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Summary

We study various algorithms to factorize a symmetric indefinite matrix that does not fit in the

core memory of a computer. There are two sources of the data movement into the memory: one

needed for selecting and applying pivots and the other needed to update each column of the

matrix for the factorization. It is a challenge to obtain high performance of such an algorithm when

the pivoting is required to ensure the numerical stability of the factorization. For example, when

factorizing each column of the matrix, a diagonal entry, which ensures the stability, may need to be

selected as a pivot among the remaining diagonals, and moved to the leading diagonal by swapping

both the corresponding rows and columns of the matrix. If the pivot is not in the core mem-

ory, then it must be loaded into the core memory. For updating the matrix, the data locality may

be improved by partitioning the matrix. For example, a right-looking partitioned algorithm first

factorizes the leading columns, called panel, and then uses the factorized panel to update the trail-

ing submatrix. This algorithm only accesses the trailing submatrix after each panel factorization

(instead of after each column factorization) and performs most of its floating-point operations

(flops) using BLAS-3, which can take advantage of the memory hierarchy. However, because the

pivots cannot be predetermined, the whole trailing submatrix must be updated before the next

panel factorization can start. When the whole submatrix does not fit in the core memory all at

once, loading the block columns into the memory can become the performance bottleneck. Sim-

ilarly, the left-looking variant of the algorithm would require to update each panel with all of

the previously factorized columns. This makes it a much greater challenge to implement an effi-

cient out-of-core symmetric indefinite factorization compared with an out-of-core nonsymmetric

LU factorization with partial pivoting, which only requires to swap the rows of the matrix and

accesses the trailing submatrix after each in-core factorization (instead of after each panel fac-

torization by the symmetric factorization). To reduce the amount of the data transfer, in this paper

we uses the recently proposed left-looking communication-avoiding variant of the symmetric

factorization algorithm to factorize the columns in the core memory, and then perform the parti-

tioned right-looking out-of-core trailing submatrix updates. This combination may still require to

load the pivots into the core memory, but it only updates the trailing submatrix after each in-core

factorization, while the previous algorithm updates it after each panel factorization.Although

these in-core and out-of-core algorithms can be applied at any level of the memory hierarchy, we

apply our designs to the GPU and CPU memory, respectively. We call this specific implementation

of the algorithm a non–GPU-resident implementation. Our performance results on the current

hybrid CPU/GPU architecture demonstrate that when the matrix is much larger than the GPU

memory, the proposed algorithm can obtain significant speedups over the communication-hiding

implementations of the previous algorithms.
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1 INTRODUCTION

Many scientific and engineering simulations require the solution of a

dense symmetric indefinite linear system of equations,

Ax = b, (1)

where A is an n-by-n dense symmetric indefinite matrix, b is a given

right-hand side, and x is the solution vector to be computed. To solve

the linear system, we first factorize the coefficient matrix A into a prod-

uct of matrices, eg, A = LDLT , where L is a lower-triangular matrix with

unit diagonals and D is a diagonal matrix. Then, to compute the solution

x, we solve the corresponding sequence of the linear systems with the

respective coefficient matrices L, D, and LT .

It is a challenge to achieve the high performance of the symmetric

indefinite factorization due to the symmetric pivoting that is needed to

maintain the numerical stability of the factorization,

PAPT = LDLT
, (2)

where P is a permutation matrix representing the row pivots and D is

a tridiagonal matrix (including a block diagonal matrix with 1-by-1 or

2-by-2 pivots). The selection of each pivot not only requires synchro-

nizations but also leads to irregular data accesses because only either

the upper or lower triangular part of the matrix is stored, and some

parts of the pivot column may be stored as the transpose of the corre-

sponding part of the row. Then, the application of the symmetric pivot

to the trailing submatrix again requires irregular data accesses.

Because the data access and synchronization have become signifi-

cantly more expensive compared with the arithmetic operations on the

modern computer, the symmetric pivoting can dramatically increase

the factorization time. This is also true on a GPU that has become a

crucial component in scientific and engineering computation. Never-

theless, with a careful designing and tuning of the implementation, the

symmetric indefinite factorization process can be accelerated using

the GPU.1

Our previous work1 only considered the cases where the matrix can

fit all at once in the GPU memory. As the amount of the GPU mem-

ory is limited, this assumption may not hold for many matrices that are

of interest.

To address this limitation, in this paper we design and develop

non–GPU-resident implementations of the two most popular symmet-

ric indefinite factorization algorithms, Bunch-Kaufman2 and Aasen’s.3

Because the data transfer through the PCI express can become the bot-

tleneck on the current hardware architectures, our implementations

are designed to either hide or avoid such communication. Although the

data bandwidth may increase with the future GPU, the relative cost

of the data transfer to the computation will most likely increase, and

hence, such non–GPU-resident implementations are expected to be

more critical for the future GPU. We first implement these two algo-

rithms in a communication-hiding fashion (ie, it aims to hide the commu-

nication behind the computation). Such implementations can obtain the

speedup of up to 2× over the implementation that does not overlap any

communication with the computation.* However, as the communica-

*This maximum speedup is obtained when the algorithm spends the equal amount of time on
the comutation and communication.

tion has become significantly more expensive compared with the com-

putation, our performance results demonstrate that it is a challenge to

completely hide the communication behind the computation.

Seeking further acceleration, we develop an implementation that

combines the partitioned4 and communication-avoiding (CA)5 vari-

ants of the Aasen’s algorithm; ie, after the GPU-resident factorization

in a left-looking CA fashion, the whole trailing submatrix is updated

in a right-looking partitioned fashion. Compared with our previous

communication-hiding implementations, this implementation signifi-

cantly reduces the amount of the data traffic between the CPU and

the GPU. Namely, our communication-hiding implementations update

the trailing submatrix after each panel factorization, while the second

implementation updates the submatrix after each in-core factorization.

