
Random Sampling to Update Partial Singular Value
Decomposition on a Hybrid CPU/GPU Cluster

Ichitaro Yamazaki, Jakub Kurzak, Piotr Luszczek, Jack Dongarra
{iyamazak, kurzak, luszczek, dongarra}@eecs.utk.edu,

Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, U.S.A.

Abstract—There is a growing demand for a novel algorithm
that can efficiently analyze the massive data being generated from
many modern applications. To this end, a partial singular value
decomposition (SVD) of the sparse matrix representing the data
is a powerful tool. However, computing the SVD of the large data
can take a significant amount of time even on a modern large-
scale computer. To address this challenge, we propose sampling
algorithms to update, instead of recompute, the SVD. Our
experimental results demonstrate that these sampling algorithms
can obtain the desired accuracy of the SVD with a small number
of data accesses, and compared to the state-of-the-art updating
algorithm, they often require much lower computational and
communication costs. Our performance studies on a hybrid
CPU/GPU cluster show that these sampling algorithms can obtain
significant speedups over the state-of-the-art algorithm.

I. INTRODUCTION

In recent years, the amount of data being generated from the
observations, experiments, and simulations in many areas of
studies (e.g., science, engineering, medicine, finance, social
media, and e-commerce) is growing at an unprecedented
pace [5], [7]. These data is commonly referred to as “Big
Data,” and the algorithmic challenges to analyze the data are
exacerbated by its massive volume, wide variety, and high
veracity and velocity [19]. To this end, a partial singular value
decomposition (SVD) [10] of the sparse matrix representing
the data is a powerful tool. The ability of the SVD to filter out
noise and extract the underlying features of the data has been
demonstrated in many data analysis tools, including Latent
Semantic Indexing (LSI) [6], [1], recommendation systems [6],
[26], population clustering [22], and subspace tracking [15].
In many studies, the leverage scores, statistical measurements
to sample the data, are also computed based on the SVD [12].
Hence, the SVD has the potential to address the variety and
veracity of the modern data sets.

Unfortunately, the traditional approaches to computing the
partial SVD access the data several times (e.g., block Lanc-
zos [9]). This is a significant drawback on a modern computer,
where the data access has become significantly more expensive
compared to arithmetic operations, both in terms of time and
energy consumption, and this gap between the communication
and computation costs is expected to grow on future com-
puters [8], [11]. To address this hardware trend, a random
sampling algorithm [12] has been gaining attention since,
compared to the traditional approaches, it often computes the
SVD with fewer data accesses. To test its potential, we have
developed a sparse solver based on the random sampling [32].

Though such a solver has the potential to efficiently compute
the SVD on a modern computer, there are still several obstacles
that need to be overcome. For example, due to the sparsity
structure of the matrix (i.e., its irregular sparsity pattern and the
power-law distribution of its nonzeros), though the sampling
algorithm may require only a small number of data accesses,
each data access can be expensive, requiring a significant
amount of communication. Several techniques to avoid such
communication have been proposed [14]. However, these
techniques may not be effective for computing the SVD of
the modern data because the particular sparsity structure of
the matrix often leads to a significant overhead associated with
the communication-avoiding techniques [32].

To address the challenges of computing the SVD of the
modern data, in this paper, we propose sampling algorithms to
update, instead of recompute, the partial SVD as the changes
are made to the data set. This is an attractive approach
since, compared to recomputing it from scratch, the SVD can
be updated more efficiently. Moreover, in some applications,
recomputing the SVD may not be possible because the original
data is no longer available. At the same time, in modern appli-
cations, the existing data are constantly updated and new data
is being added. Hence, the size of the update is significant even
though it is much smaller than the massive data that has been
compressed. Such applications with the rapidly changing data
include the communication and electric grids, transportation
and financial systems, personalized services on the internet,
particle physics, astrophysics, and genome sequencing [5].
Therefore, an efficient updating algorithm is needed to address
the large volume and high velocity of the changing data.

There are four main contributions of the paper. First, we
introduce three different sampling algorithms to update the
partial SVD, and analyze their communication and compu-
tation costs. Second, to study the effectiveness of the sam-
pling algorithms, we present case-studies with two particular
applications (i.e., LSI and population clustering). Our case-
studies using the data sets from real applications demonstrate
that the sampling algorithms converge quickly to obtain the
desired accuracy of SVD (e.g., three passes over the data sets).
Third, we compare the performance of the sampling algorithms
with that of the state-of-the-art updating algorithm on a hybrid
CPU/GPU cluster. Our performance results demonstrate that
the sampling algorithms can obtain significant speedups (e.g.,
the speedups of up to 14.1× in our experiments). Finally,
we present our effort to improve the performance of the

SC15, November 15-20, 2015, Austin, Texas, USA
978-1-4799-5500-8/14/$31.00 c©2015 IEEE

sampling algorithms based on the communication-avoiding
technique proposed in [16]. Our performance results on a
hybrid CPU/GPU cluster show the potential of the imple-
mentation. In the final section, we list our current efforts
to improve the robustness of this communication-avoiding
implementation.

The rest of the paper is organized as follows. After listing
related work in Section II, we describe the state-of-the-art
updating algorithm and propose the sampling algorithms for
updating the partial SVD in Section III. Then, in Section IV,
we present our case-studies of using the sampling algorithms
for LSI and population clustering. Next, in Section V, we
describe our implementation of the sampling algorithms on
a hybrid CPU/GPU cluster, and in Section VI, we analyze
their computational and communication complexities. Finally,
in Section VII, we present our performance studies on a hybrid
cluster. The communication-avoiding variant of the sampling
algorithm and the final remarks are listed in Sections VIII
and IX, respectively.

All of our experiments were conducted on the Tsubame
Computer at the Tokyo Institute of Technology1. Each of its
compute nodes consists of two six-core Intel Xeon CPUs and
three NVIDIA Tesla K20Xm GPUs. We compiled our code
using the GNU gcc version 4.3.4 compiler and the CUDA
nvcc version 6.0 compiler with the optimization flag -O3,
and linked it with Intel’s Math Kernel Library (MKL) version
xe2013.1.046.

II. RELATED WORK

Several algorithms have been proposed to update the partial
SVD for the latent semantic indexing. For example, the “fold-
in” algorithm [2] is an efficient algorithm, but the precision
of a query result could deteriorate as more updates are
incorporated into the SVD [29], [30]. The current state-of-
the-art algorithm is the “updating” algorithm proposed by
Zha and Simon [36], and it has been shown to obtain the
same precision as that of the recomputed partial SVD. To
reduce the computational cost of the updating algorithm, the
“fold-up” algorithm [29] is based on the fold-in algorithm, but
periodically discards the updates and recomputes them using
the updating algorithm. When the SVD is continually updated
with small changes, the fold-up is an efficient approach and
obtains the same accuracy as the updating algorithm. We
compare the performance of our sampling algorithms with
the updating algorithm, and demonstrate that the sampling
algorithms can potentially replace the updating algorithm in
the fold-up algorithm.

Recently, a column-wise Lanczos was used to update the
SVD [30]. Their experimental results in MATLAB demon-
strated the efficiency of the algorithm compared to the updat-
ing algorithm. However, compared to the sampling algorithms
proposed in this paper, Lanczos would require more data
accesses to generate the projection subspace of the same
dimension. Hence, on a large scale computer, the Lanczos

1http://tsubame.gsic.titech.ac.jp

would likely suffer from the greater communication latency.
To compute the SVD on a single compute node with multiple
GPUs, we have previously compared the performance of
the sampling algorithm with the block Lanczos, which often
requires fewer data accesses than the column-wise Lanczos,
and with a communication-avoiding variant of the block Lanc-
zos [32]. In that study, when the sampling algorithm requires
a small number of iterations, even on a single compute node
with a marginal inter-GPU communication cost, the sampling
algorithm was often more efficient. In addition, compared
to the updating algorithm, the projection scheme proposed
in [30] reduces the serial bottleneck of solving the projected
problem, but it could still be significant (in terms of both
time and memory). Our performance results on a hybrid
CPU/GPU cluster demonstrate that our projection scheme
further reduces the bottleneck, obtaining a significant speedup,
while maintaining a similar accuracy.

