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Abstract. The fast Fourier transform (FFT), is one the most important
tools in mathematics, and it is widely required by several applications
of science and engineering. State-of-the-art parallel implementations of
the FFT algorithm, based on Cooley-Tukey developments, are known
to be communication-bound, which causes critical issues when scaling
the computational and architectural capabilities. In this paper, we study
the main performance bottleneck of FFT computations on hybrid CPU
and GPU systems at large-scale. We provide numerical simulations and
potential acceleration techniques that can be easily integrated into FFT
distributed libraries. We present different experiments on performance
scalability and runtime analysis on the world’s most powerful super-
computers today: Summit, using up to 6,144 NVIDIA V100 GPUs, and
Fugaku, using more than one million Fujitsu A64FX cores.

Keywords: Scalability - Parallel FFT - Hybrid systems

1 Introduction

The fast Fourier transform (FFT) is a key mathematical tool and widely used
in a variety of fields in science and engineering. In essence, the FFT of z, an m-
dimensional vector of size N := Ny X N X - -+ X N, is defined by y := FFT(x),
which is obtained as follows,
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where § = y(k1, k2, ..., kn), and & := z(ny, N2, ..., Npy).

From Eq.1, we see that the FFT could be directly computed by a tensor
product. However, this would cost O(N " N;), while the advantage of the
FFT is that the cost can be reduced to O(N log, N) operations.
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The parallel FFT is implemented by a sequence of 1-D or 2-D FFTs, see e.g.,
[13], which are computed using efficient intra-node optimized libraries, such as
FFTW [11] and CUFFT [1]. Figure 1 shows the steps to perform a 3-D FFT,
typical in molecular dynamics, c.f., [14,17]. For some applications the input
data has a shape ready to perform one-dimensional (pencils) or two-dimensional
(slabs) FFTs and no initial nor final reshaping is needed. In [5], authors showed
that saving one reshape step can accelerate the runtime around 25%, since,
asymptotically, the multi-dimensional FFT runtime is dominated by the number
of data-reshapes.

e
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Fig. 1. Sequence for the computation of 3-D FFTs. If slab decomposition is possible,
then an extra reshape step is saved.

In the current state-of-the-art, many authors have reported the impact
of multi-process communication on distributed FFT performance [4,12,16,18],
using both binary and collective MPI communication schemes that are available
in current libraries. In this paper, we study these performance impacts from a
numerical perspective, with a focus on architecture and algorithmic tuning for
better performance. We analyze the effects of the communication bottleneck on
scalability and provide techniques to maintain linear scaling. In Sect. 2, we make
evident how FFT computation halts scaling even using latest efforts on MPI
communication and their ability to perform CUDA-aware communication and
specialized MPI for accelerators such as the NCLL library from NVIDIA [2]. This
is critical for upcoming exascale system with millions of cores [6]. When address-
ing how network topology issues break scalability, we also provide techniques to
prevent them.

Finally, the FFT is a key component for applications ranging from elec-
tronics to molecular dynamics. It is used at small and large scale; as within
software targeting exascale (e.g., LAMMPS [14] and HACC [10]) and those from
the machine learning community [15]. Such applications are being prepared for
very large computing systems, with hybrid components and complex topologies.
Therefore, it is critical to ensure parallel FFT scalability at large-scale.
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2 Parallel FFT Performance Bottleneck

A major issue with distributed hybrid FFT's is that, due to the sheer compute
capabilities of today’s supercomputers, the algorithm quickly becomes commu-
nication bound. Such type algorithms, where already studied and authors in
[8] warned of their effect on upcoming large-scale clusters. In [7], authors per-
formed an extensive theoretical analysis on hybrid systems targeting exascale
and realized that the FFT computation itself would take only a small fraction
of the total run time, while the communication between processors would be
the bottleneck where most of the run-time is spent. Nowadays, computing sys-
tems have greatly increased their computation power but their communication
features have not been increased in the same proportion. For example, Summit
supercomputer uses powerful nodes with two IBM POWER9 processors and six
Nvidia V100 GPUs capable of reaching 42,000 GFlop/s in double precision, but
the interconnect between the nodes is supported by a bandwidth of just 25 GB/s.
Another supercomputer, the Sunway TaihuLight, has SW26010 processors with
260 cores, and 1 execution thread per core, with a unidirectional bandwidth
of 8 GB/s between nodes and 1p of latency [9]. It therefore becomes critical
to develop techniques and methodologies that help us of dealing with limited
communication capabilities, together with an ecosystem of integrated tuning
techniques for better communication frameworks. Such approaches are crucial
in general and are paramount for the FFT, where communication can take more
than 95% of total run-time on the latest GPU-accelerated supercomputers [4,5].

