
Improving performance of GMRES by reducing
communication and pipelining global collectives

Ichitaro Yamazaki∗, Mark Hoemmen†, Piotr Luszczek∗, and Jack Dongarra∗
∗University of Tennessee, Knoxville, Tennessee, U.S.A.

†Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.

iyamazak@icl.utk.edu, mhoemme@sandia.gov, luszczek@icl.utk.edu, and dongarra@icl.utk.edu

Abstract—
We compare the performance of pipelined and s-step GM-

RES, respectively referred to as �-GMRES and s-GMRES, on
distributed-multicore CPUs. Compared to standard GMRES, s-
GMRES requires fewer all-reduces, while �-GMRES overlaps
the all-reduces with computation. To combine the best features
of two algorithms, we propose another variant, (�, t)-GMRES,
that not only does fewer global all-reduces than standard GM-
RES, but also overlaps those all-reduces with other work. We
implemented the thread-parallelism and communication-overlap
in two different ways. The first uses nonblocking MPI collectives
with thread-parallel computational kernels. The second relies
on a shared-memory task scheduler. In our experiments, (�, t)-
GMRES performed better than �-GMRES by factors of up to
1.67×. In addition, though we only used 50 nodes, when the
latency cost became significant, our variant performed up to
1.22× better than s-GMRES by hiding all-reduces.

I. INTRODUCTION

Krylov subspace projection methods iteratively solve large

systems of linear equations. Krylov methods can solve prob-

lems too large for other kinds of algorithms like factorizations,

as well as problems where the coefficient matrix A is only

available as a function that takes an input vector x and returns

the resulting vector y of the product y := Ax. However, on the

current computers, the performance of the Krylov methods is

often dominated by communication [1], as the communication

has become much more expensive compared to computation,

in terms of both throughput and energy consumption. We

use the term “communication” to include both “horizontal”

data movement between parallel processing units, as well as

“vertical” data movement between memory hierarchy levels.

Two approaches have been developed to reduce this commu-

nication cost. The first, “communication avoiding” (CA), is

based on an s-step method which redesigns the algorithm

to communicate less by generating a set of s basis vectors

at a time [1]. The second, “pipelining,” redesigns algorithms

to hide the cost of communication by exploiting nonblocking

communication and pipelining the iterations [2]. Both s-step

and pipelining techniques may increase computational cost,

but may nevertheless improve overall performance, due to the

gap between the cost of communication and computation.

In this paper, we begin by comparing techniques to avoid

or pipeline communication in a particular Krylov solver, the

Generalized Minimum Residual (GMRES) method [3] for

solving nonsymmetric linear systems. To the best of our

knowledge, we are the first to compare the performance

of the two methods in a single work. Furthermore, unlike

previous studies, we focus on the interaction between thread

parallelism and overlap of computation and internode com-

munication. To this end, we wrote two implementations. The

first uses threaded computational kernels and nonblocking

MPI collectives. The second one relies on a shared-memory

run-time system called QUARK [4], both to expose thread-

level task parallelism in computations and to overlap those

computations with communication tasks. We refer to our s-step

and pipelined implementations as s-GMERS and �-GMRES,

respectively.

Our implementations focus on reducing the cost of global

all-reduces needed for orthogonalizing the basis vectors. This

builds both on the observation behind pipelined methods,

that global collectives will be the performance bottleneck at

large scale, and on our experiences using s-step GMRES,

where most of our performance improvement came from

the block orthogonalization to reduce global communication.

Hence, to generate the Krylov vectors, s-GMRES relies on

standard sparse-matrix vector multiply (SpMV) instead of its

CA variant, the matrix powers kernel (MPK) [5]. Hence, s-

GMRES communicates to generate each Krylov vector, but it

is only the point-to-point communication among neighboring

processes, which we aim to overlap with local computation

of SpMV. By not using MPK, we avoid the computation,

communication, and storage overheads of setting up MPK, as

well as its computation overhead and a potential increase in

total communication volume of generating the basis vectors

(MPK trades off these overheads in favor of reducing the

latency cost of point-to-point communication). In addition,

not using MPK means that our implementation works with

any preconditioner. This is essential for reducing the number

of solver iterations in practice. Previous work [6], [7] made

attempts at preconditioning MPK, but effectively precondition-

ing MPK remains a challenge. We overcome this challenge by

trading some communication (using SpMV instead of MPK)

in favor of having the freedom to pick any preconditioner.

We then combine these two approaches, pipelining and s-

step, into a single new algorithm, Pipelined s-step GMRES,

or (t, �)-GMERS in short. This is achieved by combining

s-GMRES’ block orthogonalization with �-GMRES. In our

performance comparison on a distributed-memory computer

with up to 300 processes, we have seen that this combination

can improve the performance of �-GMRES by a factor of

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-0-7695-6149-3/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.65

1118

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-3408-0/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.65

1118

GMRES(A, M , b, m):
q1 = q1/‖q:,1‖2 (with x̂ = 0 and q1 = b, initially)
for j = 1, 2, . . . ,m do

// SpMV with local submatrix of A, and optionally Precond M :
1. MPI_Isend and MPI_Irecv for qj ’s 1-level ghost with neighbors

and then MPI_Wait
2. vj+1 := AM−1qj

// Orth based on Clasical Gram-Schmidt (CGS)

3. h1:j,j := QT
1:jvj+1, with MPI_Allreduce

4. qj+1 := vj+1 −Q1:jh1:j,j

5. hj+1,j := (qT
j+1qj+1)

1/2, with MPI_Allreduce
6. qj+1 := qj+1/hj+1,j

end for

Fig. 1. GMRES to generate the orthonormal basis vectors Q1:m+1 and the
projected matrix H , where m is the restart length.

1.67× and that of s-GMRES by 1.22×.

II. ALGORITHMS

In this section, we review the standard GMRES algorithm,

and two variants thereof: pipelined and s-step GMRES.

A. GMRES

The Generalized Minimum Residual (GMRES) method [3]

solves a nonsymmetric linear system Ax = b. Its j-th iteration

first applies SpMV to the previously orthonormalized basis

vector qj and generates a new Krylov vector vj+1 := Aqj .

Then, GMRES computes the new basis vector qj+1 by or-

thonormalizing (Orth) vj+1 against q1, . . . ,qj .

To reduce both the computational and storage costs of

computing a large projection subspace, GMRES “restarts” the

iteration after computing a fixed number m+1 of basis vectors.

Before restart, GMRES updates the approximate solution x̂
by solving a least-squares problem g := argmint ‖c−Ht‖,
where c := QT

1:m+1(b − Ax̂), H := QT
1:m+1AQ1:m, and

x̂ := x̂ + Q1:mg. Then, the iteration is restarted, using the

residual vector b−Ax̂ as its starting vector q1. The matrix H ,

a by-product of orthogonalization, has upper Hessenberg form,

and the cost of solving the least-squares problem is small

relative to the cost of generating the basis vectors for typical

restart lengths and sizes of the matrix A. Figure 1 shows

pseudocode for restarted GMRES. In this paper, we focus on

the right preconditioning, but our discussion can be extended

to the left-preconditioning.