In recent years, several researchers have demonstrated the
ability of the sampling algorithms to analyze the emerging
large data [12], [22]. This paper is an extension of these studies
to adapt the sampling algorithm for updating SVD and to study
its performance on a hybrid CPU/GPU cluster.

A few software packages exist for computing partial SVD.
These packages are often developed by researchers from
a single discipline and optimized for their specific needs
(e.g., SLEPc from linear algebra and GraphLab from graph
analysis2). In addition, they do not provide a functionality
to update SVD. Our ultimate goal is to develop a flexible
interface to efficient and robust SVD solvers for a wide range
of applications by combining techniques from linear algebra,
randomized algorithms, and high performance computing.

III. ALGORITHMS

We assume that a rank-k approximation Ak of the m-by-n
matrix A has been computed as Ak = UkΣkV

T
k , where Σk is

a k-by-k diagonal matrix whose diagonal entries approximate
the k largest singular values of A, and the columns of Uk

and Vk approximate the corresponding left and right singular
vectors, respectively. Then, we consider the updating problem
of computing a k-rank approximation of an m-by-n̂ matrix Â,

Â ≈ ÛkΣ̂kV̂k, (1)

where Â = [A,D] and an m-by-d matrix D represents the
new sets of the sparse columns being added to A.3 In many
cases, D is tall-skinny, having more rows than the columns
(i.e., m� d).

All the algorithms studied in this paper belong to a class of
subspace projection methods which are based on the following
three steps:

2http://slepc.upv.es and http://graphlab.org
3This was referred to as the updating-document problem [2]. Two other

problems, updating-terms and term-weight-correction problems, were consid-
ered, which adds new rows to the matrix A and updates the nonzero values
of A, respectively. Though we only focus on the updating-document problem,
much of our discussion can be extended to the other two problems.

http://tsubame.gsic.titech.ac.jp
http://slepc.upv.es
http://graphlab.org

Generate projection subspaces P and Q
for j = 1, 2, . . . , s do

1. Orthogonalize Q̂

QR := Q̂
2. Sample range of A

P̂ := AQ

3. Orthogonalize P̂

PB := P̂
4. Prepare to iterate (sample range of AT)

if j < s then

Q̂ := ATP
end if

end for

Fig. 1. Sampling algorithm based on power iterations.

1) Generate a pair of k + ` orthonormal basis vectors P̂
and Q̂ that approximately span the ranges of the matri-
ces Â and ÂT , respectively,

Â ≈ P̂ Q̂T ,

where ` is referred to as an oversampling parameter [12]
and selected to improve the performance or robustness
of the algorithm.

2) Use a standard deterministic algorithm to compute SVD
of the projected matrix B,

B = XΣ̂Y T , (2)

where B = P̂T ÂQ̂.
3) Compute the approximation to the partial SVD of Â,

Âk ≈ ÛkΣ̂kV̂
T
k , (3)

where Ûk = P̂Xk and V̂k = Q̂Yk.
In this section, we describe algorithms that generate the basis
vectors P̂ and Q̂.

A. Sampling Algorithm
To compute the partial SVD of a general sparse matrix A,

our implementation of the sampling algorithm is based on
the normalized power iterations [20]. Figure 1 shows the
pseudocode of the algorithm. The input matrix Q̂ repre-
sents the random sampling and projection applied to the
matrix A. Though there are several sampling schemes, for all
the experiments in this paper, we used the Gaussian random
vectors for Q̂, for which extensive theoretical work has been
established [12]. When the singular values of A decay slowly
(which we typically see for matrices from data-rich fields),
we perform the power iterations to reduce the noise and
improve the quality of the approximation. The basis vectors are
orthonormalized in order to maintain the numerical stability
during the iteration, and the projected matrix B is computed
as a by-product of the orthogonalization process.

B. Updating Algorithm
To compute the projection basis for updating SVD, the

updating algorithm [36] first orthogonalizes the new set of
the columns D against the current left singular vectors Uk,

D̂ := D − Uk(UT
k D).

0 100 200 300 400 500

10
2

10
3

10
4

S
in

g
u
la

r
v
a
lu

e

Singular value number

Fig. 2. Singular values of the 116565-by-499 SNP matrix from Section IV-B.

Then, the resulting vectors D̂ are orthonormalized based on
their QR factorization,

QR := D̂,

where Q is the m-by-d orthonormal matrix (i.e., QTQ = I),
and R is a d-by-d upper-triangular matrix.

The basis vectors are then given by

Q̂ =
[
Uk, Q

]
and P̂ =

[
Vk 0
0 Id

]
, (4)

where Id is a d-by-d identity matrix, and the (k+d)-by-(k+d)
projected matrix B is given by

B ≡ Q̂T [Ak, D]P̂

=

[
Σk UTD

R

]
. (5)

In practice, to reduce the unfeasibly large amount of
memory required to store the m-by-d dense vectors Q, the
SVD is incrementally updated by adding a subset of the new
columns D at a time. Though the memory requirement and
the computational cost of the orthogonalization are reduced,
all the columns of D are still orthogonalized against Uk. In
addition, for each block of D, the corresponding SVD of the
projected matrix must be computed, and the approximation Uk

and Vk must be updated. It has also been reported that the
incremental update can increase the runtime of the algorithm
because the required computational kernels often obtain lower
performance as they operate on smaller matrices [36], [30].
Finally, the quality of the approximation may degrade when
the SVD is incrementally updated [29], [30].

C. Sampling Algorithms to Update SVD

For updating SVD, we propose the following three sampling
schemes to generate the projection basis vectors P̂ and Q̂:

a) Sample-1: perform the power iteration on the m-by-
(n + d) matrix,

Âk = [Ak, D],

where Ak = UkΣkVk. This generates the pair of r basis
vectors, P̂ and Q̂, that approximate the dominant singular
vectors of the matrix Âk. It has been shown [36] that many

matrices for LSI have so-called approximate low-rank-plus-
shift structures, and for this type of matrix, the partial SVD
of Âk accurately approximates the partial SVD of Â. Figure 2
shows the singular values of the SNP matrix used for pop-
ulation clustering studies in Section IV-B. This matrix also
has this approximate low-rank-plus-shift structure, where the
singular values decay quickly to a constant value. We refer to
this sampling scheme as “Sample-1.”

When the k + d vectors P̂ in (4) are used as the starting
vectors, after one iteration, Sample-1 generates the same
projection basis vectors, P̂ and Q̂, as the updating algorithm.
Hence, Sample-1 provides a general sampling framework, and
we used it to study the effectiveness of the random sampling
to compress the desired information into a small projection
subspace (e.g., in our experiments, r = k + ` and `� d).

b) Sample-2: apply the power iterations to the deflated
matrix,

(I − UkU
T
k)D,

and generate the basis vectors Q. Then, we use the projection
basis vectors P̂ and Q̂ defined by Eq. (4). The same projection
subspace was used in [30], whereby instead of sampling, the
column-wise Lanczos is used to generate Q. It has been shown
that P̂ is the optimal right subspace for Qd, and Uk is used
to approximate Ud. We refer to this as “Sample-2.”

c) Sample-3: apply the power iterations to the same
deflated matrix as Sample-2, but let the right basis vectors Q̂
to be the n̂-by-(k + `) matrix,

Q̂ =

[
Vk 0

0 V̂`

]
,

while the right projection subspace of Sample-2 is of dimen-
sion k+d (i.e., d� `). The cost of computing the SVD of B
is significantly reduced using the dominant singular vectors V`

in the right projection subspace. This is called “Sample-3.”