As a result, it can obtain a great speedup when the matrix is signif-

icantly greater than the GPU memory. We note that this implemen-

tation is different from the previous CA Aasen’s algorithm proposed

and studied elsewhere.1,5,6 Although the previous algorithm avoids

some of the communication (instead of hiding the communication), it

accesses all the previously factorized column of L for each panel fac-

torization; some of which may not fit in the GPU memory. Hence, its

non–GPU-resident implementation would suffer from the excessive

data traffic similar to our communication-hiding implementations of

the partitioned Bunch-Kaufman or Aasen’s algorithm.

There are three main contributions of the paper. First, we present

our designs and implementations of the non–GPU-resident partitioned

Bunch-Kaufman and Aasen’s algorithms in a communication-hiding

fashion. We then extend the Aasen’s implementation using its CA vari-

ant for the GPU-resident factorization. Finally, we study their perfor-

mance on a current hybrid CPU/GPU architecture. Although we focus

on the hybrid architecture in this paper, the current studies may be

extended to other architectures (eg, out-of-core implementations).

The rest of the paper is organized as follows. After surveying

related work in Section 2, we describe the algorithms that our imple-

mentations are based on Section 3. We then, in Section 4, present

our non–GPU-resident implementations of the algorithms. Finally, in

Sections 5 and 6 we show numerical and performance results, respec-

tively. Final remarks are listed in Section 7.

Throughout this paper, we use ai, j to denote the (i, j)th entry of the

matrix A, while Ai1∶i2 , j1∶j2
is the submatrix consisting of the i1th through

the i2th rows and the j1th through the j2th columns of A. In addition,

ai1∶i2 , j is the column vector consisting of the i1th through the i2th rows

of the jth column of A, while ai, j1∶j2
is the row vector consisting of the

j1th through the j2th column of the ith row of A. Finally, for our dis-

cussion on the block algorithm, we use Ai, j and Ai1∶i2 , j to denote the

(i, j)th block and the block column consisting of the i1th through the

i2th blocks of the jth block column of A, respectively, where each block

is of dimension nb-by-nb. Finally, Nb is the number of the columns that

can fit in the GPU memory at once. All of our experiments were con-

ducted in the 64-bit double precision on 2 eight-core Intel Sandy Bridge

CPUs with 1 NVIDIA K20c GPU. The GPU has 11.5 GB of memory,

while its double-precision peak performance is 1.43 Tflop/s. The CPU

and GPU are connected by a PCIe 3Gen with 16 GB/s. We compiled our

code using the GNU gcc version 4.3.4 compiler and the CUDA nvcc ver-

sion 6.0 compiler with the optimization flag -O3, and linked it with the

Intel’s threaded Math Kernel Library (MKL) version xe2013.1.046.
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2 RELATED WORK

To ensure the numerical stability of the symmetric indefinite fac-

torization, there are a number of strategies to select the pivots,

including the complete pivoting (Bunch-Parlett algorithm),7 par-

tial pivoting (Bunch-Kaufman algorithm),2 rook pivoting (bounded

Bunch-Kaufman), p. 5238 fast Bunch-Parlett, p. 5258 and Aasen’s

algorithms.3 In particular, the Bunch-Kaufman and rook pivoting

are implemented in LAPACK9 and are used extensively in many sci-

entific and engineering computations. We are working to integrate

the Aasen’s algorithm into LAPACK. In this paper, we focus on the 2

representative strategies, the Bunch-Kaufman and Aasen’s algorithms.

Most of the previous out-of-core symmetric indefinite factorization

algorithms rely on the Bunch-Kaufman algorithm. For instance, the

challenges of designing an out-of-core implementation of the algorithm

were studies on a distributed-memory CPU computer.10 There, to

reduce the communication overheads and get scalable performance,

diagonal pivots were selected within or near the current elimination

block. Similarly, out-of-core factorization of a sparse symmetric indefi-

nite matrix based on the Bunch-Kaufman algorithm was considered.11

For reduction of the cost of selecting the pivot, the delayed scheme was

employed where the columns that cannot be stably factorized within

a block are moved to the trailing submatrix, requiring a dynamic data

structure to accommodate the delayed columns.

Unlike these previous approaches, our implementation is based on

the Aasen’s algorithm, and it globally searches for the pivots and can be

implemented using a simple static data structure.

Non–GPU-resident implementations of LU, QR, and Cholesky fac-

torization are described in Yamazaki et al.12 Unlike the symmetric

indefinite factorization (which requires the whole trailing submatrix

to be updated after each panel factorization), the panel factorization

of these one-sided factorizations only requires the next panel to be

updated. Hence, their non–GPU-resident factorization can be simply

implemented in the left-looking fashion.

Although our focus of this paper is on the deterministic algorithms

with theoretical error bounds, there are growing interests in ran-

domized algorithms.13 When combined with the iterative refinements,

these randomized algorithms may compute the solution of the desired

accuracy without pivoting, while obtaining the high performance on

modern computers.1,14,15

3 ALGORITHMS

In this section, we discuss the 3 symmetric indefinite factorization algo-

rithms, the partitioned Bunch-Kaufman,2,16 the partitioned Aasen’s,3,4

and the CA Aasen’s5, which are studied in this paper.