We distribute the matrix and vectors over MPI processes

in a “one-dimensional” block row format. Both SpMV and

Orth require communication. This includes two global all-

reduces in Orth, and point-to-point neighborhood messages for

SpMV to exchange the one-level ghost entries of the vector,

which are the nonlocal entries one edge away from the local

entries in the adjacency graph of A. Besides these instances

of interprocess communication, there are also those in the

intraprocess context: the data movement between levels of the

local memory hierarchy.

B. Pipelined GMRES

Pipelined GMRES [2] aims to hide the cost of the global

all-reduce in Orth, by overlapping them with both local

�-GMRES(A, M , b, �, m):
r1,1 := 1.0
for j = 1, 2, . . . ,m do

// SpMV with local submatrix of A, and optionally Precond M :
1. MPI_Isend and MPI_Irecv for vj ’s 1-level ghost with neighbors

and then MPI_Wait
2. vj+1 := AM−1vj

3. k := max(1, j − �+ 1)
4. if j > � then
5. MPI_Wait(tag = k)
6. Update r1:k,k , and generate h1:k,k−1

// Orth based on CGS:
7. qk := (vk −Q1:k−1r1:k−1,k)/rk,k

// change-of-basis to generate next vector:
8. vj+1 := (vj+1 − V�:jh1:k−1,k−1)/hk,k−1

9. end if
10.r1:j+1,j+1 := [Q1:k−1, Vk:j+1]

Tvj+1,
with MPI_Iallreduce(tag = j + 1)

end for

Fig. 2. Pipelined �-GMRES to generate the orthonormal basis vec-
tors Q1:m+1 and the projected matrix H , where � is the pipeline depth,
and m is the restart length.

computation and with SpMV’s point-to-point communication.

Hiding the communication in a single Orth can lead to at

most 2× speedups, but a greater speedup may be possible

by pipelining multiple iterations. Pipelined methods have the

additional advantage of mitigating the effects of random node

performance variation (“jitter”) and message delays [8]. In

standard methods, these effects manifest as load imbalance that

“piles up” at multiple global all-reduce calls. Finally, pipelined

methods allow the domain scientist to use any preconditioner.

This is essential in practice for good convergence rates, or

even to converge at all on hard problems.

Figure 2 shows the pipelined �-GMRES. Compared to the

standard algorithm, �-GMRES generates an extra small upper-

triangular matrix R such that V1:j+1 = Q1:j+1R1:j+1,1:j+1,

where V1:j+1 are the generated Krylov vectors and Q1:j+1 are

their orthonormalized versions. When computing the (j+1)-th
column vector r1:j+1,j+1, the last � vectors Vk:j+1 have not yet

been orthogonalized (Line 10). Hence, after the corresponding

synchronization, the column vector must be updated, assuming

orthogonality of the previous vectors holds (Line 6). Then, the

orthonormal basis vectors Q are generated using R (Line 7).

In finite-precision arithmetic, the algorithm loses orthogo-

nality among the basis vectors faster than in standard GMRES.

To maintain numerical stability, �-GMRES introduces the

change-of-basis matrix B1:j+1,1:j , such that

AV1:j = V1:j+1B1:j+1,1:j . (1)

For instance in [2], the matrix B1:j+1,1:j is defined to generate

the Newton basis with shifts σk for the first � steps, i.e.,

B1:�+1,1:� = bidiag

(
σ1 σ2 . . . σ�

1 1 . . . 1

)
.

In our experiments, the shifts are the Ritz values, in a Leja

order, computed at the first restart (our first restart cycle is

based on standard GMRES). Then, for the following j-th step,

it uses all the information available from the orthogonalization

11191119

(h, s)-GMRES(A, M , b, h, s, m):
q1 := q1/‖q1‖2 (with x̂ := 0 and q1 := b, initially)
for j = 1, 2, . . . ,m do
1. for i = 1, i+ h, . . . , s do

// Matrix Powers Kernel (MPK(h, A, M , q1)):
2. MPI_Isend and MPI_Irecv for qj ’s h-level ghost with neighbors

and then MPI_Wait to form vj

3. for k = i, i+ 1, . . . , i+ h− 1 do
// SpMV with local submatrix and s− k ghost of A,
// and optionally Precond M :

3. vj+k := AM−1vj+k−1

4. end for
5. end for

// Block Orthonormalization (BOrth):

R1:j,j+1:j+s := QT
1:jVj+1:j+s with MPI_Allreduce

Qj+1:j+s := Vj+1:j+s −Q1:jR1:j,j+1:j+s

6. // CholQR factorization:

G := QT
j+1:j+sQj+1:j+s with MPI_Allreduce

compute Rj+1:j+s,j+1:j+s, Cholesky factor of G

Qj+1,j+s := Qj+1:j+sR
−1
j+1:j+s

7. Extend projected Hessenberg matrix H with s columns
end for

Fig. 3. s-step GMRES with two step sizes h and s, and restart length m.

at the (j − �)-th step, i.e.,

B�+1:j+1,�+1:j =

⎛
⎜⎜⎜⎜⎝

h1,1 . . . h1,k−1

h2,1
. . .

...
. . . hk−1,k−1

hk,k−1

⎞
⎟⎟⎟⎟⎠ ,

where k := j − � + 1, and the projected matrix is computed

by H1:j+1,1:j := R1:j+1,1:j+1B1:j+1,1:jR
−1
1:j,1:j .

It takes extra computation to change basis, but �-GMRES

overlaps each all-reduce with � iterations, including the �− 1
all-reduces and � neighborhood collectives needed over the

iterations. In addition, the algorithm only performs one all-

reduce per iteration, compared with the two all-reduces in stan-

dard GMRES. To avoid the second all-reduce, the algorithm

assumes orthogonality of the basis vectors Q1:j , and computes

the vector norm hj+1,j implicitly [2]. However, even with the

change-of-basis, the algorithm could lose numerical stability

due to loss of orthogonality among the basis vectors, and the

pipeline depth � must be kept small.

C. s-step GMRES

s-step methods [9] were originally proposed as a way to im-

prove Krylov methods’ theoretical upper bound on parallelism.

To avoid communication, the CA variants of the computational

kernels (e.g., the orthogonalization and MPK), which can be

implemented with the minimum communication costs, have

been integrated into the s-step solvers [5], [1], [10], [11].

Such CA methods generate s basis vectors with the same

communication latency of their conventional counterparts to

generate a single vector. The effectiveness of such CA kernels

to improve performance has been demonstrated on various

architectures [5], [12], [13], [6].