IV. CASE STUDIES

In Section VI, we analyze the computational and communi-
cation complexities of the proposed sampling algorithms. We
then study their performance on a hybrid CPU/GPU cluster
in Section VII. Proceeding to these studies, in this section,
we demonstrate the potential of the sampling algorithms to
compress the desired information into a small projection
subspace with a small number of data accesses, focusing on
a powerful statistical analysis tool, the principal component
analysis (PCA) [3]. In PCA, a multidimensional dataset is
projected onto a low-dimensional subspace such that related
items are close to each other in the projected subspace. We
examine two particular real-world applications of PCA, Latent
Semantic Indexing (LSI) and population clustering.

A. Latent Semantic Indexing

For information retrieval by text mining [25], a variant of
PCA, Latent Semantic Indexing (LSI) [6], has been shown
to effectively address the ambiguity caused by the synonymy
or polysemy, which are difficult to address using a traditional

Total number of documents, n + d
Method 700 800 900 1000 1100 1200 1300 1400

Recomp. 35.6 40.8 40.2 45.3 44.9 44.0 43.6 41.7
Update 35.6 40.8 40.4 45.6 44.9 44.1 43.9 42.2
Update-inc 35.6 40.8 40.4 45.6 44.9 43.9 44.0 42.6
Sample-1 35.6 40.0 40.4 45.6 44.5 44.1 43.6 41.8
Sample-2 35.6 36.7 40.4 45.3 44.4 43.8 43.7 42.0
Sample-3 35.6 36.7 40.4 45.3 44.4 43.6 43.4 41.7

(a) k = 200.

Total number of documents, n + d
Method 700 800 900 1000 1100 1200 1300 1400

Recomp. 26.7 30.9 32.0 32.5 32.7 31.3 30.8 29.8
Update 26.7 29.8 30.1 30.7 31.5 30.7 30.4 29.7
Update-inc 26.7 29.8 30.1 30.6 30.9 30.1 29.8 29.5
Sample-1 26.7 29.0 29.9 31.9 31.9 30.9 29.5 28.6
Sample-2 26.7 29.6 29.6 30.0 31.0 30.1 30.0 29.7
Sample-3 26.7 29.6 28.2 28.2 27.9 27.4 26.8 25.8

(b) k = 50.

Fig. 3. Average 11-point interpolated precision for 6916-by-1400
CRANFIELD matrix with 225 queries, n = 700.

lexical-matching [18]. To study the effectiveness of the sam-
pling algorithm, in this section, we apply the updated SVD
to LSI. The test matrices are the term-document matrices
generated using the Text to Matrix Generator (TMG) and
the TREC dataset4, and are preprocessed using the lxn.bpx
weighting scheme [17]. These are the standard test matrices
and were used in the previous studies [36], [30].

Figure 3 compares the average 11-point interpolated preci-
sions [17] after adding different numbers of documents from
the CRANFIELD matrix. Specifically, we first computed the
rank-k approximation of the first 700 documents by 20 itera-
tions of sampling. Then, the table shows the average precision
after new columns are added (e.g., under the column labeled
“1000,” 300 documents were added). To recompute the partial
SVD of Â, we performed 20 iterations of sampling, while
the sampling algorithms used the oversampling parameter set
to be ` = k (i.e., r = 2k), and performed two iterations
that access the matrix three times. Since the basis vectors P̂
and Q̂ approximate the ranges of Â and ÂT , respectively,
the sampling algorithms access the matrix at least twice.
Then, they access the matrix one more time to compute the
projected matrix B. We let the incremental update algorithm
(Update-inc) add k+ ` columns at a time such that it requires
about the same amount of memory as the sampling algorithms.
All the results were computed using one GPU (see Sections V
for the description of our implementation). We have verified
the precisions of recomputing SVD by comparing them against
the precisions obtained using the dense SVD of the matrix Â
in MATLAB. We see that with only three data passes, the
sampling algorithms obtained similar precisions as those of the
updating algorithm. Figure 4 shows the similar results for the
MEDLINE matrix. In some cases, the updating and sampling
algorithms obtained higher precisions than recomputing the
SVD, while the precisions of the incremental update slightly
deteriorated at the end. Such phenomena were also reported
in the previous studies [29], [36].

4http://scgroup20.ceid.upatras.gr:8000/tmg, http://ir.dcs.gla.ac.uk/resources

http://scgroup20.ceid.upatras.gr:8000/tmg
http://ir.dcs.gla.ac.uk/resources

532 632 732 832 932 1032
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Total number of documents

A
v
e
ra

g
e
 p

re
c
is

io
n

Sample−1

Sample−2

Sample−3

(a) Different sampling schemes.

532 632 732 832 932 1032
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Total number of documents

A
v
e
ra

g
e
 p

re
c
is

io
n

Recompute

Update

Update−inc

Sample−2

(b) Sampling/updating algorithms.

Fig. 4. Average 11-point interpolated precision for 5735-by-1033 MEDLINE
matrix with 30 queries (k = 50).

Update-inc Sample-1
1 The World Is Not Enough Mission to Mars
2 Mrs. Doubtfire The World Is Not Enough
3 Mission: Impossible Armageddon
4 Die Another Day Crimson Tide
5 The 6th Day Mission: Impossible
6 Mission to Mars Die Another Day
7 The Mummy Entrapment
8 Die Hard 2: Die Harder Patriot Games
9 Charlie’s Angels Die Hard 2: Die Harder

10 The Santa Clause Men of Honor

Fig. 5. Query results for “Tomorrow Never Dies” on 3 GPUs.

We have also conducted the same experiments using the
Netflix matrix5, which stores the user scores of the movies,
where the matrix columns and rows represent movies and
users, respectively (i.e., 2,649,429 users and about 5,654
rankings per movie). We computed the rank-30 approximation
of 5,000 movies by 20 iterations of random sampling, then
ran two iterations of Sample-1 to update SVD with 5,000 new
movies. For comparison, we incrementally updated the SVD
by adding 60 movies at a time. Figure 5 shows the results for
the query of “Tomorrow Never Dies.” We see that with only
two iterations, Sample-1 returned reasonable recommendations
for the query. Though there are a couple of movies that seem
to be irrelevant using the updating algorithm, these are popular
movies, and it is reasonable to imagine that the users who liked
“Tomorrow Never Dies” also liked these two movies.

B. Population Clustering

PCA has been successfully used to extract the underlying
genetic structure of human populations [21], [23], [24]. To
study the potential of the sampling algorithms, we used our
algorithms to update the SVD, when a new population is added
to the population dataset from the HapMap project6. Figure 6

5http://netflixprize.com
6http://hapmap.ncbi.nlm.nih.gov

JPT+MEX + ASW + GIH + CEU
Recompute 1.00 1.00 1.00 0.97
No update 1.00 0.81 0.84 0.67
Update-inc 1.00 1.00 0.89 0.70
Sample-1 1.00 0.95 0.92 0.86

Fig. 6. Average correlation coefficients of population clustering, where
83 African ancestry in south west USA (ASW), 88 Gujarati Indian in
Houston (GIH), and 165 European ancestry in Utah (CEU) are incrementally
added to the 116, 565 SNP matrix of 86 Japanese in Tokyo and 77 Mexican
ancestry in Los Angeles, USA (JPT and MEX).

shows the correlation coefficient of the resulting population
cluster, which is computed using the k-mean algorithm of
MATLAB in the low-dimensional subspace given by the dom-
inant left singular vectors. We randomly filled in the missing
data with either −1, 0, or 1 with the probabilities based on
the available information for the SNP. We let Sample-1 iterate
twice, and with only the three data passes, Sample-1 improved
the clustering results, potentially reducing the number of times
the SVD must be recomputed.