3.1 Partitioned Bunch-Kaufman

Let us assume that the first j − 1 columns of the matrices L and D of

the LDLT factorization Equation 2 have been computed. Then, the jth

columns of the matrices are computed by first updating the jth col-

umn aj of A using the previous columns,

wj∶n, j ∶= aj∶n, j − Lj∶n,1∶j−1D1∶j−1,1∶j−1𝓁
T
j, 1∶j−1, (3)

and then computing

𝓁j∶n, j ∶=
wj∶n, j

wj, j
and dj, j ∶= wj, j. (4)

This process is repeated for j=1,2,… ,n to factorize the whole matrix A

and is referred to as a left-looking formulation of the algorithm because,

at each step, the column aj is updated with the previous columns, which

are on the left of aj.

The above algorithm is based on BLAS-1 and BLAS-2, which allow

only a small number of data reuses. Because the data access has

become expensive, they obtain only a fraction of the performance of

BLAS-3, which can exploit more data reuses. To take advantage of the

memory hierarchy using BLAS-3, after a fixed number nb of the columns

are factorized, a partitioned variant of the Bunch-Kaufman algorithm

updates the trailing submatrix A(2,2) by

A(2,2) ∶= A(2,2) − L(2,1)D(1,1)(L(2,1))T
, (5)

where A(1,1) = A1∶nb ,1∶nb
and A(2,2) = Anb+1∶n, nb+1∶n, and the off-diagonal

block L(2,1) is defined, accordingly; ie, the matrix A is partitioned as

and factorized as

Then, the same procedure is applied to the trailing submatrix A(2,2).

The current set of the nb columns being factorized is referred to as

a panel, and this algorithm is referred to as right-looking becaus the

panel is used to update the trailing submatrix, which is on the right of

the panel.

A numerical issue comes when the column wj:n, j is scaled by a scalar

wj, j of small magnitude in Equation 4. For numerical stability to be main-

tained while keeping the symmetry of the matrix, the Bunch-Kaufman

algorithm selects either 1-by-1 or 2-by-2 pivots from the diagonals of

the remaining submatrix. Figure 1A shows the pseudocode of this par-

titioned algorithm that is implemented in LAPACK.16 It performs the

same number of flops as the column-wise algorithm (ie, 1

3
n3 + O(n2)

flops) and is backward stable subject to a growth factor. The selection

of the pivot requires the rth column and row of A. Because the diagonal

pivot ar, r cannot be determined until the jth step of the factorization,

the non–GPU-resident factorization must update the whole trailing

submatrix after each panel factorization.

3.2 Partitioned Aasen’s Algorithm

For the symmetric indefinite linear system of Equation 1 to be solved,

the Aasen’s algorithm3 computes the LTLT factorization of A,

A = LTLT
,
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(A) 

(C) 

(B)

FIGURE 1 Pseudocodes of symmetric indefinite factorization algorithms. A, Bunch-Kaufman algorithm. B, Partitioned Aasen’s algorithm, where
H = LT and 𝓁1 is the first column of the identity matrix. C, Communication-avoiding Aasen’s algorithm, where HT = TLT and L:,1 is the first nb

columns of the identity matrix and nt is the number of block columns in A, ie, nt = n
nb

where L is still lower-triangular with unit diagonals but T is now sym-

metric tridiagonal. For the memory hierarchy on a modern computer

to be exploited, a partitioned variant of the Aasen’s algorithm4 first

factorizes a panel in a left-looking fashion, using an intermediate Hes-

senberg matrix H that is defined as H = LT. Namely, we first set the first

column 𝓵1 of L to be the first column of an identity matrix. Then, for

j = 1,2, … , n, assuming that the first ( j − 1) columns of H and the first j

columns of L have been computed, the jth column of H is computed from

the jth column of the equation A = HLT ,

hj∶n, j𝓁
T
j, j ∶= aj∶n, j − Hj∶n,1∶j−1𝓁

T
j,1∶j−1,

where 𝓁j, j is a unit diagonal. Also, from the jth column of the equation

H = LT, we have

hj∶n, j = 𝓁j∶n, j−1tj−1, j + 𝓁j∶n, jtj, j + 𝓁j∶n, j+1tj+1, j.

Hence, if we let w =𝓵j:n, jtj, j + 𝓵j:n, j + 1tj + 1, j, then we can compute it by

w ∶= hj∶n, j − 𝓁j∶n, j−1tj−1, j,

and because w1 = 𝓁j, jtj, j + 𝓁j, j + 1tj + 1, j, and 𝓁j, j is 1 and 𝓁j, j + 1 is 0, we have

tj, j ∶= w1.

Finally, because w2:n = 𝓵j + 1:n, jtj, j + 𝓵j + 1:n, j + 1tj + 1, j, the ( j + 1)-th column

of L can be computed by

𝓁j+1∶n, j+1 ∶= v
v1

and tj+1, j ∶= v1,

where v = w2:n − 𝓵j + 1:n, jtj, j. For the stability to be maintained, the ele-

ment with the largest module in v is used as the pivot.

After the left-looking panel factorization, the trailing submatrix is

updated in a right-looking fashion,

A(2,2) ∶= A(2,2) − H(2,1)(L(2,1))T − 𝓁(2,1)
nb

tnb+1,nb
(𝓁(2,2)

1
)T
, (6)

where the matrix is partitioned as in Equation 5 and 𝓁(2,1)
nb

and 𝓁(2,2)
1

are the last and first columns of L(2,1) and L(2,2), respectively. Then, the

same procedure is recursively applied on the trailing submatrix A(2,2).