To avoid the point-to-point communication needed for

SpMV, MPK extends the local submatrix of A on each process

with the (s − 1)-level ghost boundary elements that are the

nonlocal entries s − 1 edges away from the local entries in

the adjacency graph of A. To generate a new set of s Krylov

vectors, each process first gatheres the s-level ghost entries of

the starting vector qj from the neighboring processes. After

this round of point-to-point communication, each process may

independently apply SpMV s times without further communi-

cation. Though MPK reduces the communication latency to

generate the s basis vectors by a factor of s, each k-th step of

MPK applies SpMV to the (s− k)-level ghost elements. This

requires extra computation.

To reduce the cost of all-reduces needed for the orthog-

onalization, a block procedure (BOrth) orthogonalizes a set

of s basis vectors at a time. In our implementation, we

used block classical Gram-Schmidt [14] to orthogonalize the

new Krylov vectors generated by MPK against the previously

orthonormalized basis vectors. We then orthonormalize the

block of new basis vectors using the Cholesky QR (CholQR)

factorization [15]. Compared to MPK, both BOrth and CholQR

are easier to implement efficiently since they depend mainly

on dense matrix-matrix multiply. In our previous studies,

these block procedures performed well on distributed-memory

computers [12], [6].

Figure 3 shows the resulting s-step GMRES. To reduce the

overheads associated with MPK. we rely on two different step

sizes h and s for MPK and BOrth, respectively. By using

a smaller step size for MPK, we can control the overhead

associated with MPK and maintain the quality of the DD

preconditioner. The algorithm have three drawbacks. First, at

each step of MPK, each generated vector increasingly becomes

linearly dependent wrt. the previous basis vectors in that MPK
round. Mitigation techniques are the same as in �-GMRES,

namely choosing a different basis, but the step size is limited

in practice. Second, MPK reduces the communication latency

cost, but it introduces redundant storage and computation

among the neighboring processes. Furthermore, the total com-

munication volume could increase depending on the sparsity

pattern of the matrix A. Third, though several preconditioners

have been proposed for MPK [6], [7], it is still a challenge to

integrate preconditioning into MPK.

III. ALGORITHMIC VARIANTS

In this section, we describe two algorithmic variants of the

s-step and pipelined methods that are designed to improve

performance by combining the strengths of these two methods.

We also consider an option to reduce the computational

overhead associated with pipelining.

A. Avoiding all-reduces

In our previous studies with s-step methods [5], [6], [12],

[13], most performance improvements came from using the

block orthogonalization procedure. This is mainly because at

large scales, the solver’s parallel performance is often limited

by the all-reduces needed for orthogonalization, and not by

the neighborhood collective for SpMV.

In this paper, we focus on a variant of the s-step method

that relies on block orthogonalization to reduce the global

11201120

(�,t)-GMRES(A, M , b, t, �, m):
repeat
for j = 1, 1 + t, . . . ,m do

// Matrix Powers Kernel:
1. for k = 1, 2, . . . , t do
2. i := j + k − �t+ 1
3. MPI_Isend and MPI_Irecv for qj ’s 1-level ghost with neighbors

and then MPI_Wait
4. vj+k := AM−1vj+k−1

5. vj+k := (vj+k − Vi:j+k−1h1:i−1,i−1)/hi,i−1

6. end do
7. i := j + t− �t+ 1
8. if i > 0 then
9. MPI_Wait(tag = i)
10. for k = i, . . . , i+ t− 1 do
11. Update r1:k,k using R1:k−1

12. Generate h1:k,k−1

13. end for
// Block orthonormalization:

14. k := i+ t− 1
15. Qi:k := Vi:k −Q1:i−1R1:i−1,i:k

16. Qi:k := Qi:kR
−1
i:k,i:k

// change-of-basis to generate next starting vector:
17. vj+t := (vj+t − Vi:j+t−1h1:i−1,i−1)/hi,i−1

18. else
19. k := 0
20. end if
21. R1:j+t+1,j+1:j+t := [Q1:kVk+1:j+t]

TVj+1:j+t,
with MPI_Iallreduce(tag = j + 1)

end for

Fig. 4. Pipelined t-step GMRES, where � is the pipeline depth, t is the step
size, and m is the restart length.

communication cost but uses standard SpMV to generate the

Krylov vectors (i.e., h = 1). For the rest of the paper, we refer

to the resulting implementation as s-GMRES for simplicity.

This variant also allows us to use any preconditioner, which

is a great benefit in practice. This leads to an interesting

performance comparison of the two techniques, one to reduce

and the other to pipeline the all-reduces. Both approaches

generate each Krylov vector by calling SpMV (with sparse

neighborhood collectives) but then s-GMRES performs two

all-reduces to block-orthogonalize the s vectors at once, while

�-GMRES hides and pipelines the all-reduces.

s-GMRES addresses two of MPK’s trade-offs: the over-

heads associated with MPK, and the challenge to precondition

MPK. However, it could still suffer from numerical instability

due to the application of matrix powers without orthogonal-

ization. Hence, to maintain numerical stability, just as in �-
GMRES, we use the Newton basis [16], whose shifts are the

Ritz values computed at the first restart.

B. Pipelining block orthogonalization

s-GMRES in Section III-A only performs an all-reduce

every s steps. Despite use of a Newton basis, numerical

stability still limits the step size s (e.g., in our experiments,

s ≤ 10). Furthermore, the algorithm is still block synchronous.

To hide these synchronization points, we consider a combi-

nation of s-GMRES and �-GMRES. The extension not only

uses s-GMRES’ block orthogonalization, but also pipelines the

orthogonalization’s all-reduces. Figure 4 shows the resulting

pipelined s-step GMRES, where to distinguish from the step

SpMV
GEMV

GEMV

allreduce

P2P

(a) Pipelined(� = 3).

SpMV
GEMM

GEMV
allreduce

P2P
GEMM

(b) Pipelined t-step(� = 2, t = 2).

Fig. 5. Illustration of pipelined GMRES. Blocks colored in green, blue,
purple, and gray represent SpMV, computation of R, Orth, and all-reduce,
respectively. Blue and purple blocks of Pipelined t-step block-orthogonalize
t vectors, while those of Pipelined orthogonalize one vector at a time.

size used in s-GMRES, we use t to denote the step size in

this new (�, t)-GMRES. Instead of launching a nonblocking

all-reduce after generating each Krylov vector, this variant

does so after generating t basis vectors. After the all-reduce,

the algorithm block-orthogonalizes the t vectors all at once.

If each all-reduce takes longer than a single SpMV, this

variant allows us to hide the communication behind the block

generation of t orthonormal basis vectors, without needing

to increase the pipeline depth �. Figure 5 illustrates two

benefits of (�, t)-GMRES over �-GMRES. First, it improves

the intraprocess performance of orthogonalization by using

BLAS-3 instead of BLAS-2 kernels. Second, it does a factor

of t fewer global all-reduces.