V. IMPLEMENTATION ON A HYBRID CPU/GPU CLUSTER

Since the computational costs of the sampling algorithms
are dominated by the cost of generating the projection basis
vectors, P̂ and Q̂, we accelerate this step using GPUs, while
the SVD of the projected matrix B is redundantly computed by
each MPI process on CPU. On a hybrid CPU/GPU cluster with
multiple GPUs on each node, each MPI process could manage
multiple GPUs on the node to combine or avoid the MPI
communication to the GPUs on the same node. However in our
previous studies [33], the overhead for each MPI to manage
multiple GPUs (e.g., sequentially launching GPU kernels on
multiple GPUs) outweighed the benefit of avoiding the intra-
node communication, for which many MPI implementations
are optimized. Hence, for this paper, we use one MPI process
to manage a single GPU.

The two main computational kernels of our SVD solver
are the sparse-matrix matrix multiply (SpMM) and the or-
thogonalization. In the following subsections, we describe our
implementations of these two kernels.

A. Sparse Matrix Matrix Multiply

To update SVD by adding new columns D on a hybrid
cluster, our first implementation distributes both D and DT

among the GPUs in 1D block row formats. The basis vectors P̂
and Q̂ are then distributed in the same formats. To perform
SpMM, each GPU first exchanges the required non-local vec-
tor elements with its neighboring GPUs. This is done by first
copying the required local elements from the GPU to the CPU,
then performing the point-to-point communication among the
neighbors using the non-blocking MPI (i.e., MPI_Isend
and MPI_Irecv), and finally copying the non-local vector
elements back to the GPU. Then, each GPU computes the
local part of the next basis vectors using the CuSPARSE
SpMM in the compressed sparse row (CSR) format. This was
an efficient communication scheme in our previous studies
to develop a linear solver [33], where the coefficient matrix

http://netflixprize.com
http://hapmap.ncbi.nlm.nih.gov

3 6 12 24 48 96
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of GPUs

n=5k

n=2k

n=1k

(a) SpMM with D.

3 6 12 24 48 96
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of GPUs

n=5k

n=2k

n=1k

(b) SpMM with DT .

Fig. 7. Number of vector elements needed for SpMM by a GPU, relative
to the total number of elements in the global vector. The solid and dashed
lines show the results with and without hypergraph partitioning, respectively.
PaToH ran out of CPU memory partitioning among more than 12 GPUs.

arising from scientific or engineering simulation is often sparse
and structured (e.g., with three-dimensional embedding). Un-
fortunately, sparse matrices originating from the modern data
sets such as social networks and/or commercial applications
have irregular sparsity structures, and have wide ranges of
numbers of nonzeros per row. In fact, they often exhibit power-
law distributions of nonzeros as they result from scale-free
graphs. As a result, this point-to-point communication with
all the neighbors at once could lead to a prohibitively large
communication buffer (see Figure 7).

To reduce the size of the communication buffer required
for SpMM with D, our second implementation is based
on the point-to-point blocking MPI (i.e., MPI_Send and
MPI_Recv), hence reusing the communication buffer. Unfor-
tunately, this was not scalable. To alleviate the problem, we
have tested the following collective communication schemes:

• MPI_Bcast: Each MPI process broadcasts its local
elements. The buffer is reused to receive each message,
which is then unpacked into the internal storage used by
the solver. Even though this may perform unnecessary
data exchanges, the communication time can be greatly
reduced when the matrix has the power-law distribution.

• MPI_Allgatherv: With both broadcast and all-
gatherv, each process sends its local vector elements,
which are needed by at least one of its neighbors, to
all the processes. Though this all-to-all approach requires
the buffer to store the receiving messages from all the
processes at once, it could obtain a significant speedup
over the broadcast.

• MPI_Alltoallv: All MPI processes exchange the
messages of different sizes with their neighbors at
once. Hence, this approach may be more effective than
MPI_Allgatherv, when there are significant differ-
ences in the vector elements needed by the MPI pro-
cesses. This is not the case with the power-law distribu-

Send/Recv Bcast Allgatherv

3 GPUs, 2 neighbors/GPU
Time (ms) 7.5 (7.1) 6.6 2.5
Buffer (MB) 0.8 0.8 2.4
12 GPUs, 11 neighbors/GPU
Time (ms) 229.5 (257.5) 84.1 36.0
Buffer (MB) 0.2 0.2 2.4

(a) (n, d) = (5000, 5000) with k = 30.

Send/Recv Bcast Allgatherv

3 GPUs, 2 neighbors/GPU
Time (ms) 9.9 (10.0) 9.1 2.8
Buffer (MB) 1.6 1.6 4.8
12 GPUs, 11 neighbors/GPU
Time (ms) 488.1 (552.9) 190.3 85.3
Buffer (MB) 0.4 0.4 4.8

(b) (n, d) = (10000, 3000) with k = 60.

Fig. 8. Communication statistics of SpMM with D for Netflix matrix.
For Send/Recv, the times in parentheses are without hypergraph partitioning.

Send/Recv Bcast Allgatherv Allreduce

3 GPUs, 2 neighbors/GPU
Time (ms) 312.9 (271.8) 239.7 145.9 2.9
Buffer (MB) 72.8 74.7 223.7 2.4
12 GPUs, 11 neighbors/GPU
Time (ms) 1012.0 (977.1) 355.9 155.3 5.8
Buffer (MB) 15.2 18.9 226.3 2.4

(a) (n, d) = (5000, 5000) with k = 30.

Send/Recv Bcast Allgatherv Allreduce

3 GPUs, 2 neighbors/GPU
Time (ms) 572.3 (533.0) 543.6 260.7 3.8
Buffer (MB) 75.3 76.2 228.6 0.6
12 GPUs, 11 neighbors/GPU
Time (ms) 1737.0 (1740.0) 688.9 264.4 6.7
Buffer (MB) 17.4 19.1 229.4 0.6

(b) (n, d) = (10000, 3000) with k = 60.

Fig. 9. Communication statistics of SpMM with DT for Netflix matrix.

tion (see Figure 7(a)). In addition, this requires storing
the messages sent to a different neighbor separately.

Figure 8 shows the performance of the above communication
schemes for updating the Netflix matrix (see Sections IV
and VII for our experimental setups). To update the SVD
by adding the new columns D to A, we distribute the rows
of D in the same format as A, while the rows of DT

are evenly distributed among the GPUs. For the point-to-
point communication, we tested two partitioning schemes.
In the first scheme, we used PaToH7 to distribute the rows
of A and AT based on a hypergraph algorithm [13]. In the
second scheme, we simply partitioned A and AT such that
each GPU has similar numbers of rows. For the collective
communication, we used the second scheme which obtains
the load balance. Due to the power-law distribution, using the
hypergraph algorithm seems to have negligible effects on the
communication cost, especially since we do not require a large
number of GPUs due to the their high computing power. We
clearly see that MPI_Allgatherv requires much less time.

In this paper, we focus on the tall-skinny matrix D, which
is the case in the applications we considered. To perform

7http://bmi.osu.edu/umit/software.html#patoh. Our implementation using
METIS∗ was often slower. ∗http://glaros.dtc.umn.edu/gkhome/metis/

http://bmi.osu.edu/umit/software.html#patoh
http://glaros.dtc.umn.edu/gkhome/metis/

SpMM with DT , our next implementation keeps the input and
output vectors, P̂ and Q̂, in the 1D block row distribution, but
uses DT in the 1D block column. Since the columns of DT

are the same as the rows of D on each GPU, we avoid the need
to separately store DT and D.8 In this implementation, each
GPU first computes SpMM with its local parts of DT and P̂ ,
and then copies the partial result to the CPU. Then, the MPI
process computes the final result Q̂ by a global reduce, and
copies its local part back to the GPU. Hence, this requires
each MPI process to store the global vectors Q̂. However,
when DT has the power-law distribution, performing SpMM
with DT in the 1D block row requires each GPU to store
the much longer global vectors P̂ (see Figure 7(b), where
the hypergraph partitioning reduced the median and minimum
numbers of required vector elements, but not the maximum
which is on the critical path). Figure 8 clearly demonstrates
the advantage of this all-reduce communication. Furthermore,
partitioning DT in the 1D block column often led to a higher
performance of SpMM on each GPU as the local submatrix
becomes more square than tall-skinny.