Figure 1B shows the pseudocode of the algorithm.
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In comparison with a standard column-wise algorithm, this parti-

tioned algorithm requires an additional rank-1 update of the trailing

submatrix, performing about 1

3
ntn2 additional flops, where nt is the

number of block columns (ie, nt = n
nb

).†

However, BLAS-3 can be used to perform most of these flops,

and it has been shown that this partitioned algorithm can shorten the

factorization time on modern computers.4

Unlike the Bunch-Kaufman, the Aasen’s only uses the jth column

of A to select the jth pivot. However, this pivot column becomes the

next column to be factorized and can come from anywhere in the trail-

ing submatrix. Hence, like the Bunch-Kaufman, the non–GPU-resident

implementation of this partitioned Aasen’s must update the whole trail-

ing submatrix after each panel factorization.

3.3 Communication-avoiding Aasen’s algorithm

Recently, a CA variant of the Aasen’s algorithm was developed by

replacing all the element-wise operations with block-wise operations.5

For avoidance of storing the whole matrix H, it computes the block row

of H at each step, which is then discarded.

Namely, from the jth block column of HT = TLT and the ( j, j)th block of

A = LHT , we have for k = 1,2, … , j − 1,

HT
j, k = Tk,k−1LT

j, k−1 + Tk,kLT
j, k + Tk,k+1LT

j, k+1 (7)

and

HT
j, j = L−1

j, j

(
Aj, j −

j∑
k=1

Lj, kHT
j, k

)
. (8)

Then, we obtain Tj, j from the (j, j)th block of HT = TLT :

Tj, j =
(

HT
j, j − Tj, j−1LT

j, j−1

)
L−T

j, j . (9)

Unfortunately, the above procedure is unstable because the symmet-

ric Tj, j is computed through a sequence of unsymmetric expressions.

To recover the symmetry, we substitute HT
j, j

of Equation 8 and HT
j, k

of

Equation 7 into Equation 9 and compute Tj, j as in

Lj, jTj, jL
T
j, j = Aj, j −

j−1∑
k=1

Lj, kWj, k −
j−1∑
k=1

WT
j, kLT

j, k,

where Wj, k = 1

2
Uj, k + Vj, k , Uj, k = Tk,kLT

j, k
, and Vj, k = Tk,k+1LT

j, k+1
. Finally,

from the ( j, j)th block of HT = TLT , we compute HT
j, j

by

HT
j, j = Tj, jL

T
j, j + Tj, j−1LT

j, j−1.

Next, from the jth block column of A = LHT , we can extract the ( j + 1)th

block column of L,

PT
j L( j+1)∶n, j+1HT

j, j+1 = LU(V), (10)

where

V = A( j+1)∶n, j −
j∑

k=1

L( j+1)∶n, kHT
j, k,

and L( j + 1):n, j + 1 and HT
j, j+1

are the L and U factors of V with the partial piv-

oting Pj. This partial pivoting is then applied to the corresponding part

of the submatrices, ie,

Aj+1∶n, j+1 ∶= PjA( j+1)∶n,( j+1)∶nPT
j

† The right-looking variant of the Aasen’s algorithm, the Parlett-Reid algorithm,17 performs
twice more flops than the left-looking column-wise Aasen’s algorithm.

and

L( j+1)∶n,1∶j ∶= PjL( j+1)∶n,1∶j.

Finally, from the ( j + 1, j)th block of H = TLT , we have

Tj+1, j = HT
j, j+1L−T

j, j .

Figure 1C shows the pseudocode of this CA Aasen’s algorithm that per-

forms the same number of flops, 1

3
n3 + O(n2), as the Bunch-Kaufman

algorithm.‡ This CA algorithm updated each panel using all the previ-

ous block columns in the left-looking fashion. Hence, to factorize each

panel, its non–GPU-resident implementation must read all the previous

block columns into the GPU memory.

4 IMPLEMENTATIONS

We now describe our non–GPU-resident implementations to factorize

the symmetric indefinite matrix based on the algorithms in Section 3.

4.1 Partitioned Bunch-Kaufman

A challenge of implementing the Bunch-Kaufman algorithm in a

non–GPU-resident fashion is that, at each step of the panel factor-

ization, the diagonal pivot may be selected from anywhere in the

trailing submatrix. Hence, although at each step, each pivot column

is updated by the previously factorized columns on the GPU (ie,

left-looking), we may need to transfer the pivot column from the CPU.

In addition, after the panel factorization, before the next panel fac-

torization can start, the whole trailing submatrix must be updated,

where some parts of the submatrix are not on the GPU. This distin-

guishes the non–GPU-resident Bunch-Kaufman factorization from the

non–GPU-resident LU, QR, or Cholesky factorization, which can be

simply implemented in a left-looking fashion (after the submatrix on

the GPU is updated using the previously factorized block columns, the

GPU-resident factorization assesses only the block columns on the

GPU). In this section, we describe our non–GPU-resident implementa-

tion of the partitioned Bunch-Kaufman algorithm that aims to hide the

communication behind the computation.

4.1.1 FIFO cache to store trailing submatrix.

For the trailing submatrix update, we update the lower-triangular

part of the submatrix one block column at a time. Since all the block

columns do not fit in the GPU memory at once, we manually manage

a First-In-First-Out (FIFO) cache to store these block columns in the

GPU memory, and create a lookup table to associate each block column

to the location in the cache (see Figure 2 for an illustration). In addi-

tion, if a remaining block column that needs to be updated is still on

the CPU, then as soon as the next block column is updated, we copy

it back to the CPU and prefetch the remaining block column into the

GPU. In this way, we aim to hide the communication of the block col-

umn behind the update of the block columns that are already on the

GPU. We use multiple GPU streams and events not only to overlap the

communication with the computation but also to update multiple block

‡ We referred to this as a CA algorithm although our implementation does not use a CA
algorithm for the panel factorization.
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FIGURE 2 Non–GPU-resident partitioned factorization. Only the lower block triangular part of the matrix is stored in the GPU memory. The dark
lines show the current and pivot columns that must be swapped