Like �-GMRES, (�, t)-GMRES requires an extra t� iterations

at the end of each restart cycle to drain the pipeline. However,

we perform only the orthogonalization for these additional

iterations, while the orthogonalization is not performed for the

first t� iterations. Hence, just like in �-GMRES, (�, t)-GMRES’

main computational overhead comes from the change-of-basis

(Line 5 in Figure 4). On the other hand, in practice, the

maximum step size t that this variant can take may be smaller

than the step size, s, used in s-GMRES. This is because the

pipelined method often suffers from numerical instability when

used with a large pipeline depth (e.g., s = 10 and t = 5
with � = 2 in our experiments). Specifically, since (�, t)-
GMRES generates the Krylov vector without orthogonalizing

it against the t� previous vectors, for (�, t)-GMRES to be

stable, �-GMRES must be stable with the pipeline depth of

t�. Hence, (�, t)-GMRES trades off the s-GMRES’s benefits

of block orthogonalization in order to pipeline the global all-

reduces. We expect that at large scales, the latter will be the

performance bottleneck, thus making (�, t)-GMRES attractive.

C. Forming partial change-of-basis

(�, t)-GMRES in Section III-B orthogonalizes the basis

vectors using BLAS-3, and compared with �-GMRES in

Section II-B, it reduces the communication latency cost of the

orthogonalization by a factor of t. However, though it does

not require interprocess communication, the change-of-basis

is applied to the vectors V one vector at a time using BLAS-2

kernels (Line 5 in Figure 4).

Equation (1) holds for any matrix B of full column rank. To

11211121

reduce the computational overhead, we explore the change-of-

basis B that only applies partial orthogonalization of the basis

vectors Q to the Krylov vectors V . Since the main motivation

of the change-of-basis is to avoid the resulting vector vj+k

to become numerically linearly dependent to the previous

vectors, we will remove only the components of vj+k, which

have large magnitude. In other words, we will set the elements

of B, whose magnitude is less than a specified tolerance τ , to

be zero (e.g., in our experiments, τ = hi,i−1‖A‖210−3, where

‖A‖2 is approximated by the largest Ritz value compute at the

first restart). As the small elements are discarded, the value of

hi,i−1 used to normalize the Krylov vector is updated.

IV. IMPLEMENTATIONS

To compare the performance of different variants of GM-

RES on a distributed-memory computer with multicore CPUs,

we designed two implementations of each algorithm: one that

relies on the threaded computational kernels and nonblocking

MPI collectives, and one that is based on a shared-memory

runtime system to locally schedule both the computational

and communication tasks of the process. We chose these

two programming models considering the programability and

performance of our implementations. For example, as a solver

developer, we prefer that the progress of the non-blocking

collective is handled at the lower level of the software stack

(i.e., by MPI or runtime).

A. Implementation with QUARK dynamic scheduler

The effectiveness of a sequential task-based programming

model to exploit the compute power of the modern manycore

node architectures has been demonstrated [17], [18], [19], [20],

[21], [22]. To utilize this programming model, the programmer

sequentially inserts the tasks along with their data access types

(e.g., input or output). Then, the task dependencies are auto-

matically derived to execute the tasks in parallel, consistently

with their sequential execution. Hence, the programability of

the parallel code can be at about the same level as that of a

sequential code. At the same time, the task execution breaks

the synchronization points, allowing independent tasks from

different kernels to be executed at the same time. This may

lead to more efficient utilization of many cores and higher

performance than using the traditional threaded computational

kernels. This led to the recent adaptation of the programming

model by the OpenMP standard.

In this work, we used this task-based programming model to

execute our solver on a distributed-memory computer, relying

on a shared-memory runtime system to locally schedule both

the computational and communication tasks of the process

on shared-memory multicores. Since each runtime system

only handles the local tasks of the process, it does not

construct the global directed acyclic graph (DAG) of all the

processes, which often limits the parallel scalability of a

superscalar scheduler. For the runtime system, we focused on

QUARK [22], which was developed for executing the linear al-

gebra algorithms on a shared-memory multicore architectures.

Our choice is mainly due to our familiarity with the runtime

void QUARK CORE zspmv gather(sparse desc A, Complex64 t *g) {
Task *task = Task Init(quark, CORE zspmv gather quark, task flags);
Pack Arg(task, sizeof(sparse desc), &A, VALUE);
Pack Arg(task, sizeof(Complex64 t)*A.global m, g, NODEP);

// INPUT only for local “underlap” tiles to be sent
for (int k=0; k<A.send blocks[0]; k++)

Pack Arg(task, sizeof(Complex64 t)*A.mb,
&g[A.send blocks[k+1]], INPUT);

// OUTPUT only for non-local “ghost” tiles to be received
for (int k=0; k<A.recv blocks[0]; k++)

Pack Arg(task, sizeof(Complex64 t)*A.mb,
&g[A.recv blocks[k+1]], OUTPUT);

(a) QUARK wraper.

void CORE zspmv gather(int iter, sparse desc A, Complex64 t *g) {
for (p=0; p<A.num mpi; p++) { // TODO: access only neigbor processes

if (p != A.mpi id) then
int count = A.num send vecs[p];
if (count > 0) then

// prepare buffer for MPI_Isend
for (i=0; i<count; i++) // vector elements to be sent to p

send buffer[send+i] = g[A.send vecs[p][i]];
// start MPI_Isend
MPI Isend(&send buffer[send], count, MPI DOUBLE, p,

iter, MPI COMM WORLD, &(A.send[p][request id]));
send += count;

end if
// set up MPI_Irecv
. . .

for (p=0; p<A.num mpi; p++) do
if (p != A.mpi id) then

// wait for MPI_Isend
if (A.num send vecs[p] > 0)

MPI Wait(&(A.send[p][request id]), &status);
// wait for MPI_Irecv
. . .

(b) core subroutine.

Fig. 6. Communication task for SpMV’s point-to-point communication.

system, but QUARK provides some features that are useful for

our studies but not yet available, for example, in OpenMP. For

instance, for each process to exploit the thread-parallelism, its

matrix or vector operation is split into multiple tasks, where

each task works on block rows of the process-local dense

or sparse submatrices which are stored either in the column-

major format or in the compressed sparse row (CSR) format,

respectively. Hence, the task works on the data that may not

be contiguous in the memory. This violates the requirement

that the tasks in OpenMP work on the contiguous data blocks.

Another useful feature of QUARK is the “locality” tag. In

order to obtain a high-performance of the Krylov solver, the

computational tasks need to be scheduled on the cores that

are close to the required data. Using the locality tags, we

encourage QUARK to schedule the tasks on the cores that

are in the vicinity of the data. Another plausible approach is

to merge the computational kernels that work on the same data

into a single task. This also reduces the number of tasks and

the scheduling overhead of the small tasks appearing in the

sparse iterative solvers.

