASMA implementation was able to obtain superior scal-
ability because some of the small computational kernels,
like applying the symmetric pivoting and updating the
diagonal block A s, did not scale well and became the per-
formance bottleneck in the LAPACK implementation. Fur-
thermore, this figure only compares the performance of the
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Fig. 12. Effects of parallel reduce and pivoting on DSYTRF.
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{GEMM(T(Z,\ ), L(1 ,4))} {GEMM(T(Z,ZJ, L(2,4))} {GEMM(T(Z,S), L(S,Ai)}

Compute H(2.4) and H(34) ) |
(lines 2 - 4) H

{GEMM(T(S,Z). L(2,4))} {GEMM(T(S,S), L(S,A))} {GEMM(T(SA), L(4,4))} }

T HE4)
3 4{GEMM(L(4,2), H(2,4))j {GEMM(LH,S), H(3,4)) }*

Compute T(4,4)
(lines 6 - 9)

Compute H(4,4) J :
(lines 12 - 14) s

G

{GEMM(TM,S), L(S,A))} {GEMM(TMA), L(4,4))}

(i

[GEMM(L(5,2), H(2,4))} [GEMM(L(S,S), H(3,4))} [GEMM(H(S,A), H(4,4))}

Update panel 4 o

(ine 16) [GEMM(L(G,Z),H(ZA)) } [GEMM(L(6,3), H(3,4))} [GEMM(L(B,A), H(4,4))}

Factorize panel
(line 17)

Compute T(5, 4)

Apply pivot
(lines 21-22)

Fig. 13. Task dependency a as a DAG for the 4" step (J = 4)andn; = 6
as in Fig. 7. Arrow indicates a task dependency. Dashed arrow from bot-
tom to top indicates a cross-iteration dependency; it goes to the same
task but in the nextiteration, which is not shown in the graph.

first stage of the symmetric solver. The real power of the
task-based programming is that it allows us to merge
the several stages of the solver, which will be discussed in
the following sections.

Merging the several steps of the symmetric indefinite
solver is critical for utilizing a large number of cores because
each stage has only limited amount of parallelism. For exam-
ple, though Aasen’s algorithm has a few independent tasks
that can be executed in parallel, its data dependencies also
prevent us from using some of the standard techniques to
enhance the solver performance. Such techniques include
“lookahead,” one of the critical techniques for obtaining scal-
able performance with the LU factorization, used in many
high-performance software packages, including PLASMA,
HPL [26], and MAGMA [27]. The main idea behind the look-
ahead technique is hiding the panel factorization—based on
level 1 and level 2 BLAS—Dbehind the update, which is based
on level 3 BLAS. This technique allows us to obtain a factori-
zation performance close to that of level 3 BLAS. To achieve
this performance with Aasen’s algorithm’s left-looking
update, we want to start updating the Jth panel while facto-
rizing the (J — 1)th panel. Unfortunately, the symmetric piv-
oting leads to data accesses and dependencies that make the
lookahead technique more difficult to execute. In particular,
the computation of the Jth block columns W. ; and H. ; has
the input dependency on the Jth row L. (see Fig. 7). How-
ever, L ;. becomes available only after applying the symmetric
pivoting from the (J — 1)th panel factorization to the trailing
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Fig. 14. LAPACK and PLASMA implementaions of Aasen’s on KNL
(n = 20000, n, =256). LAPACK implementation is linked with the
threaded MKL.

submatrix—these pivots are applied to bring the pivot rows to
the Jth row. These .Jth block columns of W and H are then
used to update the Jth panel. Hence, there are no other tasks
that can be executed during the panel factorization. Since the
parallelism of the panel factorization is limited by the number
of tiles in the panel, the panel factorization can utilize fewer
cores as the factorization proceeds. This lack of lookahead
makes it challenging to obtain high performance with the
overall LTL” factorization. We address this lack of parallelism
by merging the several steps of our solvers as discussed in the
following sections.

6.3 Band LU Factorization

It is a challenge to stably factorize the symmetric band
matrix 7, which is generated by the first stage of Aasen’s
algorithm, while preserving its band structure. This is
because the symmetric pivoting (required to ensure the
numerical stability) can completely destroy its band struc-
ture. For example, for this reason, LAPACK currently does
not support a symmetric indefinite band solver. Hence, our
current implementation stores 7' as a non-symmetric band
matrix and computes the non-symmetric band LU factoriza-
tion with partial pivoting.