FIGURE 3 Execution trace of non–GPU-resident Bunch-Kaufman factorization, where 2 GPU streams are used for updating the trailing submatrix
and 2 other GPU streams are used for communication

columns in parallel (relying on the CUDA runtime to schedule the inde-

pendent tasks and obtain the load balance) if the block size is too small

to utilize the compute power of the GPU for updating the single block

column (see Figure 3). Because, at each step of the panel factorization,

the previous columns of the panel are used to update the pivot column,

we keep the panel in the cache all the time. Once the panel factoriza-

tion and submatrix update are completed, we copy the panel back to

the CPU. If the next panel is in the cache, we copy it to the designated

cache location. Otherwise, the panel is copied from the CPU before the

panel factorization starts.

The transfer of the block columns from the CPU to the GPU is

pipelined such that the transfer of all the block columns on the CPU is

overlapped with the whole trailing submatrix update. For this, we have

2 parameters nb and Nb to be tuned: the parameter nb specifies the block

or panel size and Nb is the number of the columns that can fit in the GPU

memory at once and hence specifies the number of the columns for

the GPU-resident factorization (in our performance studies, we used

nb = O(100) and Nb = O(1000)).§ When updating the trailing submatrix

after each panel factorization, the block size nb affects the performance

of the matrix-matrix multiply to update each block column, but it does

not significantly affect the total time to transfer the block columns to

the GPU. On the other hand, the parameter Nb determines how much

of the data transfer can be hidden behind the computation. However,

the trailing submatrix is accessed after each panel factorization, and

hence, the total amount of the data transfer for factorizing the matrix A

§ Is it possible to use a different block size from the panel size or 2D block layout for updating
the trailing submatrix. However, the amount of the data reuse is determined by the panel size
nb , and hence, our implementation uses the block size nb and 1D layout for the update.

is proportional to the total number of panels, n
nb

. Although the amount

of the data transfer is minimized by setting the panel size to be nb = Nb,

this makes the GPU-resident factorization perform all of its computa-

tion using BLAS-1 and BLAS-2. We study the effects of the parameters

nb and Nb to the performance of the non–GPU-resident factorization in

Section 6.

4.1.2 Non–GPU-resident symmetric pivoting.

At each step of the panel factorization, we first copy the current col-

umn aj into a GPU memory workspace and update it with the previous

columns of the panel, all of which are on the GPU. Then, based on the

numerical values of the entries in the column, we select a candidate

for the pivot column, which can be anywhere in the trailing submatrix.

This candidate column is copied into another workspace and updated

using the previous columns. Once the pivot columns are updated, they

are copied as the factorized columns, while the original columns may be

copied into the trailing submatrix.

For the non–GPU-resident implementation, if the pivot column is on

the CPU, then it must be copied to the GPU before being updated with

the previous columns. In addition, only the lower-triangular part of the

submatrix is stored, and some parts of the pivot column may be stored

as the transpose of the corresponding part of the row, some parts of

which can be on the CPU (see Figure 2). This irregular access to the

columns and rows on the GPU and CPU makes it difficult to obtain good

performance of the panel factorization. In addition, as Figure 2 shows,

although the contiguous block columns are stored in our FIFO cache,

the block columns may not be stored contiguously in our cache. For

copying the pivot column from the corresponding row of the multiple
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block columns on the GPU, we use a batched GPU kernel that executes

the multiple copy operations on the multiple block columns in a single

GPU kernel launch. Then, the remaining parts of the pivot column are

copied from the CPU.

4.1.3 Shifting after 2-by-2 pivot.

An additional complication arises when the algorithm selects a 2-by-2

pivot for the last column of the panel factorization. When this happens,

we push the last column to the next panel, decreasing the size of the cur-

rent panel by 1 column. To adjust the block column boundaries, we first

copy back the last column of the last block column in the GPU memory

to the CPU (ie, the last column of the block column labeled as “end” in

Figure 2). Then, we shift the remaining columns in the block column to

the right and copy the last column from the previous block column as

the new first column of the block. This process is recursively applied to

the previous block columns until the first column of the first block col-

umn is copied from the CPU (ie, the first column of the block column

labeled as “start” in Figure 2).

4.1.4 GPU memory workspace.

Since W(2,1) = L(2,1)D(1,1), where W is computed in Equation 3, we use

a workspace memory to store W∶,1∶nb
such that we avoid recomputing

W∶,1∶nb
for the trailing submatrix update Equation 5. Hence, we require

the workspace of dimension n-by-(nb + 1) with an extra column to store

the potential 2-by-2 pivot for the last column of the panel.

4.1.5 Alternative implementation

The left-looking Bunch-Kaufman can bring in and factorize 1 column at

a time on the GPU, and once no more column can fit in the GPU memory,

we can update the trailing submatrix (ie, nb =Nb). This allows us to bring

in the trailing submatrix into the GPU memory for each GPU-resident

factorization. Unfortunately, this performs the GPU-resident factoriza-

tion using the BLAS-1- and BLAS-2-based panel factorization. In our

experiments, this implementation obtained only a fraction of the above

BLAS-3-based partitioned implementations of the algorithm.