Our main motivation for using the runtime system is to

ensure our all-reduces overlap with other tasks. To accomplish

this, we wrap both the neighborhood communication needed

for SpMV (using MPI_Isend and MPI_Irecv, and then

11221122

MPI_Wait) and the global collective needed for Orth (using

MPI_Allreduce) in tasks. At each iteration, each process

inserts a single communication task before inserting the inde-

pendent computation tasks for SpMV or Orth to be executed on

multiple cores. We rely on MPI_THREAD_MULTIPLE sup-

port for the independent communication tasks to be executed

from different threads at the same time (e.g., the neighborhood

communication and the all-reduce, or the all-reduces from

different iterations, both in pipelined GMRES). Since these

tasks block and wait for the communication to complete, some

physical cores could be idle while the communication task

assigned to the core is waiting for the corresponding commu-

nication tasks to be executed by other processes. However, in

many cases, only a limited number of communication tasks are

being executed at a time (i.e., small pipelining depth, �), and

on a many-core system, the idle time may not be significant. To

reduce the idle time of the cores, QUARK allows us to set the

priorities of the tasks. Using the priority tags, we encourage

QUARK to schedule the tasks in a specific order such that the

corresponding communication tasks are scheduled by all the

processes around the same time, reducing the idle time but

still allowing an out-of-order execution of the tasks.

Figure 6 shows our QUARK wrapper, which defines the data

dependencies, and the core subroutine, which is executed when

all the data dependencies are satisfied, for the neighborhood

communication of SpMV. QUARK allows us to specify the

data dependencies through for-loops. For each process, this

communication task has the input dependencies to all the local

blocks of the input vector of SpMV, that are owned by this

process and contain the vector elements which need to be sent

to its neighboring processes. Then, the communication task

has the output dependencies to the non-local blocks of the

input vector, which contains the ghost elements for SpMV.

For each neighbor process, the core subroutine packs the

local vector elements, which need to be sent to the process,

into a communication buffer and launch a non-blocking send.

Similarly, the core subroutine launchs the non-blocking receive

to gather all the non-local vectors elements from the neighbors.

Then, it waits for the completion of the exchange, and expands

the received elements into the global input vector.

To overlap the neighborhood communication with the local

computation for SpMV, we split the local submatrix into two

parts: the interior that are only connected to the local elements

in the adjacency graph of A, and the local interface that

are connected to a non-local element. With this partition,

SpMV with the interior can be performed along with the

neighborhood communication. After the communication is

completed, SpMV on the interface is performed. To schedule

on nt physical cores, we split the interior submatrix into nt−1
parts, leaving one core for the communication. Unfortunately,

when the same partitioning is used for the orthogonalization,

this leads to load imbalance among the orthogonalization tasks

since the interface is often much smaller than the interior. To

reduce this load imbalance, we tried repartitioning the vectors

into nt parts of an equal size for the orthogonalization, but this

lead to data movement between the physical cores, slowing

iter = 0;
while iter < maxiters do

int stop iter = min(maxiters, iter + restart);
int restart i = stop iter - iter;
for (j = 0; iter<stop iter; j++, iter++) do

// neighborhood comm for SpMV
QUARK CORE zspmv gather(iter, A, G(0, 0));
for (i = 0; i < mt; i++)

QUARK CORE zspmv gemv(
// SpMV: Q(:, j+1) := A*Q(:, j)
i, A.mbi[i], A, G(0, 0), Q(i, j+1),
// GEMV: H(:, j) := Q(:, 0:j)’*Q(:, j+1)
j+1, Q(i, 0), ldq, T(i), ione);

// local accumulation and global reduce, H(1:j, j) :=
∑mt-1

k=0 T(k)
QUARK CORE zgeadd dist(

NoTrans, j+1, ione, 0, mt-1,
zone, T(0), ldh, zone, &H(0, j), ldh);

for (i = 0; i < mt; i++)
QUARK CORE zgemv dot(

NoTrans, A.mbi[i], j+1,
// GEMV: Q(:, j+1) -= Q(:, 1:j)*H(1:j, j)
zmone, Q(i, 0), ldq, &H(0, j), ione, zone, Q(i, j+1), ione
// DOT: T(i) := Q(i, j+1)’*Q(i, j+1)
T(i));

// local accumulation and global reduce, H(j+1, j) :=
∑mt-1

k=0 T(i)
QUARK CORE zgeadd dist(

NoTrans, 1, 1, 0, mt-1,
zone, T(0), ldt, zone, &H(j+1, j), ldh

for (i = 0; i < mt; i++)
QUARK CORE zlascal copy(

UpperLower, A.mbi[i], ione,
// scale: Q(:, j+1) /= H(j+1, j)
&H(j+1, j), Q(i, j+1), ldq,
// copy: G local := Q(:, j+1) for next SpMV
G local(i, 0), A.global m);

end for
// prepare to restart

end while

Fig. 7. GMRES implementation with QUARK, where mt is the number of
local blocks and mbi[i] is the i-th block size and the “parallel” for-loops allow
the execution of independent tasks. The communication tasks are identified
by the italic letters in the comments, neighborhood comm and global reduce.

down the iterative process. Alternatively, we could append

the interface to the last block of the interior. However, this

will leave one core idle during the orthogonalization because

the submatrix is partitioned into nt − 1 blocks for SpMV
(to leave one core for communication). For our experiments,

we did not repartition the vectors for Orth, hence, using the

same partitioning for SpMV and Orth, which obtained the best

performance in most cases.

Putting all these together, Figure 7 shows our QUARK

implementation of GMRES. They preserve the structure of the

sequential algorithm in Figure 1 and enable high productivity.

At each restart, there is an implicit synchronization to solve

the least-square problem, where we insert the explicit synchro-

nization to check for the convergence. This synchronization

also reduces the number of the tasks that QUARK manage,

reducing the scheduling overhead.

B. Implementation with MPI nonblocking communication

Our second implementation relies on the MPI’s nonblocking

point-to-point and all-reduce communication support, and the

threaded computational kernels (e.g., threaded MKL for sparse

and dense matrix operations). This MPI implementation is

almost identical to our QUARK implementation, except that

we directly call the core subroutines without the QUARK

wrappers (e.g., calling CORE_zspmv_gather instead of

11231123

QUARK_CORE_zspmv_gather of Figure 6). To provide

enough computation for the threaded kernels to exploit the

parallelism, we do not partition the local submatrices. The only

exception is for SpMV, where the submatrix is partitioned into

the interior and interface so that the neighborhood communi-

cation is hidden behind SpMV with the interior points.

Compared to the task-based model in Section IV-A, this

MPI-based implementation has trade-offs in terms of pro-

gramability. Clearly, the task-based model could introduce a

challenge to keep track of the task dependencies, especially

with the pipelined methods that have several independent

tasks from different phases of iteration.1 However, with the

task-based model, we do not have to worry about draining

the pipeline for orthogonalizing the last � basis vectors since

the orthogonalization will be scheduled at any time after the

corresponding all-reduce is completed (with a low priority).