Though other techniques may improve the performance of
SpMM (e.g., sub-communicator with 2D distribution [4]), in
this paper, we use MPI_Allgather and MPI_Allreduce
for SpMM with D and DT , respectively.9 In other words,
we perform the sparse operations on each GPU, but rely on
the dense communication among them (which is effective for
the matrix with the power-law distribution as shown above).
Though our MPI implementation may not be optimal, in this
paper, we focus on developing an efficient solver for updating
the SVD and studying the performance of this specific imple-
mentation, and not on developing an optimal communication
scheme for a specific matrix structure on a specific hardware.
In addition, we partition the matrix based on the natural
matrix ordering (i.e., the second partitioning scheme above,
which is effective for the collective communication). In a
real application, repartitioning/redistributing the data may not
be feasible. Our solver only requires the result of SpMM
with the local data. Then, the final result can be computed
through communication, which tends to be the bottleneck. Our
objective of the paper is to develop an efficient solver with a
small communication cost.

B. Orthogonalization Kernels

In this paper, we use classical Gram-Schmidt (CGS) [10]
to orthogonalize a set of vectors against another set of vectors
(block orthogonalization, or BOrth in short) and Cholesky QR
(CholQR) [28] to orthogonalize the set of vectors against each
other. In our previous study, these algorithms obtained great
performance on multiple GPUs on a single compute node [31]
or on a hybrid CPU/GPU cluster [33]. To orthonormalize Q̂
by CholQR, each GPU first computes the block dot products

8CuSPARSE SpMM in CSC uses atomic operations. To guarantee the
reproducibility of the results, we explicitly stored DT in the CSR format.

9Our implementation uses either the point-to-point or the collective com-
munication depending on the average number of neighbors. For all the
experiments in this paper, the collective communication was selected.

of its local vectors (i.e., G(g) := Q̂(g)T Q̂(g), where Q̂(g) is the
local matrix of Q̂ distributed to the g-th GPU, while ng is the
number of available GPUs). Then, the resulting matrix G(d) is
copied to the CPU, and the MPI process computes the Gram
matrix via a global reduce (i.e., G =

∑ng

g=1 G
(g)). Next, each

MPI process redundantly computes the Cholesky factorization
of the Gram matrix on the CPUs (i.e., RRT := G), and copies
the Cholesky factor R to its local GPU. Finally, each GPU
orthogonalizes the local part of the basis vectors through a
triangular solve (i.e., Q(g) := Q̂(g)R−1). CGS is implemented
similarly, and is based on the matrix-matrix multiplies on each
GPU. All of our orthogonalization kernels use the optimized
dense GPU kernels developed earlier [31], [34].

When the matrix Q̂ is ill-conditioned, CholQR can suffer
from numerical instability [28]. In our experiments with the
sampling algorithms, CholQR was stable with full reorthog-
onalization. The reliability of CholQR may be explained by
the observation that the matrices used in our experiments had
the approximate low-rank-plus-shift structure, but they were
not ill-conditioned (see Section III-C). On the other hand, the
updating algorithm needs to orthogonalize the columns of D,
some of which could be empty. To overcome the numerical
difficulty, the updating algorithm uses the Singular Value QR
(SVQR), which computes the upper-triangular matrix R by
first computing the SVD of the Gram matrix, UΣUT := G,
followed by the QR factorization of Σ

1
2UT . When the ma-

trix contains an empty columns, the Cholesky factorization
of the Gram matrix will fail, while SVQR overcomes this
numerical challenge. Compared to the Cholesky factorization,
computing the SVD and QR factorization of the Gram matrix
is computationally more expensive. However, the dimension
of the Gram matrix is much smaller than that of the input
matrix P̂ or Q̂ (i.e., d � m). Hence, SVQR performs about
the same number of flops as CholQR, using the same BLAS-3
kernels, and requires only one global reduce, obtaining similar
performance as CholQR.

VI. COMPUTATIONAL AND COMMUNICATION COSTS

To analyze the computational costs of the proposed sam-
pling algorithms, we separately consider the following two
stages of the algorithms: 1) generating the projection basis
vectors P̂ and Q̂, and 2) computing SVD of the projected
matrix B and generating the singular vectors Ûk and V̂k.

Figure 10 lists the numbers of floating point opera-
tions (flops) required by the first stage, where dense matrix-
matrix multiply (GEMM) is used for BOrth. When Sample-1
generates ck basis vectors and iterates h times, it requires
about c(2h− 1)× more flops for SpMM than Update-inc. On
the other hand, Update-inc performs about 2d

hck(2+c)× more
flops for orthogonalizing these basis vectors. In our experi-
ments, we let Sample-1 iterate twice with the oversampling
parameter set to be equal to the rank of the approximation
(i.e., h = 2 and c = 2). Hence, Sample-1 performs about
6× more flops for SpMM, while Update-inc requires d

8k×
more flops for the orthogonalization. Clearly, when a large
number of columns must be added, the orthogonalization

Method SpMM GEMM CholQR

Update 2k · nnz(D) 2mkd 2md2

Update-inc 2k · nnz(D) 2mkd 2mkd
Sample-1 4r · nnz(D) 4(m+ n)kr 2(m+ n)r2

Sample-2,3 4r · nnz(D) 4mkr 2(m+ n)r2

Fig. 10. Flop counts for first stage (generation of basis vectors). For
sampling algorithms, we show the flop counts for one iteration, where r is
the number of basis vectors generated (e.g., in our experiments, r = 2k). For
reorthogonalization, the matrix D becomes fully dense (i.e., nnz(D) = md).

Method Compute SVD of B Generate Uk and Vk

Update O((k + d)3) O((m+ n)k(k + d))

Update-inc O(d
d̂
(k + d̂)3) O((m+ n)kd)

Sample-1 O(r3) O((m+ n)kr)
Sample-2 O((k + d)(k + r)2) O((m+ n)k(k + r))
Sample-3 O((k + r)3) O((m+ n)k(k + r))

Fig. 11. Flop counts for second stage (updating partial SVD). Update-inc
updates the partial SVD by incrementally adding d̂ columns at a time.

becomes the bottleneck in Update-inc (e.g., d
k = O(102) in

our performance studies). On the other hand, Sample-1 can be
computationally more efficient than Update-inc, but even on a
small number of GPUs, its execution time is often dominated
by SpMM. In the end, with c = 2 and h = 2, Sample-1
performs more flops than Update-inc when each column of D
has more than m

3.5 (1− 8k
d) nonzeros in average. For instance,

when k = 100, and d = 1000 or 5000, Sample-1 performs
more flops than Update-inc when D is more than 6% or
24% dense, respectively (e.g., Netflix matrix is about 1.1%
dense).

Compared to the matrix operation UkV
T
k performed by

Sample-1, there are about twice as many flops in the opera-
tion UkU

T
k of Sample-2 or Sample-3 (i.e, n� m). However,

Table 10 shows that all the sampling algorithms perform about
the same number of flops in GEMM. This is because when
Sample-2 or Sample-3 applies the matrix operation DT (I −
UkU

T
k) to the vectors P̂ , these vectors are already orthogonal

to Uk. Hence, the deflation operation I − UkU
T
k needs to be

applied only after SpMM with D. Nevertheless, to maintain
the orthogonality of the basis vectors, in our experiments, we
performed the full reorthogonalization. Therefore, compared
to Sample-1, both Sample-2 and Sample-3 performed about
twice as many flops for GEMM.