4.2 Partitioned Aasen’s

To select a pivot, beside the current column, which is on the GPU,

Bunch-Kaufman may access an additional column ar which could be on

the CPU. On the other hand, Aasen’s algorithm selects the pivot based

only on the numerical entries of the current column, which is already on

the GPU. Hence, for the pivot selection, the non–GPU-resident imple-

mentation of the Aasen’s algorithm does not transfer data between

the CPU and the GPU. However, once the pivot is selected, both

Bunch-Kaufman and Aasen’s algorithms symmetrically pivot the trail-

ing submatrix. Hence, the Aasen’s may need to copy the column from

the CPU, while the Bunch-Kaufman has already copied the pivot col-

umn (although the data copy is wasted if the second candidate is

not selected as a pivot by the Bunch-Kaufman).¶ Fortunately, unlike

¶The Aasen’s algorithm swaps trailing submatrix Aj + 1:n, j + 1 based on the jth pivot. Hence, the
last pivot of the panel factorization swaps and+1 , which is not in the panel and can be on the CPU.

Bunch-Kaufman, the Aasen’s algorithm does not use 2-by-2 pivots.

Hence, the panel size stays the same throughout the factorization.

Like Bunch-Kaufman, the panel factorization of the Aasen’s

algorithm may select the pivots from anywhere in the trailing subma-

trix. Hence, the Aasen’s algorithm updates the whole trailing submatrix

before the next panel factorization. For the remaining block columns

on the GPU to be stored, our non–GPU-resident implementation

of the Aasen’s algorithm uses the same FIFO cache as that used for

Bunch-Kaufman. For the trailing submatrix update Equation 6, we

merge the rank-1 and rank-nd updates into a single rank-(nd + 1) update

such that it can be performed by a single BLAS-3 call.

Because the first column of L is the first column of the identity matrix

and the diagonals of L are ones, they are not stored. Hence, we store the

jth column 𝓵j + 1:n, j of L in the (j − 1)th column aj:n, j − 1 of A.

Then, the tridiagonal matrix T can be stored in the main diago-

nal of A and the first off-diagonal below them (ie, tj, j and tj + 1, j are

stored in aj, j and aj + 1, j, respectively). Finally, our implementation uses

an n-by-(1 + nb) memory workspace to store H(2,1) and 𝓁(2,1)
nb

tnb+1,nb
for

the trailing submatrix update Equation 6.

4.3 Partitioned communication-avoiding Aasen’s

Both the right-looking partitioned Bunch-Kaufman and Aasen’s algo-

rithms update the whole trailing submatrix after each panel factoriza-

tion. Similarly, the left-looking CA Aasen’s algorithm needs to access

all the previous block columns for updating each panel. When the

block columns do not fit in the GPU memory all at once, although

the communication is overlapped with the computation as much as

possible, the data transfer between the CPU and the GPU becomes

overwhelmingly expensive. As a result, the data transfer cannot be com-

pletely hidden behind the computation, and the performance of the

non–GPU-resident factorization suffers. To reduce the amount of the

data transfer, in this section we perform the right-looking update of the

whole trailing submatrix after each GPU-resident factorization by the

CA Aasen’s algorithm. To distinguish it from our 2 previous implemen-

tations, we refer to this new implementation as our non–GPU-resident

implementation of the partitioned CA Aasen’s algorithm.

Figure 4 shows the pseudocode of our implementation, where nb is

the block size and Nb is the number of columns of A that can fit in the

GPU memory at once. At each step of the GPU-resident factorization,

the next panel is copied from the CPU, while the symmetric pivoting

is applied on the fly. Because the CA Aasen’s algorithm updates the

panel in the left-looking fashion, the trailing submatrix does not have

to be updated after the panel factorization. The factorized panels are

kept on the GPU such that they can be used to update the remain-

ing block columns. This GPU-resident factorization continues until no

more panel can fit in the GPU memory. Although the CA algorithm used

for the GPU-resident factorization performs most of the flops using

BLAS-3, most of these operations are on the blocks of dimension nb. To

efficiently utilize the GPU, we use GPU streams and events extensively

to exploit the parallelism between the small BLAS-3 calls.

Once the GPU-resident factorization is completed, the remaining

block columns of the trailing submatrix are copied to the GPU 1 block

column at a time, updated using all the factorized block columns in the
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FIGURE 4 Partitioned communication-avoiding Aasen’s algorithm,
where nt =

Nb

nb
and Nt = n

nb

GPU memory, and copied back to the CPU. To avoid storing H(2,1), unlike

the partitioned Aasen’s algorithm, our implementation follows the CA

Aasen’s algorithm and updates the trailing submatrix by

A(2,2) = A(2,2) − L(2,1)(H(2,1))T − L(2,1)
nt

(Tnb+1,nb
(L(2,2)

1
)T).

To update the block column of A(2,2), we compute the corresponding

block column of (H(2,1))T and then discard it such that we can reuse the

memory workspace to store the next block column. While our previ-

ous implementation of the partitioned Aasen’s algorithm combined 2

low-rank updates of the trailing submatrix into 1, our implementation

of the partitioned CA Aasen’s algorithm uses multiple GPU streams and

events to utilize GPU (overlapping the data transfer of the remaining

block column with the updating of other columns and updating the mul-

tiple block columns in parallel). Once all the trailing block columns are

updated, we copied all the block columns on the GPU back to the CPU,

except for the next panel.

Any stable LU algorithm can be used for the panel factorization

Equation 10 (eg, partial18 or tournament19 pivoting). Our implementa-

tion can also compute the LU factorization on the GPU or CPU (eg, using

MKL). Although the CPU is often efficient performing the BLAS-1– and

BLAS-2–based panel factorization, this requires to copy back the LU

factors to the GPU. However, because the factors are already on the

CPU, it avoids the needs to copy them back after the trailing submatrix.