V. PERFORMANCE RESULTS

We now study the solver performance on a distributed-

memory multicore CPUs. First in Sections V-A and V-B, we

discuss our experiment setups and benchmark the performance

of MPI used in our experiments. Then, in Section V-C, we

compare the performance of different solvers, using one thread

per process, and in Section V-D, we compare the performance

of our two different implementations of the solvers, using

multiple threads per process.

A. Experiment setup

We conducted our experiments on the Tsubame2 Com-

puter at the Tokyo Institute of Technology. Each of

its nodes features two six-core Intel Xeon CPUs, and

these nodes are connected by 80Gbps QDR InfiniBand.

We compiled our code using mpicc from MPICH

version 3.2 that implements MPI_Iallreduce using

TCP and IP-over-Infiniband. We configured MPICH with

--enable-threads=multiple and initialized the MPI

library using MPI_THREAD_MULTIPLE. We chose to use

MPICH mainly because of its MPI_Iallreduce’s capa-

bility to overlap the communication with the computation

(see Section V-B). For our computational tasks, we linked

our code with threaded MKL version XE2013.1.046 (setting

MKL_NUM_THREADS to be one for our QUARK implemen-

tation). Previous work used different matrices to study the

numerics and performance of the pipelined and s-step GMRES

separately. In this paper, we compare the performance of the

pipelined and s-step methods. We focus on five-point 2D

Laplace with square grids, nx×nx, which were used in many

studies including [2] and provide analyzable performance, but

we also provide a few results using 3D and other types of

matrices. We report the best performance among five runs.

Our MPI implementation can potentially utilize all the

cores unlike our QUARK implementation, where several cores

may be idle waiting for the communication tasks to be

scheduled by other processes. However, when we use our

1We plan to study the effects of the block sizes, as a tuning parameter, to
schedule these independent tasks on manycore systems.

#bytes tovrl[μsec] tpure[μsec] tCPU[μsec] overlap[%]
0 255.83 230.29 242.35 89.46
8 312.37 242.53 272.48 74.37

16 268.53 225.00 254.62 82.91
32 264.67 222.07 251.30 83.05
64 281.10 237.46 249.84 82.53
128 267.30 227.92 253.52 84.47
256 278.94 227.63 265.70 80.69

Fig. 8. Communication and computation overlap, np = 240, progress threads.

MPI implementation with the progress thread (by setting

MPICH_ASYNC_PROGRESS to be one), the performance of

our solver was significantly degraded if we did not leave one

spare core open for the progress thread.
It was also critical to bind each process to a set of

specific cores. For instance, when using one solver thread

per process, we bound each process to two unique cores.

In other cases, we bound each process to a socket with six

cores and launched five threads inside the process leaving one

core available for the progress thread. We also found that in

some cases (e.g., with a large pipeline depth), using a progress

thread could lower the solver performance. This could be

due to the fact that between each MPI_Iallreduce and

corresponding MPI_Wait, there are other MPI calls, like

MPI_Wait matching MPI_Isend or MPI_Irecv for SpMV
as well as MPI_Iallreduce still in-progress from the

previous iteration (these waits may allow MPI_Iallreduce
to advance without the progress thread). It was also critical to

bind the process to a set of specific cores for the QUARK

implementation. We disabled hwloc for QUARK and let OS

schedule the tasks on the cores that the process is bound to.
Since our focus in this paper is not on the MPI’s per-

formance, we focus on studying the solver performance

with a particular setup (when using MPI_Iallreduce, the

progress thread was always enabled for consistency). We plan

to extend our benchmark results in a future report.

B. Benchmarking non-blocking all-reduce
We have tested both MPI’s and solver’s performance using

various implementations, versions, and configurations of MPIs.

Due to the limited space, we only present results of MPICH

used in our experiments, that provided good pipelining perfor-

mance of MPI_Iallreduce on our testbed. Figure 8 tests

how well nonblocking all-reduce overlaps with computation,

using Intel MPI Benchmark (IMB). The time between a call

to MPI_Iallreduce immediately followed by a call to

MPI_Wait is measured by tpure – a purely communication-

bound execution. The computation time tCPU measures the

time taken by a repeated computation of a small in-cache

dense matrix-vector multiply that is supposed to take as

long as tpure but with the actual nonblocking communication

happening in the background. It is clear that tpure ≤ tCPU

and the equality holds only if there is no interference be-

tween the communication and computation. Total time to

finish the simultaneous communication and computation is

denoted by tovrl, and the percentage of overlap is reported as

(tpure + tCPU − tovrl)/min(tpure, tCPU). The benchmark shows

good overlaps of between 74 ∼ 89%.

11241124

#bytes 80 160 240 320 400 480 560 640
� calls MPI_Iallreduce followed by MPI_Waitall, progress threads
np = 60 4.62 4.86 5.55 6.02 6.10 6.83 6.62 6.45

120 4.22 4.81 6.32 5.98 6.43 6.76 7.11 6.48
� calls to MPI_Allreduce from nt threads/process, np = 20.
nt = 2 9.74 9.66 9.77 9.42 9.75 9.32 9.61 9.25

5 8.79 8.97 8.72 9.26 8.50 10.58 10.87 10.50
� calls to MPI_Iallreduce/MPI_Wait from nt threads/process, np = 20
nt = 2 9.86 10.21 9.81 9.96 9.77 10.08 9.97 9.90

5 8.66 9.23 8.11 9.31 9.79 11.14 12.59 11.93

Fig. 9. Pipeline results with pipeline depth � = 10 and process count np.

0 1 2 3 4 5 6 7
10

−3

10
−2

10
−1

10
0

Time (s)

R
el

at
iv

e
re

si
du

al
 n

or
m

No Preconditioner

0 1 2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

10
0
Block Jacobi Preconditioner

R
el

at
iv

e
re

si
du

al
 n

or
m

Time (s)

(� = 1)
(� = 2)
(� = 5)
(� = 2, τ = 10−5)
GMRES
(s=5)
(s=10)

Fig. 10. Convergence with respect to the iteration time for 2D Laplace,
nx = 512. Time was measured at each restart, identified by marker (m = 30).
All the solvers converged equivalently with respect to the restart count.

We next study if the pipelined all-reduces can over-

lap on each other either through multiple calls to

MPI_Iallreduce followed by MPI_Waitall or simul-

taneous calls to MPI_Allreduce from different OpenMP

threads. Each thread uses a unique communicator. Figure 9

shows the ratio of the time needed to execute 10 all-reduces

using the above two approaches over the time needed to

perform one all-reduce. Hence, the ratio of one indicates

the perfect overlap, while the ratio of 10 or greater means

no overlap. These results indicate that the recursive calls to

MPI_Iallreduce followed by MPI_Waitall achieve a

greater overlap, giving advantage to our MPI implementation

over our QUARK implementation, in terms of overlapping the

pipelined all-reduces with each other. We also tried launching

MPI_Iallreduce followed by MPI_Wait from different

threads, but we did not observe any improvement over launch-

ing MPI_Allreduce.