Though we operate on tiles, our implementation of the
band LU solver follows that of LAPACK (i.e., a band LU fac-
torization [xGBTRF] and a solver [xGBTRS]) and exhibits the
same numerical behavior. For the band LU factorization
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Fig. 15. Performance comparison of band LU factorization DGBTRF

(n = 10000 and k, = k;, = 1000. LAPACK is linked to the threaded BLAS
from MKL.

with the partial pivoting, the main concern is that when the
row pivot is applied to the previous columns of L, it could
destroy the entire band structure. Accommodating this
worst-case scenario requires the full storage for L. To avoid
this additional storage, LAPACK performs a right-looking
update and only applies the pivot to the trailing submatrix,
thereby maintaining the band structure of L. With this
scheme, LAPACK only needs to store 1 + k, + 2k, numeri-
cal values for each column of the factors and only introdu-
ces—at most—¥; fills per column of U.

Like our Aasen’s algorithm implementation, our band
LU implementation factorizes the panel using the LU panel
factorization from Section 6.1. After factorizing each column
of the panel, the panel factorization routine applies the pivot
to the previous columns of the panel. For this reason, it
could introduce fills in the last tile of the band panel,
thereby destroying the lower-triangular structure of the tile.
Hence, compared with LAPACK, our band LU requires
additional storage to accommodate up to n;, — k fills in the
kth column of the panel.”

After the panel factorization, the panel is then used to
update the trailing submatrix in a right-looking fashion. Simi-
lar to how our Aasen’s algorithm works (described in Section
6.2), our band LU implementation generates nested tasks for
updating each block column of the trailing submatrix to avoid
#taskwait between the panel factorization and the trailing
submatrix update. In addition, during the right-looking
update, a higher priority is assigned for updating the next
panel so that the panel factorization may be started while the
rest of the block columns are still being updated.

Fig. 15 compares the performance of our band LU imple-
mentation to the performance of MKL and LAPACK running
on KNL. Our band LU was slower on a single core, which
may be because BLAS obtained lower performance on tiles
compared to the larger blocks used by LAPACK. However,
our implementation scaled better and obtained similar perfor-
mance on a larger number of cores. We also tested tracking the
fills in U and skipping the updates with empty blocks. How-
ever, for the random matrices used in this experiment, a sig-
nificant amount of fills were introduced, and this did not

2.1t is possible to apply pivoting during the layout translation to
have this additional storage only during the tiled factorization. How-
ever, PLASMA does not implement this.
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for (int j = 0; j < B.nt; J++) {
a00 = A(k, k);
al0 = A(imin(k+A.klt, A.mt)-1, k);
b00 = B(k, J);
bl0 = B(A.mt-1, Jj);
bll = B(k1l, J);

plasma_desc_t view = plasma_desc_view (B,

0, j*A.nb,
A.m, nvbj);
view.type = PlasmaGeneral;
#pragma omp task depend (inout:b00[0:mb00*nb]) \

(inout:b10[0:1db1l0%nb]) \
(in:ipiv[k*A.nb:k*A.nb+mvbk])

depend
depend

core_zgeswp (PlasmaRowwise, view,
kxA.nb+1l, kxA.nb+mvbk, ipiv, 1);
}

#pragma omp task depend (in:a00[0:ma00%nal) \
depend (in:al0[0:malOxnal) \
depend (inout:b00[0:mb00*nb]) \
depend (inout:b10[0:1dbl0xnb]) \
depend (inout:bl1[0:mbllxnb])

core_ztrsm(

side, uplo, trans, diag,
mvbk, nvbj,
lalpha, A(k, k), 1ldak,
B(k, j), 1ldbk);
for (int i = k+1; 1 < imin(k+A.klt, A.mt); 1i++) {
int mvbi = plasma_tile_mview(B, 1i);
int ldai = plasma_tile_mmain (A, 1i);
int 1dbi = plasma_tile_mmain(B, 1i);

#pragma omp task
{

core_zgemm (
PlasmaNoTrans, PlasmaNoTrans,
mvbi, nvbj, B.mb,
-1.0, A(i, k),
B(k, 3),
lalpha, B(i, 7J),

ldai,

1dbk,

1dbi);
}

}

#pragma omp taskwait

}

Fig. 16. Forward substitution for band LU solver.

significantly improve the performance. By default, our rou-
tine updates all the tiles that hold the potential fills, even
though they might be updated with empty tiles.