This algorithm performs an extra rank-nb update of the trailing sub-

matrix, requiring 1

3
Ntnbn2 more flops than the column-wise Aasen’s

algorithm. However, unlike previous algorithms, the trailing submatrix

is updated only after each GPU-resident factorization, while the in-core

factorization accesses only the block columns on the GPU and uses

BLAS-3 calls. As a result, this algorithm can significantly reduce the

amount of the data traffic between the CPU and the GPU.

In addition, compared with the previous implementations, this imple-

mentation has more regular data accesses and its implementation can

be significantly simpler.

Our implementation uses 2 n-by-(nsnb) workspaces where ns is the

number of the GPU streams used for the update; one to store H∶,1∶nb
,

and the other to store the block columns of the trailing submatrix.

Beside these 2 workspaces, we allocate 4 n-by-nb workspaces to store

the auxiliary matrices X, Y, Z, and W.

5 NUMERICAL RESULTS

Although, in this paper, we focus on studying the performance of

the non–GPU-resident implementations, we have conducted exten-

sive numerical experiments to compare the numerical behaviors of

various Bunch–Kaufman and Aasen’s algorithms. For the sake of com-

pleteness, Figure 5 shows the results with random matrices, which

are representative of many other results. We used the LU factoriza-

tion with partial pivoting to solve the banded linear system for the

CA Aasen’s algorithm, while the Givens QR factorization is used to

solve the tridiagonal system of the partitioned Aasen’s algorithm as

in Rozloz’ník et al.4 Although the Aasen’s algorithm obtained slightly

greater backward errors, the forward and backward errors of all the

standard Bunch-Kaufman and Aasen’s algorithms were in the same

order. The rook pivoting8 avoids the potential numerical issues associ-

ated with the Bunch-Kaufman algorithm because of the large growth

factor in L, but the figure indicates that, for these random matrices,

the Bunch-Kaufman was as stable as the rook pivoting. On the other

hand, the backward errors of the CA Aasen’s algorithm were about an

order of magnitude greater than the standard algorithms. As explained

elsewhere,5,6 this is expected because the backward errors of the CA

Aasen’s algorithm depend linearly to the block size (ie, nd = 128). A few

iterations of iterative refinement can smooth out the residual norm.

The figure also indicates that our implementation that combines the

CA Aasen’s algorithm with the partitioned right-looking trailing sub-

matrix update obtained about the same numerical errors as the CA

Aasen’s algorithm.

6 PERFORMANCE RESULTS

Finally, we study the performance of our 3 non–GPU-resident imple-

mentations using a fixed amount of the GPU memory.‖ For the par-

titioned CA Aasen’s, we factorized the panel on the CPU using

threaded MKL.

Figure 6 shows the breakdown of the symmetric indefinite factor-

ization time. The black part of each bar is mostly the time needed to

transfer the block columns of the trailing submatrix between the CPU

and the GPU during the trailing submatrix update. Clearly, the pro-

posed algorithm spends much less time moving the data between the

CPU and GPU. This is not only because the proposed algorithm moves

a smaller amount of data, but also because while the other implemen-

tations only update each trailing block column using the nb column, the

proposed algorithm updates each block column with the Nb columns,

better hiding the data transfer behind the computation. The figures

also show that compared with the other implementations, the CA

Aasen’s may spend shorter time in the matrix-matrix multiply (ie,

GEMM). This is because while the other algorithms update each

block column using one of the previous block columns at a time

(right-looking), the CA algorithm updates each block column using all of

the previous block columns in the core memory at once (left-looking).

Finally, in this figure, we see that, compared with the partitioned

‖The GPU memory is also used for the workspace.
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FIGURE 5 Numerical errors of different symmetric indefinite solvers (nb = 128 and Nb = 640). A, Error norms and, B, factor norms

Bunch-Kaufman, the partitioned Aasen’s algorithm spent more time in

pivoting. This is because once the panel is used to update the trailing

submatrix, the right-looking Bunch-Kaufman algorithm does not use

the panel for the rest of the factorization. Hence, like its LAPACK imple-

mentation, we do not apply the pivot to the previous columns of the

matrix L. On the other, we have not integrated this optimization into our

implementation of the partitioned Aasen’s algorithm. The CA Aasen’s

algorithm updates the panel in left-looking fashion. Hence, our parti-

tioned CA Aasen’s algorithm must apply the pivoting to all the previous

block columns in the GPU memory. Our implementation applies the

pivots to all the previous columns to keep the solver simple.**

** The number of pivots may be reduced by applying a matrix ordering (eg, Duff and Pralet20)
before the numerical factorization.

Figure 7 compares the performance of our 3 non–GPU-resident

factorization algorithms and the GPU-resident Bunch-Kaufman algo-

rithms, which are developed for the matrices that fit in the GPU mem-

ory (that labeled “Hybrid” performs the panel factorization on the CPU,

while that without the label performs the whole factorization on the

GPU). These GPU-resident routines are used for the previous studies1

and are in the latest release of MAGMA software package.†† The figure

clearly demonstrates that the partitioned CA Aasen’s obtained signifi-

cant speedups when the matrix was significantly larger than the avail-

able GPU memory. In Figure 7B, we also show the performance of the

Bunch-Kaufman algorithm when the communication is not overlapped

†† http://icl.utk.edu/magma/.

http://icl.utk.edu/magma/
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FIGURE 6 Breakdown of factorization time using 30% of total GPU memory (nb = 128). The whole matrix fits in the GPU memory at once when n
is less than 25K (ie, Nb ≥ 25 000). The black parts of the bars show the rest of the factorization time that is mostly the time needed to transfer the
block columns of the trailing submatrix between the CPU and the GPU during the trailing submatrix update. A, Partitioned Bunch-Kaufman. B,
Partitioned Aasen’s. C, Partitioned CA Aasen’s

FIGURE 7 Performance of factorization algorithms (nb = 128) for random matrices, where circle or square markers indicate that the matrices are
small enough to fit in the GPU memory, or they are too large to fit in the memory, respectively; ie, using 90% or 30% of the GPU memory, the matrix
does not fit in the GPU memory when its dimension is greater than 35 000 and 20 000, respectively (ie, Nb≈35 000 and 20 000). The triangle
markers are for the in-core factorization. A, Using 90% of total GPU memory and, B, using 30% of total GPU memory

with the computation. We see a smaller gain in the performance as

the matrix size grows, indicating that there is not enough computation

to hide the communication. In the end, compared with the partitioned

Bunch-Kaufman, the partitioned CA Aasen’s obtained the speedups of

about 1.1 × to 3.1 × when 30% of the GPU memory was used.