Table 11 shows the required flop counts for the second
stage. The flop count of computing SVD of B with Sample-2
depends linearly on the number of columns in D, while they
depend only on k and r with both Sample-1 and Sample-3.
Since our implementation of the sampling algorithms let each
MPI process redundantly compute the SVD of the projected
matrix B, this serial bottleneck can become significant on a
much smaller number of GPUs with Sample-2 (i.e., k, r � d).

Table 12 shows the required communication costs of the
updating and sampling algorithms. On a small number of
GPUs, the communication volume of the updating algorithm
is typically dominated by that of the orthogonalization. But,
as the number of GPUs increases, the cost of SpMM becomes

Method #words #messages

Incremental update O(d(d̂+ k) + k
∑d/d̂

j g(Dj)) O(d
d̂
)

Sampling-1,2,3 O((r(d+ r) + rg(D))h) O(h)

Fig. 12. Communication costs of updating and sampling algorithms, where
g(Dj) is the total number of the nonlocal vector elements needed for SpMM
with the j-th block Dj .

Method ng SpMM(AT /A) GEMM CholQR SVD

Sample-1 3 153 / 99 8 47 1.5+2.0
Sample-2 3 382 / 99 19 47 6935+3.9
Sample-3 3 153 / 99 22 46 3.6+3.0
Sample-1 12 27 / 66 4.4 17 1.5+0.9
Sample-2 12 65 / 65 7.9 16 7014+2.5
Sample-3 12 27 / 65 8.9 16 3.8+1.3
Sample-1 48 18 / 108 4.0 10 1.6+0.6
Sample-2 48 35 / 107 5.4 11 7035+2.1
Sample-3 48 19 / 108 6.6 10 3.9+0.6

(a) (n, d) = (5000, 5000), k = 30.

Method ng SpMM(AT /A) GEMM CholQR SVD

Sample-1 3 186 / 127 21 141 6.3+5.6
Sample-2 3 466 / 127 57 140 746+9.4
Sample-3 3 187 / 128 66 139 19+9.0
Sample-1 12 36 / 130 8.2 42 6.5+1.9
Sample-2 12 89 / 123 18 41 742+3.7
Sample-3 12 37 / 125 21 41 19+2.8
Sample-1 48 20 / 194 5.6 18 6.5+1.0
Sample-2 48 41 / 194 8.3 18 755+2.2
Sample-3 48 21 / 196 9.6 18 26+1.3

(b) (n, d) = (10000, 3000), k = 60.

Fig. 13. Performance of sampling algorithms in milliseconds for Netflix
matrix. Under “SVD,” we show, separately, the time spent for SVD of B and
generating singular vectors.

more significant. On the other hand, the communication costs
of the sampling algorithms can be dominated by that of SpMM
even on a small number of GPUs since the orthogonalization
cost is less significant compared to the updating algorithm.

VII. PERFORMANCE RESULTS

We now compare the performance of the proposed sampling
algorithms with that of the updating algorithm on a hybrid
CPU/GPU cluster. For our studies, we let the updating algo-
rithm add k + ` columns at a time, while all the sampling
schemes generate k + ` basis vectors, where ` = k. Hence,
all the algorithms require about the same amount of memory.
Also, we orthogonalized both P̂ and Q̂ with full reorthgonal-
ization. In some cases [27], the sampling algorithms may only
need to orthogonalize Q̂, reducing its orthogonalization cost
significantly (i.e., d� m).

Figure 13 compares the performance of the sampling algo-
rithms. Compared to Sample-1, Sample-3 spends about twice
as much time in GEMM due to the full re-orthogonalization
used to maintain the orthogonality of the basis vectors P̂
against Uk. Then, compared to Sample-3, Sample-2 spends
more time in GEMM because it requires additional SpMM
and GEMM to generate its projected matrix B (i.e., UT

k D

and UT
k P̂). However, the main difference is in the time spent

computing the SVD of the projected matrix B and generating
the singular vectors. This is because the projection subspace
of Sample-2 is greater than that of Sample-3, which is larger

Method ng SpMM(AT /A) GEMM TSQR SVD Total

Update-inc 3 95 491 2990 274/282 4212
Sample-1 3 153 / 99 8 47 1.5+2.0 314

Update-inc 12 44 177 1010 275+99 1664
Sample-1 12 27 / 66 4.4 17 1.5+0.9 118

Update-inc 48 60 118 563 276+64 1121
Sample-1 48 18 / 108 4.0 10 1.6+0.6 145

(a) (n, d) = (5000, 5000), k = 30.

Method ng SpMM(AT /A) GEMM TSQR SVD Total

Update-inc 3 107 446 2513 455+148 3720
Sample-1 3 186 / 127 21 141 6.3+5.6 492

Update-inc 12 28 137 921 452+51 1630
Sample-1 12 36 / 138 8.2 42 6.5+1.9 234

Update-inc 48 29 7.5 546 454+26 1167
Sample-1 48 20 / 194 5.6 18 6.5+1.0 243

(b) (n, d) = (10000, 3000), k = 60.

Fig. 14. Performance of updating and sampling algorithms in milliseconds
for Netflix matrix. Update-inc and Sample-1 use SVQR and CholQR for
tall-skinny QR (TSQR), respectively.

than that of Sample-1. Since our implementation lets each MPI
process redundantly compute the SVD, compared to Sample-1
or Sample-3, this serial bottleneck became significant in
Sample-2 on a smaller number of GPUs.

Figure 14 compares the performance of the sampling and
updating algorithms. Clearly, the updating algorithm can spend
significantly longer time in the orthogonalization, leading to
a great speedup obtained by the sampling algorithms (i.e.,
the speedups of up to 14.1). At the same time, the speedup
decreased on a larger number of GPUs. This is because the
sampling time is dominated by SpMM, whose strong parallel
scaling suffered from the increasing inter-GPU communication
cost for this relatively small-scale matrix. On the other hand,
the updating algorithm was still spending most of its time on
the orthogonalization which was still compute intensive and
scaled over the small number of the GPUs. However, on a
larger number of GPUs, compared to the sampling algorithm,
the updating algorithm is expected to suffer from the greater
communication latency. Figures 15 and 16 show the similar
results for the document-document matrix used in a previous
LSI study [35]. The matrix row contains 2,559,430 documents,
and each column contains about 4, 176 nonzero entries. The
weak parallel scaling results, in particular, show the advantages
of the sampling algorithm due to its ability to compress the
desired information into a small projection subspace using a
small number of data passes. For the updating algorithm, the
accumulated cost of the SVDs of the d

d̂
projected matrices also

became significant.

VIII. COMMUNICATION-AVOIDING IMPLEMENTATION

Our performance results on a hybrid CPU/GPU cluster
demonstrated the potential of the sampling algorithms to
obtain significant speedups over the updating algorithms.
However, the execution time of the sampling algorithms is
often dominated by SpMM, and due to the particular sparsity
structure of the matrix, its parallel scalability can be quickly
limited by the inter-GPU communication. In this section, we
describe our effort to address this limitation based on the

Method ng SpMM(AT /A) GEMM TSQR SVD Total

Update-inc 12 228.3 4,357 20,570 2,146+1,352 29,080
Sample-1 12 284.8 / 192.6 24.7 172.8 4.6+6.4 691.5

Update-inc 48 177.5 1,266 5,454 2,161+438.4 9,856
Sample-1 48 86.1 / 99.9 8.8 49.6 4.6+2.0 253.2

Update-inc 96 166.1 836.1 3,032 2,147+305.4 6,877
Sample-1 96 70.7 / 94.6 6.7 30.2 6.5+1.2 214.7

(a) k = 50.