C. Comparing solver performance – pure MPI

We now study the performance of different solvers using

one thread per process (without using QUARK). Figure 10

shows the convergence results of different solvers. We found

that the solver often loses its numerical stability faster using a

larger pipeline depth � than using a larger step size s (e.g., due

to the loss of orthogonality among the basis vectors). For these

experiments, we only used 12 processes, and �-GMRES did

not improve the performance of GMRES. However, as we will

np = 120 np = 180 np = 240 np = 300
� block non block non block non block non
0 0.40 0.37 0.34 0.35
2 0.42 0.35 0.31 0.28 0.27 0.21 0.26 0.21
5 0.41 0.34 0.31 0.25 0.27 0.21 0.26 0.20

10 0.40 0.33 0.31 0.25 0.27 0.21 0.26 0.20

Fig. 11. Time in seconds of 20 restart-cycles of �-GMRES for 2D Laplace
(nx = 1024,m = 30) and process count np. “block” and “non” use blocking
and nonblocking all-reduces. With � = 0, standard GMRES is used.

show later, with a larger process count, we could stably use a

sufficiently large pipeline depth or step size to obtain a good

speedup (e.g., we needed s = 5 or � = 2 to obtain speedups,

but the solver was stable using s = 10 or � = 10). Though we

do not show the convergence for the remaining experiments,

all the solvers obtained an equivalent convergence. This is true

even with preconditioning since our s-GMRES communicates

for each SpMV and can use any preconditioner. The right plot

of Figure 10 used the block Jacobi preconditioner, where each

process applied the sparse approximate inverse of its local

submatrix.

Figure 11 shows the �-GMRES’ performance with dif-

ferent configurations. For comparison, we also show the

performance of the standard GMRES (i.e., � = 0). In the

table, under “block,” we replaced MPI_Iallreduce with

MPI_Allreduce to study the effects of overlap. Even with

the blocking all-reduce, �-GMRES improved the GMRES’ per-

formance because it only performs one all-reduce per iteration,

compared to two all-reduces performed by GMRES. Then,

using nonblocking all-reduce, the performance was further

improved by a factor of about 1.3×.

Figures 12(a) and 12(b) compare the performance of differ-

ent solvers. Even though �-GMRES performs extra computa-

tion, it performed better than GMRES when the all-reduces’

communication latency became significant with a large enough

number of processes. s-GMRES obtained speedups even on

a small number of processes since its block orthogonalization

improves the cache efficiency. Furthermore, (�, t)-GMRES got

speedups of up to 1.67× over �-GMRES due to use of block

orthogonalization. Using the same step size (i.e., s = t = 5),

(�, t)-GMRES also obtained speedups of up to 1.22× over s-

GMRES due to pipelining the all-reduces. It also got speedups

of up to 1.09× over s-GMRES with s = 10, where both

solvers synchronize after 10 iterations. We observed that as the

process count increased, the latency cost of an all-reduce, and

hence the speedup from pipelining the all-reduces, increased.

Figure 13 shows the similar performance results for solving

27-point 3D problems. Since the coefficient matrix has more

nonzeros per row and we used a smaller restart cycle, block

orthogonalization led to a smaller performance improvement,

compared to that for the 2D problems in Figure 12. At this

small scale, (�, t)-GMRES performed better than �-GMRES,

but pipelining the all-reduce did not improve the performance

of s-GMRES (the latency savings due to block orthogonaliza-

tion likely dominated). With a larger number of processes, we

expect (�, t)-GMRES to improve performance of s-GMRES.

As shown in Figure 14, we have also observed similar results

11251125

60 120 180 240 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
T

im
e

(s
)

Number of processes

GMRES
(� = 2)
(� = 5)
(� = 10)
(s=5)
(s=10)
(� = 2,t=5)
(� = 2,t=5,τ = 10−8)

(a) Time in seconds, six processes per node, one
thread per process.

60 120 180 240 300
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

S
pe

ed
up

Number of processes

(b) Speedup over GMRES on 10 nodes, six pro-
cesses per node, one thread per process.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
im

e
(s

)

Number of processes

MPI implementation

(� = 2)
GMRES
(s=10)

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
im

e
(s

)

Number of processes

QUARK implementation

(c) Performance of two different implementations,
one process per socket, five threads per process.

Fig. 12. Execution time and speedup of 20 restart cycles of GMRES(30) with 2D Laplace (nx = 1024).

number of processes
� s/t τ 60 120 180 240

GMRES
– – – 2.10 (1.00) 1.25 (1.00) 0.88 (1.00) 0.64 (1.00)
�-GMRES
2 – – 2.36 (0.89) 1.36 (0.92) 0.88 (1.00) 0.68 (1.00)
5 – – 2.32 (0.91) 1.27 (0.98) 0.84 (1.05) 0.65 (1.05)

10 – – 2.20 (0.95) 1.19 (1.05) 0.83 (1.06) 0.61 (1.11)
s-GMRES
– 5 – 1.85 (1.14) 1.06 (1.18) 0.74 (1.19) 0.49 (1.38)
– 10 – 1.75 (1.20) 1.04 (1.20) 0.70 (1.26) 0.47 (1.45)

(�, t)-GMRES
2 5 0.0 2.03 (1.03) 1.13 (1.11) 0.78 (1.13) 0.51 (1.33)
2 5 0.001 1.96 (1.07) 1.07 (1.17) 0.72 (1.22) 0.49 (1.39)

Fig. 13. Time in seconds for 20 restart-cycles and m = 20, with 27-point
3D Laplace (nx = 128). The numbers in parenthesis are the speedups over
GMRES with the same processor count.

n (M) nnz
n

time (�) (s) (�, t)
G3 Circuit 1.6 4.8 0.43 1.31 1.48 1.55
thermal2 1.2 7.0 0.43 1.54 1.60 1.65

atmosmodd 1.3 6.9 0.74 1.78 1.95 1.99

Fig. 14. Speedups over GMRES with (m, �, s, t) = (30, 2, 10, 5) on 240
processes from UF Sparse Matrix Collection, where “nnz

n
” is the average

number of nonzero entries per row, and “time” shows the time in seconds for
20 GMRES restart-cycles. The matrices were equilibrated using the largest
elements in each row and column, and distributed using METIS.

for the matrices from the University of Florida Sparse Matrix

Collection, showing (�, t)-GMRES improved the performance

of both �-GMRES and s-GMRES.

D. Comparison of two implementations – MPI+Threads

We now compare the performance of our two implementa-

tions: one using nonblocking MPI collectives, and the other

using QUARK. Figure 15 shows the solvers’ performance on

one node with different process / thread configurations. For

these experiments in the figure, we did not use �-GMRES

and we disabled progress threads. For the very tall and skinny

dense matrices appearing in the orthogonalization procedure,

the threaded MKL may not be optimized (e.g., DSYRK),

and our QUARK implementation may obtain higher kernel

performance, leading to the higher performance of the solver.