2.1 Scalability Issues

The recent developments of parallel FFT libraries capable of handling CPU
and GPU components at the same time, has allowed considerable speedups in
computation. However, this is highly limited by the communication bottleneck
which has a considerable impact even for small-scale problems (due to latency
issues) [5]. The bottleneck behaves different for every architecture and no general
conclusion can be given on optimization criteria. For instance, experiments from
[4,12,18] show that MPI All-to-All communication, was, in general, the best
behaving methodology for data exchange in Summit-like architectures; however,
as it can be seen in Fig. 2, in some systems, such as Fugaku, at large-scale, All-to-
All (A2A) communication drastically fails to scale. An alternative for this case
is to switch to binary MPI communication (P2P) which helps to keep a linear
scaling. Note, however, that for a given problem size, if it is too small compared
with the number of resources, then the scalability will also start to break, due
to increased latency, see for example the P2P curve for the 2562 problem. The
experiment was performed using heFFTe library [3].

2.2 Peak Performance Model

When making a software contribution on parallel implementation, it is important
to see how well the performance approaches to the machine theoretical peak.
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Fig. 2. Strong scaling of a 3-D FFTs. Using 48 A64FX cores per node. Comparing the
scalability of A2A and P2P approaches using double-complex precision data.

Since the bandwidth injection between a single node is, in general, very high
compared to inter-node injection. We developed a mathematical model for the
theoretical performance peak on a supercomputer, c.f., [5, Sec. 3], given as:

_ 5Plog(N)B
- ar

b (GFlops/s), (2)

where, the parameters are explained in Table 1.

Table 1. Parameters for communication model

Symbol | Description
N Size of FFT
Number of nodes

Number of reshapes (tensor transpose, c.f., Fig. 1)
Size of datatype (Bytes)
Theoretical inter-node bandwidth (GB/s)

we v

In Fig.3, we show the roofline model for heFFTe v.2.0 on Summit and
Fugaku, which have, respectively, 25 and 40.8 GB/s of inter-node theoretical
bandwidth injection.

2.3 Choosing the Fastest FFT Parallel Algorithm

In Fig.1 we see that there exists different ways to implement the parallel FFT,
and it also depends on the user’s data arrangement at input and output. For
the sake of simplicity, let us consider a 3-D FFT, where the possible reshape
combinations are (B: Bricks, P: Pencils, S: Slabs):

— Pencils: B2P — P2P — P2P — P2B; this approach is the one available in
libraries such as AccFFT [12] and FFTMPT [17].
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Fig. 3. Roof-line performance model—heFFTe performance on a 3-D FFT of size 1024®
using 6 MPI/node, 1 GPU-Volta 100 per MPI for Summit, and 48 A64FX per node on
Fugaku.

— Slabs: B2P — P25 — S2B; this approach uses a combination of pencils and
slabs, and it is included in heFFTe library [3].

The choice of a given reshape sequence will depend on the type of architec-
ture. Note that, for example, the number of messages for a P2P reshape is of
the order of P?/3, where P is the number of processors involved in the communi-
cation, c.f., Fig. 1. Hence, assuming 3-D double-complex data—and using Eq. 2
and the asymptotic number of messages sent by each of the reshape types, with
B=25GB/s and L = 1ps—Fig. 4 is a phase diagram for Summit, which allows
to choose the theoretical fastest decomposition to use. This offline pre-processing
tuning strategy can help users to identify which 3-D decomposition to use for
the FFT parallel algorithm. The proposed methodology can easily be extended
to other supercomputers and higher dimension transforms.
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Fig. 4. Selection of the best reshape approach based on the 3-D FFT size and the
number of resources.

3 Experimental Results

In this section, we present numerical experiments to support our analysis from
previous sections. Since this paper targets large-scale computation, our results
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were obtained using the two world’s most powerful supercomputers today, with
the following architectures:

— Summit at ORNL - USA, having 4,608 nodes, each consisting of 2 IBM
POWER9 CPUs and 6 NVIDIA V100 GPUs. These 6 GPU accelerators pro-
vide a theoretical double-precision capability of approximately 40 TFLOP/s.
Within the same node, processors have two NVIDIA NVLink interconnects,
each having a peak bandwidth of 25 GB/s (in each direction), hence V100
and P900 can communicate at a peak of 50 GB/s (100 GB/s bi-directional).

— Fugaku at RIKEN - Japan, currently at testing stage, and has 158,976 nodes,
each consisting of Fujitsu A64FX CPU. We use the maximum amount of
number of resources currently allowed with 48 cores per node.

Experiments on this paper where performed using a state-of-the-art library
for parallel FFTs: heFFTe version 2.0 [3], which reportedly provides consider-
able speedups with respect to its peers [4]. If not stated otherwise, our results
display average values of 10 experiments (5 forward and 5 backward 3D-FFT
computations) using double-complex precision random data and 4 data reshapes
per direction (Input — X — Y — Z — Output).