Method ng SpMM(AT /A) GEMM TSQR SVD Total

Update-inc 12 326.0 7,208 25,310 6,081+2,022 41,320
Sample-1 12 574.8 / 377.3 76.6 427.3 20.5+22.3 1,500

Update-inc 48 108.7 1,946 6,445 6,059+588.1 15,420
Sample-1 48 162.2 / 201.3 22.9 112.5 26.4+6.1 535.3

Update-inc 96 77.8 1,110 3,494 6,047+351.3 11,350
Sample-1 96 119.3 / 183.0 14.0 62.5 23.8+0.3 411.4

(b) k = 100.

Fig. 15. Strong parallel scaling of updating and sampling algorithms in
milliseconds for Inktomi matrix with (n, d) = (30000, 20000).

Method ng SpMM(AT /A) GEMM TSQR SVD Total

Update-inc 12 50.9 1,092 5,438 557+331.3 7,565
Sample-1 12 73.7 / 59.3 24.1 172.6 5.0+6.4 345.5

Update-inc 24 67.1 1,137 5,262 1,097+359.8 8,071
Sample-1 24 79.4 / 75.7 13.6 90.0 5.6+6.4 271.8

Update-inc 48 177.5 1,266 5,454 2,161+438.4 9,856
Sample-1 48 86.1 / 99.9 8.8 49.6 4.6+2.0 253.2

Update-inc 96 224.2 1,632 6,068 4,257+620.7 13,500
Sample-1 96 116.6 / 191.9 7.2 30.6 9.1+1.3 359.0

Fig. 16. Weak parallel scaling of updating and sampling algorithms in
milliseconds for Inktomi matrix with the fixed parameters (m, k) =
(2559430, 50) and varied parameters (n, d) = (ng/12)× (7500, 5000).

algorithm [16] that applies the matrix powers to dense vectors
in a communication-avoiding fashion, where the matrix is
represented as a sparse matrix plus a low-rank matrix. While
the algorithm can generate different types of basis vectors, we
focus on generating the monomial basis vectors. In addition,
we use Sample-3 as our example, but the other sampling
algorithms can be extended in the same fashion. In fact,
Sample-2 and Sample-3 generate the same basis vectors.

Sample-3 is equivalent to the normalized power iteration
applied to the following matrix Ãk with the starting vectors Q̃:

Ãk =

(
0 (I − UkU

T
k)D

DT 0

)
and Q̃ =

(
0
Q

)
.

This coefficient matrix Ãk can be split into the following
sparse and low-rank matrices,

Ãk =

(
0 D
DT 0

)
+

(
0 UÛT

0 0

)
=

(
0 D
DT 0

)
+

(
U
0

)(
0 ÛT

)
(6)

=

(
0 D
0 0

)
+

(
U 0
0 Id

)(
0 ÛT

DT 0

)
, (7)

where Û = −DTU , and the low-rank matrices are of ranks k
and k + d in (6) and (7), respectively. The matrix split (7)
is motivated by our implementation which computes SpMM
with DT by the local SpMM on each GPU, followed by the
global reduce.

. Perform SpMM on GPUs
Q̂ = DQ

F1 = DT Q̂

Local computation
E1 = −ÛTQ

F1 = F1 + ÛE1

for j = 2, 3, . . . , s do

Ej = −ÛTFj−1

Fj = ÛEj + (DTD)Fj−1

end for

. Generate basis vectors on GPUs
for j = 1, 2, 3, . . . , s do

if j == 1 then

P = Q̂
else
P = DQ

end if
P = P + UEj

Q = Fj

end for

(a) Pseudocode.

(b) Communication and data dependency,
where the vector P (d,k) consists of the
local elements of P , which are distributed
to the d-th GPU, and the k-level ghosts
that are the non-local elements at most k
edges away from the local elements in the
adjacency graph of D.

Fig. 17. Matrix powers kernel with the matrix split (7) with initial vectors Q
and step size s. Local computation is redundantly performed by each MPI
process on the CPU, except the multiply with DTD which is on the GPU.

ng SpMM(DT /D) GEMM MPI(DT /D) Total

3 15.1/5.0 0.9 0.29 / 0.15 21.0
12 2.5/1.7 0.3 0.46 / 0.20 4.49

(a) SpMM.

ng s SpMM(DT /D) Local Generate P MPI(DT /D) Total

3 1 15.24 / 4.93 0.2 0.2 0.29 / 0.13 20.5
3 2 7.65 / 2.46 0.3 2.5 0.16 / 0.06 12.9
3 4 3.82 / 1.23 0.4 3.7 0.08 / 0.03 9.1

12 1 2.42 / 1.66 0.2 0.7 0.46 / 0.20 4.54
12 2 1.25 / 0.88 0.3 0.7 0.24 / 0.13 3.14
12 4 0.66 / 0.45 0.4 1.0 0.15 / 0.08 2.47

(b) MPK.

Fig. 18. 100 power iterations in seconds, for Netflix matrix with (n, d) =
(5000, 5000).

Figure 17 specializes the matrix powers kernel (MPK) [16]
for applying s matrix powers based on the matrix split (7). In
this implementation, each MPI process redundantly generates
the right singular vectors Fj by applying the power iteration
on the explicitly-formed Gram matrix. After the right singular
vectors are generated, the local parts of the corresponding left
singular vectors P are generated by the power iteration without
further communication. Since the matrix D is tall-skinny
(i.e., d � m), the generation of the right singular vectors
requires much less computation than that needed to generate
the left singular vectors. With this implementation, regardless
of the sparsity structure of D, an arbitrary number of power
iterations can be applied after the initial communication to
generate the vectors E1 and F1 (i.e., the same communication
cost as the single iteration of Sample-3). However, to avoid
the communication, each GPU not only requires the Gram
matrix, the computation of which requires a global reduce,
but it also requires both the local and ghost elements of Q.
Figure 18 shows the performance of this implementation

Method SpMM GEMM

SpMM 4s(nnz(D(g)))r 2s(k(m + n)/ng)r

MPK 2s(nnz(D(g)) + nnz(DTD))r 2s(k(m/ng + n)r
(a) Flop count for g-th GPU.

Method #messages #words
SpMM 4s s(g(D) + g(DT) + (m + n)r)

MPK 4 g(D) + g(DT) + (m + n)r
(b) Total communication costs.

Fig. 19. Computational and communication costs to apply s matrix powers.

for updating the Netflix matrix. The execution time is
reduced not only because the MPI time is reduced but also
because SpMM with DT is replaced with GEMM with DTD,
whose dimension is much smaller than that of DT . Figure 19
summarizes the computational and communication costs of the
implementations.

IX. CONCLUSION

We proposed sampling algorithms to update the partial
singular value decomposition (SVD). Our case-studies showed
that these algorithms have the potential to obtain the desired
accuracy of the updated SVD with a small number of data
passes, reducing both the computational and communication
costs from those of the state-of-the-art updating algorithm. Our
performance results on a hybrid CPU/GPU cluster demon-
strated that a significant speedup may be obtained using
the sampling algorithms. We also presented our effort to
reduce the communication costs of the sampling algorithms.
To maintain the numerical stability of the communication-
avoiding implementation, we are currently studying different
orthogonalization schemes such as the one-sided orthogonal-
ization to orthogonalize only the right-singular vectors during
the power iteration [27]. We are also working to improve
the performance of the solver (e.g., a parallel SVD of the
projected matrix, and an extension of the batched GEMM used
in CholQR to a batched sparse GEMM for forming the Gram
matrix to setup MPK, or to a batched SpMM with a transpose
of a tall-skinny matrix). We focused on the performance of
the algorithms on a hybrid CPU/GPU cluster, but we plan
to investigate the performance on other architectures. For
instance, compared to the hybrid cluster, the costs of SpMM
relative to the orthogonalization may be smaller on a CPU
cluster, making the sampling algorithms more attractive. We
are also conducting the numerical analysis of the proposed
sampling algorithms.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. Department
of Energy Office of Science under Award Number DE-FG02-
13ER26137/DE-SC0010042, and the U.S. National Science
Foundation under Award Number 1339822. We thank Eugen
Vecharynski, Nicholas Knight, and Erin Carson and the mem-
bers of the DOE EASIR project for helpful discussions, Theo
Mary and Osni Marques for providing some of our datasets,
and Endo Toshio and Satoshi Matsuoka for providing the
access to the Tsubame Computer.