When the band LU factorization is used alongside
Aasen’s factorization, there is the potential to merge these
two algorithms, i.e., xGBTRF can start factorizing 7' ; once it
is computed by Aasen’s algorithm. For the symmetric-indefi-
nite solver, merging the two algorithms is critical for improv-
ing the parallel performance because the tiled Aasen’s
algorithm generates the band matrix with the band width
equal to the tile size (i.e., k, = k¢ = ny). Hence, there are only
three tiles in each block column of 7', which leads to severely
limited parallelism for the band LU. To merge these two
algorithms, the thread-safe LU panel from Section 6.1 is criti-
cal since the panel factorization of Aasen’s algorithm and the
band LU algorithm may execute concurrently.

To merge Aasen’s factorization and the band LU factori-
zation, we must resolve one data dependency: while our
implementation stores 7" in a separate allocation to be fac-
torized using xGBTRF—with additional space for the fills—
the Jth step of Aasen’s algorithm reads 7}.;_;. to compute
the Jth columns of W and H. In order to merge these two
algorithms, we need to store a copy of 7' to complete the
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Fig. 17. Performance comparison of band LU solver DGBSV (n = 10000
and k, = k; = 1000).

LTLT factorization, while xGBTRF starts factorizing 7.
Though our current implementation uses a separate work-
space to store a copy of 7', we can avoid this additional stor-
age through careful planning. Since the first block column
of L is the first n; columns of the identity matrix, they do
not have to be stored. Hence, we may store the (J + 1)th
block column of L in the Jth block column of A. Then the
banded matrix 7" can be stored in the main diagonal blocks
of A and in the first diagonal blocks below them (.e., T’
can be stored in A, and 741 s can be stored in the upper-
triangular part of A7y 7).

6.4 Band LU Solver
Our forward substitution of the band LU solver, xGBTRS,
also generates the nested tasks (Fig. 16). The nested paralle-
lization is needed because at each Jth step, the pivoting is
applied over the multiple tiles of the right-hand side, Bj.,,, .,
and the xGEMM updates on all these tiles must be completed
before the pivoting is applied. Aside from nested parallel-
ism, the standard tiled substitution algorithm also enjoys
the pipelining effects, i.e., as soon as the Jth step updates
the tile in the Ith block row of B, the (J + 1)th step can start
its update on the tile. Though our nested parallelization pre-
vents this pipelining, the pivoting at each step does not
allow this pipelining. Since there is no explicit synchroniza-
tion between xGBTRF and xGBTRS, the band LU factoriza-
tion and the forward substitution algorithms may be
merged. Namely, xGBTRF does not apply the pivots to the
previous columns of L. Hence, after the Jth step, L. ; is not
modified, and the forward substitution with L. ; can begin.
There is an implicit synchronization between the forward
and backward substitutions since the last tile of the solution
vectors updated by the forward substitution is needed by the
first task of the backward substitution. Also, the pivoting is
not applied during the backward substitutions, and the
nested parallelization is not needed. This is why we explicitly
synchronize before the backward substitution and use a stan-
dard tiled algorithm that allows the pipelining of the substitu-
tion tasks. Fig. 17 compares the performance of the DGBSV
band LU solver. Our implementation obtained higher perfor-
mance than MKL even on a single core. This may be because,
though LAPACK’s band layout reduces the memory require-
ment (up to n;, — 1 less numerical values per column than our
tile layout), it requires level 2 BLAS operations. On the other
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hand, PLASMA's tile layout allows us to use level 3 BLAS ker-
nels, which are often better optimized. We see in this experi-
ment that merging the factorization and forward substitution
did not significantly improve the performance—either
because there were not enough cores or not enough work for
the solver. However, merging the two algorithms can be more
significant in the context of the symmetric indefinite solver,
where each block column of the band matrix has only three
blocks, leading to severely limited parallelisms in both factori-
zation and substitution algorithms.

6.5 Solver

When the matrix and the right-hand sides are available at
the same time, an opportunity exists to merge Aasen’s fac-
torization and the forward substitution with L. However,
there are data dependencies that prevent a simple merge.
Specifically, Aasen’s algorithm applies the pivoting to the
previous columns of L, and if the solver tasks are inserted
after the factorization tasks, the solve tasks cannot start until
all the pivoting is applied to the previous columns. As a
result, merging the algorithms must be done manually.