3.1 Strong and Weak Scalability

Several authors have shown that parallel FFT runtime on large problems are
highly due to MPI communication, which asymptotically takes more than 95% of
runtime on hybrid systems, c.f., [4,5,12]. Hence, it is critical to select the fastest
MPI (binary or collective) communication for the data exchanges required by
parallel FFT distributions. In Fig. 5, we present weak and strong scalability on
up to one million A64FX cores on Fugaku, this experiment clearly shows the
effect on scalability of the selection of the Point-to-Point (MP2P) and All-to-
All (A2A) communication frameworks, and its relationship with the number of
resources. When dealing with hybrid systems, such as Summit supercomputer,
the percentage of time spend on communication exploits, making the perfor-
mance scaling highly dependent on the underlying MPI library, we explore the
MPT selection in next subsection.

The strong scalability plot from Fig.5, sheds light on how P2P communi-
cation is faster for large number of resources, and we verified this for medium
sized allocation and employed the P2P approach for our largest experiments on
the weak scalability plot. Figure 6 shows a weak scaling using AlltoAll commu-
nication on Summit, and using SpectrumMPI 10.3 with data striping enabled,
we can get good linear scaling and this is faster than the P2P approach, which
is the opposite situation compared to Fugaku.
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Fig. 5. Left: Comparison of strong scaling for a 3-D FFT of size 1024, using different
node count. Right Weak scalability for different 3-D FFT sizes. For both experiments
we use heF'FTe with FFTW backend and 48 MPI processes (1 MPI processes per
AG64FX core) per node.

30

2 3%

B MPI communication

20 4

B Unpacking

<@-heFFTe (GPU) -»> M Packing

————

TFlop/s

B FFT computation
Scaling

643 128°
8 16 32 64 128 256 512 1024
Number of Summit nodes

Fig. 6. Weak scalability for different 3-D FFT sizes on a hybrid architecture (Summit).
Using NVIDIA CUFFT backend and 6 MPI processes (1 MPI processes per Volta 100
GPU) per node.

3.2 MPI Selection for Further Acceleration

In Sect. 3, we showed how the right reshaping algorithm can provide speedups of
over 25% compared to default implementations. Next, assuming that the algo-
rithm is fixed and properly chosen, we observed that to achieve linear scala-
bility, it is very important to figure out how to optimally use the computa-
tional resources and architecture tools from manufactures to manually tune the
port inter-connections to achieve maximum bandwidth injection. Therefore, let
us analyze the parallel computing technologies in both, Summit and Fugaku,
supercomputers:

— Fugaku uses a TofuD network topology, with three different types of options:
torus, mesh, noncont. For our experiments we used MPIFCC provided with
the Fujitsu compiler, and we enabled auto-parallelization using the Kparallel
flag. We observe that the torus and noncont networks provided the best
injection bandwidth. In theory, using the 6 available TofuD ports we can get
a total of 40.8 GB/s theoretical bandwidth injection.
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— Summit inter-node connections are not as fast as the NVLINKS available
intra-nodes, and they are arranged on a non-blocking fat tree topology with
dual-rail EDR InfiniBand network that provides a theoretical bandwidth of
25 GB/s. For our experiments we use IBM SpectrumMPI, which is optimized
for this architecture.

I

. Fujitsu MPI Theoretical Peak
SpectrumMPI === OpenMPI-UCX —— Theoretical Peak

[
5
o5&

%)
S

Bandwidth (GB/s)
Bandwidth (GB/s)

w

S
- oo ow
S8R 8

w

64K 128K 256K 512K IMB 2MB 4MB 8MB 160MB 64K 128K 256K 512K IMB 2MB 4MB 8MB 160MB
Message size (MB) Message size (MB)

Fig. 7. Comparison of bandwidth injection obtained for different MPI implementations
on Fugaku and Summit.

Information about the interconnections have to be obtained in advance and
can be integrated to state-of-the-art libraries for auto-tuning, this feature is
not, currently, supported by libraries covered in Sect. 1. Next, for a given FFT
computation we can find the message size that will be transferred between nodes
and Fig. 7 shows which MPI implementation offers the best bandwidth injection.
For instance, for a 256 x 256 x 256 double-complex (16 Bytes) precision FFT on
128 nodes, each processor communicates around 2 MB of data.

4 Conclusion

In this paper, we studied performance and scalability limitations of large-scale
FFT computation on state-of-the-art CPU and GPU distributed systems. We
provided methodologies to further accelerate parallel FFT by targeting soft-
ware improvements on critical algorithm bottlenecks and making them aware of
the underlying architecture. Our numerical studies and bounds on performance
scalability can be generalized to all type of architectures (e.g., those from grid
computing) and can be employed to make performance predictions. We finally
presented experiments on today’s top supercomputers, showing how carefully
chosen system-aware parameters and algorithms can lead to very good linear
strong and weak scalability.
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