REFERENCES

[1] M. Berry. Large scale singular value computations. International Journal
of Supercomputer Applications, 6:13–49, 1992.

[2] M. Berry, S. Dumais, and G. O’Brien. Using linear algebra for intelligent
information retrieval. SIAM Rev., 37:573–595, 1995.

[3] C. Bishop. Pattern recognition and machine learning. Springer, New
York, 2006.

[4] E. Boman, K. Devine, and S. Rajamanickam. Scalable matrix com-
putations on large scale-free graphs using 2D graph partitioning. In
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’13, pages 50:1–
50:12, 2013.

[5] Committee on the Analysis of Massive Data, Committee on Applied and
Theoretical Statistics, Board on Mathematical Sciences and Their Ap-
plications, Division on Engineering and Physical Sciences, and National
Research Council. Frontiers in Massive Data Analysis. The National
Academies Press, 2013.

[6] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman.
Indexing by latent semantic analysis. J. Amer. Soc. Info. Sci., 41:391–
407, 1990.

[7] DOE Office of Science. Synergistic challenges in data-intensive science
and exascale computing, 2013. DOE Advanced Scientific Computing
Advisory Committee (ASCAC) Data Subcommittee Report.

[8] S. Fuller and L. Millett. Future of computing performance: Game over
or next level? The National Academies Press, 2011.

[9] G. Golub, F. Luk, and M. Overton. A block Lanczos method for
computing the singular values and corresponding singular vectors of
a matrix. ACM Trans. Math. Softw., 7:149–169, 1981.

[10] G. Golub and C. van Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, MD, 4rd edition, 2012.

[11] S. Graham, M. Snir, and C. Patterson. Getting up to speed: The future
of supercomputing. The National Academies Press, 2004.

[12] N. Halko, P. Martinsson, and J. Tropp. Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix
decompositions. SIAM Rev., 53:217–288, 2011.

[13] B. Hendrickson and T. Kolda. Partitioning rectangular and structurally
unsymmetric sparse matrix for parallel processing. SIAM J. Sci.
Comput., 21:2048–2072, 2006.

[14] M. Hoemmen. Communication-avoiding Krylov subspace methods. PhD
thesis, University of California, Berkeley, 2010.

[15] I. Karasalo. Estimating the covariance matrix by signal subspace
averaging. IEEE Trans. Acoust., Speech, Signal Processing, ASSP-34:8–
12, Feb. 1986.

[16] N. Knight, E. Carson, and J. Demmel. Exploiting data sparsity in
parallel matrix powers computations. In Parallel Processing and Applied
Mathematics, volume 8384 of Lecture Notes in Computer Science, pages
15–25. Springer Berlin Heidelberg, 2014.

[17] T. Kolda and D. O’Leary. A semidiscrete matrix decomposition for
latent semantic indexing information retrieval. ACM Trans. Inf. Syst.,
16:322–346, 1998.

[18] R. Krovetz and W. B. Croft. Lexical ambiguity and information retrieval.
ACM Trans. Inf. Syst., 10:115–141, 1992.

[19] D. Laney. 3D data management: controlling data volume, velocity, and
variety. Application Delivery Strategies by META Group Inc, 2001.

[20] P. Martinsson, A. Szlam, and M. Tygert. Normalized power iterations for
the computation of SVD. In Proceedings of the Neural and Information
Processing Systems (NIPS) Workshop on Low-Rank Methods for Large-
Scale Machine Learning, 2010.

[21] P. Menozzi, A. Piazza, and L. C.-Sforza. Synthetic maps of human gene
frequencies in Europeans. Science, 201:786–792, 1978.

[22] P. Paschou, E. Ziv, E. Burchard, S. Choudhry, W. R.-Cintron, M. Ma-
honey, and P. Drineas. PCA-correlated SNPs for structure identification
in worldwide human populations. PLoS Genetics, 3:1672–1686, 2007.

[23] N. Patterson, A. Price, and D. Reich. Population structure and eigen-
analysis. PLoS Genet., e190, 2006.

[24] A. Price, N. Patterson, R. Plenge, M. Weinblatt, N. Shadick, and
D. Reich. Principal components analysis corrects for stratification in
genome-wide association studies. Nat. Genet., 38:904–909, 2006.

[25] G. Salton and M. McGill. Introduction to modern information retrieval.
McGraw-Hill, New York, 1983.

[26] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis of recom-
mendation algorithms for e-commerce. In Proceedings of the 2Nd ACM
Conference on Electronic Commerce, pages 158–167, 2000.

[27] H. Simon and H. Zha. Low-rank matrix approximation using the
Lanczos bidiagonalization process with applications. SIAM J. Sci.
Comput., 21:2257–2274, 2000.

[28] A. Stathopoulos and K. Wu. A block orthogonalization procedure with
constant synchronization requirements. SIAM J. Sci. Comput., 23:2165–
2182, 2002.

[29] J. Tougas and R. Spiteri. Updating the partial singular value decompo-
sition in latent semantic indexing. Comput. Statist. Data Anal., 52:174–
183, 2007.

[30] E. Vecharynski and Y. Saad. Fast updating algorithms for latent semantic
indexing. SIAM J. Matrix Anal. Appl., 35:1105–1131, 2014.

[31] I. Yamazaki, H. Anzt, S. Tomov, M. Hoemmen, and J. Dongarra.
Improving the performance of CA-GMRES on multicores with multiple
GPUs. In Proceedings of the IEEE International Parallel and Distributed
Symposium (IPDPS), pages 382–391, 2014.

[32] I. Yamazaki, T. Mary, J. Kurzak, and S. Tomov. Access-averse frame-
work for computing low-rank matrix approximations. In Proceedings
of the international workshop on high performance big graph data
management, analysis, and minig, pages 70–77, 2014.

[33] I. Yamazaki, S. Rajamanickam, E. Boman, M. Hoemmen, M. Her-
oux, and S. Tomov. Domain decomposition preconditioners for
communication-avoiding Krylov methods on a hybrid CPU/GPU cluster.
In the proceedings of the international conference for high performance
computing, networking, storage and analysis (SC), pages 933–944, 2014.

[34] I. Yamazaki, S. Tomov, T. Dong, and J. Dongarra. Mixed-precision
orthogonalization scheme and adaptive step size for CA-GMRES on
GPUs. Technical Report UT-EECS-14-730, University of Tennessee,
Knoxville. To appear in the 11th international meeting on high-
performance computing for computational science (VECPAR), 2014.

[35] H. Zha, O. Marques, and H. Simon. Large-scale SVD and subspace-
based methods for information retrieval. Lecture Notes in Computer
Science, 1457:29–42, 1998.

[36] H. Zha and H. Simon. On updating problems in latent semantic indexing.
SIAM J. Sci. Comput., 21:782–791, 2006.

	Introduction
	Related Work
	Algorithms
	Sampling Algorithm
	Updating Algorithm
	Sampling Algorithms to Update SVD

	Case Studies
	Latent Semantic Indexing
	Population Clustering

	Implementation on a Hybrid CPU/GPU Cluster
	Sparse Matrix Matrix Multiply
	Orthogonalization Kernels

	Computational and Communication Costs
	Performance Results
	Communication-Avoiding Implementation
	Conclusion
	References