To merge the two algorithms: at the Jth step of Aasen’s, we
inserted the forward substitution with L. ; placed after the
right-looking update of the panel, but before the panel factori-
zation, to compute L. ;;,. The goal is to overlap the forward
substitution with the panel factorization since the panel fac-
torization often lacks the parallelism required to occupy a
large number of cores. Unfortunately, this may not lead to
successful overlap, because the substitution tasks can be
scheduled much sooner. To enforce the overlap, we set the
data dependency of L. ; for the right-looking update to be
inout instead of in.

Finally, like in the band LU solver, we use a standard tiled
algorithm for the backward substitution with the U-factor
from Aasen’s algorithm. This allows the pipelining of the sub-
stitution tasks and also the two backward substitution algo-
rithms to merge: one with the U-factor from the band LU and
the other with the U-factor from Aasen’s algorithm. The back-
ward substitution ends with the top tiles of the right-hand
side, which are passed to the tasks that then apply the pivot-
ing from Aasen’s algorithm to the corresponding block col-
umns of the right-hand sides. The resulting execution trace
and performance are shown in Figs. 18 and 19. Merging the
algorithms brought a greater performance improvement as
the number of threads increases, garnering up to a 25% reduc-
tion in time to solution.

7 EXPERIMENTAL SETUPS

This section describes the hardware and setups used for our
performance studies. For our experiments, we used all the
available cores of the machine, launching one thread per
core. We did not enable hyper-threading since our solvers
are mostly compute bound.

7.1 Broadwell

Broadwell is the codename of Intel’s 14 nm die shrink of the
Haswell CPU microarchitecture. While there is a wide vari-
ety of Broadwell chips with different configurations, the

experiments in this work used a dual-socket motherboard
with two Intel Xeon E5-2690v4 CPUs (Broadwell, 14 cores
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per socket, 28 cores total). Each core has 64 kB of L1 cache,
32 kB of L1 data cache, 32 kB of L1 instruction cache, 256 kB
of L2 cache, and 35 MB of L3 cache that is shared between 14
cores (1 socket). The memory is shared across the whole
node, but 64 GB is placed on each non-uniform memory
access (NUMA) island, and the memory controller on each
NUMA node has 4 channels. The base frequency of each core
is 2.5 GHz and can be increased up to 3.8 GHz using “Turbo
Boost.” However, setting all of the cores to use Turbo Boost
limits the frequency of each core to 2.9 GHz. In terms of
instruction set, the microarchitecture implements advanced
vector extensions (AVX2) and fused multiply-add (FMA3),
which enables each core to achieve up to 16 FLOPS/cycle in
double-precision arithmetic. Consequently, in double preci-
sion, the theoretical peak performance of the whole node (28
cores) is 1.20 TFlop/s when set in base frequency mode, and
1.30 TFlop/s when using Turbo Boost.

We compiled PLASMA using GCC 6.3 and linked to
MKL 2017 for its single-thread BLAS functions. For a perfor-
mance baseline, we used LAPACK 3.7.0 downloaded from
Netlib, compiled using GCC 6.3, and linked to MKL 2017
for its multi-threaded BLAS functions. For the sake of com-
parison, we also report the performance of MKL’s DSYTRF /
DSYSV routines.

7.2 Knights Landing

KNL, also known as Knights Landing, is the codename for the
second generation of Intel’s Xeon Phi Many Integrated Core
(MIC) Architecture. The 7,230 and 7,250 KNL variants utilizes
14 nm lithography similar to the Broadwell Xeon E5 and E7
server processors to achieve 3.05 TFlop/s of peak perfor-
mance in double precision. The 7,250 KNL chip’s 68 cores are
also based on the out-of-order Silvermont microarchitecture
and support four execution threads. Both the 7,230 and
7,250 KNL variants have two AVX512 vector processing units
per core. There are two types of memory used in KNL: a larger
96 GB of DDR4-2,400 memory providing up to 115.2 GB/s of
bandwidth and a small 16 GB of MCDRAM providing up to
490 GB/s of sustained bandwidth through the 2-D mesh inter-
connect. The memory bandwidth per KNL core is approxi-
mately 11 GB/sec for small thread counts.