When we increase the block size nb, the partitioned algorithms

update the trailing submatrix with larger block columns, improving its

performance. However, a larger block size also makes the panel factor-

ization more expensive.

Because the panel factorization is based on BLAS-1 and BLAS-2, it

often obtains only a small fraction of the peak performance and could

become the performance bottleneck, especially when the whole matrix

fit on the GPU. On the other hand, while the partitioned algorithms

operate on block columns, the CA Aasen’s operates on blocks. In gen-

eral, even though we use the GPU streams for the CA algorithm to

exploit the parallelism, for the GPU to be efficiently utilized the CA

Assen’s algorithm requires a larger block size than the partitioned algo-

rithms. For our experiments so far, the block size nb is set to be 128 for all

the algorithms, which obtained good performance of the GPU-resident

partitioned algorithms. However, the performance of the CA Aasen’s

could be improved using a larger block size. Now, for the trailing sub-

matrix update of the non–GPU-resident factorization, the parameter
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Nb determines how much of the data transfer can be hidden behind

the computation, while the block size nb affects the performance of the

matrix-matrix multiply to update each block column but does not sig-

nificantly affects the time to transfer the trailing block columns. On the

other hand, unlike the partitioned CA implementation that accesses

the trailing submatrix before each in-core factorization, the partitioned

algorithms access the trailing submatrix after each panel factorization.

As a result, the total amount of the data transfer depends on the panel

size, and their performance can be improved using a larger block size nb.

Figure 8 shows the performance using different block sizes. Although

the larger block size improved the performance of the partitioned algo-

rithms, the CA algorithm still shows the performance advantage. In

addition, if the block size is too large, then the performance of the

GPU-resident partitioned factorization suffers.

Figure 8B also compares the performance of our partitioned CA

Aasen’s implementation when the panel is factorized on the CPU or

on the GPU. When the GPU is used to factorize the panel, we can

avoid transferring the factored panel back to the GPU. However, for

the panel factorization to utilize the GPU well, it must be implemented

carefully because the CPU is efficient in performing the BLAS-1– and

BLAS-2–based panel factorization. With our implementation, perform-

ing the panel factorization on the GPU only slightly improved the per-

formance when the matrix is large enough.

To compute the solution of the linear system of Equation 1, our

partitioned CA Aasen’s implementation would require to solve the lin-

ear system with the banded matrix T. Although we have not imple-

mented the banded solver on the GPU, for reference, Figure 9A shows

the fraction of the time spent on the general banded solver of MKL

over the time spent by our CA Aasen’s factorization. A larger block

size reduces the factorization time, while increasing the solve time.

Although the fraction of the solve time increases with the block size,

it is only a small overhead compared with the factorization time.

Finally, our partitioned CA algorithm may provide an additional tun-

ing parameter Nb to improve the performance of the GPU-resident

Assen’s algorithms.

For instance, compared with the right-looking algorithms, the

left-looking CA Aasen’s algorithm exhibits smaller parallelism, and it

requires a careful implementation to obtain high performance.6 By

periodically performing the right-looking updates, the performance of

the CA Aasen’s algorithm may be improved (eg, in Figure 7, the perfor-

mance of the CA algorithm was higher using 30% of the GPU memory

than using 90% of the memory). Figure 9B demonstrates this potential

by showing the performance of the partitioned CA algorithm, where the

matrix fits in the GPU memory, but the trailing submatrix is periodically

updated.

FIGURE 8 Performance of partitioned Bunch-Kaufman and CA Aasen’s factorization for random matrices, using different block sizes and 30% of
GPU memory. A, Partitioned Bunch Kaufman and, B, Partitioned CA Aasen’s. CA indicates communication-avoiding

(A) (B)

FIGURE 9 Performance statistics of partitioned CA Aasen’s algorithm. A, Fraction of time spent by MKL general banded solver over partitioned
CA Aasen’s factorization and, B, GPU-resident performance with different values of Nb. CA indicates communication-avoiding; MKL, Math Kernel
Library
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7 CONCLUSION

We designed an out-of-core implementation of the Aasen’s algorithm

to factorize a symmetric indefinite matrix. Our implementation uses

a CA variant of the left-looking algorithm for in-core factorization

and then updates the trailing submatrix only after each in-core fac-

torization. Unlike our communication-hiding implementations of the

Bunch-Kaufman and Aasen’s algorithms that access the trailing sub-

matrix after each panel factorization, this new implementation sig-

nificantly reduces the data traffic into and out of the core memory.

Although the backward errors depend linearly to the block size and

could be slightly greater, the performance results of our particular

implementations of these algorithms on the current hybrid CPU/GPU

architecture demonstrated that the new implementation can obtain

significant speedups over the previous implementations when the

matrix is significantly larger than the available GPU memory.

We are also interested if it is possible to implement our algorithm on

other architectures.
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