For our experiments, we used the 16 GB high speed
MCDRAM as a NUMA node (flat mode) instead of trans-
parent cache for DRAM (cache mode). We use Quadrant
cluster mode. PLASMA is compiled using GCC 7.0.1 and
linked with MKL (2017.2.174) for its single-thread BLAS
functions. For the performance baseline, we downloaded
LAPACK 3.7.0 from Netlib and linked with MKL
for its multi-threaded BLAS functions. We show the
LAPACK’s DSYTRF/DSYSV performance, compiled using
both GCC 7.0.1 and ICC 16.0.3 since they obtained higher
performance using ICC. We also show the performance of
MKL'’s DSYTRF/DSYSV routines.

7.3 POWERS

IBM’s POWERS [28] is a reduced instruction set computer
(RISC) fabricated using 22 nm technology that features up
to 12 cores per socket with 8 threads per core. For memory,
the POWERS boasts (per core) 32 KB of instruction cache,
64 KB of L1 data cache, 512 KB of L2 cache, and 8 MB of
L3 cache. Each core can issue up to 10 instructions per cycle
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Fig. 18. Execution trace of DSYSV with 34 threads.

and complete 8 instructions per cycle. The POWERS has two
independent fixed-point units (FXU), two independent load-
store units (LSU) plus two more load units and two indepen-
dent floating-point vector/scalar units (VSUs). The maxi-
mum double-precision floating-point issue rate is 4 FMAs
per cycle. The maximum single-precision floating-point
issue rate is 8 FMAs per cycle. The single instruction, multi-
ple data (SIMD) width is 2 for double precision and 4 for sin-
gle precision. Thus, when the peak performance is computed
as the frequency x 8 x number of cores, the peak perfor-
mance in double precision is 560 GFlop/s for a 3.5 GHz fre-
quency and 20-core node.

We used a dual-socket IBM POWERS8 compute node
with 20 cores running at a roughly 3.5 GHz clock speed.
We compiled PLASMA using GCC 6.3.1, linked with Engi-
neering and Scientific Subroutine Library (ESSL) 5.5.0 for
its single-thread BLAS functions. We show the results of
LAPACK 3.7.0 from Netlib, linked with ESSL 5.5.0 for its
multi-threaded BLAS functions. We show the LAPACK
results using both IBM’s XL compiler (version 20161123)
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| |[—B—merged (n=20K)
—+ not merged (n=20K)

F|—©— merged (n=10K)
| [ not merged (n=10K)

32
Number of threads
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Fig. 19. Effects of merging algorithms on DSYSV. Half of the available
threads were used for the panel factorization.

[] trsm

and GCC 6.3.1 because LAPACK obtained higher perfor-
mance using the XL compiler. The baseline ESSL runs
used the multi-threaded DSYTRF and DSYSV directly from
ESSL 5.5.0. For PLASMA runs, we used environment vari-
ables to peg each thread to one physical CPU core. We
only used one thread out of the 8 available threads per
core because one thread was able to fully utilize the float-
ing point units and maximize the memory bandwidth
while also providing the best performance.

7.4 ARMvS8

For this experiment, we used Cavium’s dual-socket, 96-core
ThunderX compute node. ThunderX, a 64-bit ARMVS8 proces-
sor, features up to 48 cores with a 2.0 GHz clock rate and is
fabricated using a 28 nm process. The double-precision FMA
performance is around 4 GFlop/s per core and the peak dou-
ble precision performance is 384 GFlop/s on the node.

We compiled PLASMA using GCC 6.1.0 and linked with
OpenBLAS [10] pre-0.2.20 for its single-threaded BLAS func-
tions. We downloaded LAPACK 3.7.0 directly from Netlib,
compiled using GCC 6.1.0, and linked with multi-threaded
OpenBLAS. The vendor optimized BLAS/LAPACK package
LibSci 17.03 is also used for its DSYTRF and DSYSV func-
tions. Due to a thread safety bug in serial BLAS functions of
LibSci, we can only get the multi-threaded DSYTRF/DSYSV
performance using the Cray compilers 8.5.8. For all of our
measurements, we used the OpenMP environment variables
to bind each thread to each physical core.

7.5 Block Size

Block size is a critical parameter that must be tuned to
obtain optimum performance for PLASMA. A smaller block
size increases the parallelism, but it lowers the performance
of the computational kernels that each task invokes (e.g.,
sequential BLAS). For example, Fig. 20 shows the effects of
the block size on the performance of DSYSV on KNL. Obvi-
ously, the block size needs to be chosen carefully. We show



1890

2000 4000 6000 8000 1000012000 14000 16000 1800020000
Matrix dimension

Fig. 20. Effects of block size on the performance of DSYSV on KNL.

the optimal block sizes with the results in Section 8, but to
keep things simple, our results in both Sections 6 and 8 only
show PLASMA performance with near-optimal, properly
tuned blocksizes.

8 EXPERIMENTAL RESULTS

Fig. 21 shows the performance of PLASMA’s DSYTRF factor-
ization routine (Aasen’s followed by band LU) on four differ-
ent architectures and compares it against the performance of
the LAPACK reference implementation linked with the ven-
dor-provided BLAS and also against the performance of the
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vendor-provided LAPACK. On Broadwell, compared to the
reference LAPACK implementation, PLASMA was able to
more effectively utilize the 28 cores even with a relatively
small matrix, while LAPACK needed larger matrices to fully
utilize the cores. We see that Intel has optimized MKL and
obtains much higher performance, especially for small matri-
ces, compared to LAPACK. However, even with a relatively
small matrix, PLASMA came very close to the performance
of the vendor-optimized routine. PLASMA’s performance
advantage over MKL significantly widened as we increased
the matrix size. This performance advantage was facilitated
by a combination of the algorithmic redesign and its careful
implementation within PLASMA.

On KNL and ARMvS, even PLASMA required bigger
matrices to fully utilize the large number of cores, and its
performance continued to increase as the matrices grew in
size. However, in contrast to the Broadwell results, as the
matrix size grew, PLASMA obtained greater speedups than
LAPACK (up to 4.8 and 5.2x respectively) on ARMv8 and
KNL. On POWERS, PLASMA requires larger matrices to
surpass the performance of ESSL/LAPACK. Also, the per-
formance of ESSL and LAPACK plateaued at the matrix
sizes of around 7,000 and larger, which we suspect is
because of the large and deep four level on—chip cache sys-
tem, which boasts 8MB of L3 cache per physical core and
16MB of L4 cache per memory controller, and possibly
because of the NUMA system in the main memory.
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Fig. 21. Performance of DSYTRF where the numbers by the PLASMA markers represent the block sizes.
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Fig. 22. Performance of DSYSV where the numbers by the PLASMA markers represent the block sizes.

PLASMA, owing to its tile data layout, seems to be better
suited to exploit complicated cache systems.

Fig. 22 compares the performance of the DSYSV symmet-
ric solver. The results are similar to those of the factorization
shown in Fig. 21, but PLASMA obtained greater speedups
by merging different stages of the solver.

9 CONCLUSION

In this work, we developed a dense symmetric-indefinite
solver for many-core architectures. To fully utilize a
large number of cores and to obtain portable performance, we
relied on OpenMP’s task-based programming and on its run-
time system. OpenMP breaks the artificial synchronization
points and allows independent tasks from different stages of
the solver to be executed in parallel. Our performance studies
of current many-core architectures, including KNL, POWERS,
and ARMvS, demonstrated the superior portable performance
of our PLASMA solver when compared to LAPACK.

Moving forward, we are investigating different imple-
mentations of the algorithms to further improve their
performance and portability. For instance, LU panel factori-
zation is a critical component that requires additional devel-
opment to ensure synchronization among the nested tasks.
We would also like to see if the solver can be ported to run
on accelerators and on distributed-memory computers.

10 FUTURE WORK

The Aasen’s algorithms described in this paper is our choice
of the symmetric indefinite solver for the SLATE package

(Software for Linear Algebra Targeting Exascale), developed
as part of the Exascale Computing Project (ECP). ECP is a
collaborative effort of the U.S. Department of Energy Office
of Science (DOE-SC) and the National Nuclear Security
Administration (NNSA), established with the goals of maxi-
mizing the benefits of high performance computing for the
United States and accelerating the development of a capable
exascale computing ecosystem.

The objective of SLATE is to serve as a replacement for
ScaLAPACK for the next generation of DOE’s machines,
and, ultimately, to target exascale systems [29]. The sym-
metric indefinite solver is scheduled for a release in the
third quarter of 2018, alongside the non-symmetric and
symmetric positive definite solvers, and will support dis-
tributed memory execution with multi-GPU acceleration.
The implementation described in this paper is uniquely
suitable for SLATE, as SLATE relies on storing the matrix
by tiles and dynamic scheduling of operations [30].
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