At the end, in most cases, the optimal performance was

np · nt

1 · 1 1 · 3 1 · 6 1 · 12 2 · 1 2 · 3 2 · 6 12 · 1
GMRES(m = 30)
mpi 15.6 9.6 9.2 6.7 7.6 5.5 4.8 4.6
task 16.3 10.7 7.6 6.3 7.8 5.5 4.8 4.6
s-GMRES(m = 30, s = 10)
mpi 11.5 7.3 7.4 7.1 5.9 3.8 3.8 2.4
task 10.3 6.9 4.1 3.6 5.2 3.5 2.4 2.1
GMRES(m = 60)
mpi 52.4 32.3 24.3 29.3 25.5 18.6 16.1 13.3
task 53.9 34.9 25.3 20.0 25.9 20.5 16.3 15.3
s-GMRES(m = 60, s = 10)
mpi 31.7 19.3 21.4 18.6 16.3 10.3 10.6 6.4
task 27.7 17.2 9.9 7.8 13.7 8.9 5.9 5.0

Fig. 15. Time in seconds for 10 restart-cycles with 2D Laplace (nx = 1024)
using different np × nt, where np and nt are the number of processes and
the number of threads per process, respectively. “mpi” and “task” denote our
MPI and QUARK implementations.

number of processes
� s/t τ 20 40 60 80 100

GMRES – – – 1.19 0.62 0.50 0.43 0.41
�-GMRES 2 – – 1.66 0.66 0.43 0.34 0.28

5 – – 1.59 0.63 0.43 0.32 0.27
10 – – 1.48 0.59 0.40 0.31 0.28

s-GMRES – 5 – 1.04 0.50 0.36 0.29 0.26
– 10 – 0.86 0.45 0.33 0.25 0.23

(�, t)-GMRES 2 5 0.0 1.22 0.52 0.35 0.27 0.23
2 5 0.001 1.10 0.49 0.33 0.26 0.23

Fig. 16. Time in seconds for twenty restart cycles and m = 20, 2D Laplace
(nx = 1024), one process per socket, five thread per process.

obtained using all the cores of the node with one process either

per socket or per core. We also see that even on one node, s-

GMRES obtained good speedups over standard GMRES.

Figure 12(c) compares the parallel scaling of our two

implementations. With a relatively small number of processes,

our QUARK implementation could utilize the cores more

effectively, obtaining higher performance than our MPI im-

plementation (both in Figures 12 and 16). However, with a

larger number of processes, our MPI implementation seems

to gain more advantage. This may be because QUARK is

not scheduling the communication tasks at the earliest time,

or cannot effectively pipeline the all-reduces (see Table 9).

Finally, Figure 16 compares the solver performance using our

11261126

MPI implementation with multiple threads per process. As

before, (�, t)-GMRES obtained the speedups of up to 1.34×
over �-GMRES through block orthogonalization. By pipelining

the all-reduces, (�, t)-GMRES also obtained the speedups of

up to 1.12× or 1.02× over s-GMRES with s = 5 or 10,

respectively.

VI. CONCLUSION

We began this work by comparing the performance of

pipelined �-GMRES and s-step s-GMRES on a distributed-

memory computer. We implemented the solvers in two dif-

ferent ways. The first way builds on a threaded BLAS and

LAPACK libraries and nonblocking MPI collectives. The

second uses the QUARK shared-memory run-time system to

schedule computational and communication tasks of each MPI

process. We also developed a new algorithm, pipelined s-

step (�, t)-GMRES, that combines the strengths of the above

two methods. It uses fewer global all-reduces than standard

or �-GMRES, by applying the same block orthogonalization

approach as s-GMRES. In addition, like �-GMRES, it overlaps

those all-reduces with useful work, thus making it less syn-

chronous than s-GMRES. In our experiments, (�, t)-GMRES

performed up to 1.67× better than �-GMRES, thanks to the

use of block orthogonalization. Thanks to overlapping the

all-reduces with useful work, (�, t)-GMRES performed up to

1.22× better than s-GMRES when the same step size is used

(i.e., t = s), and 1.09× better when the total pipeline depth

is equal to the step size (i.e., �t = s).

The performance of these solvers depends on many factors,

including the hardware, the underlying software libraries, and

the configurations used to run the solver. In future work, we

plan more extensive experiments in order to understand these

factors better. These experiments will include running on a

hybrid CPU/GPU cluster, where we have access to the source

code of the optimized GPU kernels. We also plan to explore

other task-parallel run-time systems, as well as working with

OpenMPI, where we have a close collaboration with the

developers. We are also looking for another opportunity to run

our solvers at a larger scale (e.g., through XSEDE or ECP).

Though in our experiments, the performance of �-GMRES was

lower than that of s-GMRES, we expect the pipelined variant

to perform better at larger scales. We have observed that �-
GMRES can lose its numerical stability when used with a

large pipeline depth and restart cycles. We are investigating

techniques to improve the numerical stability of the solver

(e.g., reorthogonalization). Also, though the performance may

not be limited by the point-to-point communication, we plan to

integrate an option for (�, t)-GMRES to use MPK. Our code is

currently maintained in a private Bitbucket repository. We plan

to release implementations of some of these solvers through

the Trilinos (trilinos.org) project.

ACKNOWLEDGMENTS

We thank Xi Luo at the University of Tennessee for helpful

discussions on the non-blocking all-reduce communication.

This research was supported in part by the U.S. Department

of Energy Office of Science under Award Numbers DE-

FG0213ER26137 and DE-SC0010042, and the U.S. National

Science Foundation under Award Number 1339822. Sandia

National Laboratories is a multi-mission laboratory managed

and operated by Sandia Corporation, a wholly owned sub-

sidiary of Lockheed Martin Corporation, for the U.S. Depart-

ment of Energys National Nuclear Security Administration

under contract DE-AC04-94AL85000.

REFERENCES

[1] M. Hoemmen, Communication-avoiding Krylov subspace methods,
Ph.D. thesis, EECS Dep’t, Univ. of Calif., Berkeley (2010).

[2] P. Ghysels, T. Ashby, K. Meerbergen, W. Vanroose, Hiding global
communication latency in the GMRES algorithm on massively parallel
machines, SIAM J. Sci. Comput. 35 (2013) C48–C71.

[3] Y. Saad, M. Schultz, GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7
(1986) 856–869.

[4] A. YarKhan, J. Kurzak, J. Dongarra, QUARK users’ guide: QUeueing
And Runtime for Kernels, Tech. Rep. ICL-UT-11-02, Univ. of Tenn.,
Innovative Computing Laboratory (2011).

[5] M. Mohiyuddin, M. Hoemmen, J. Demmel, K. Yelick, Minimizing
communication in sparse matrix solvers, in: Proc. of the Conf. on High
Perf. Comput. Networking, Storage and Analysis (SC), 2009, pp. 36:1–
36:12.

[6] I. Yamazaki, et al., Domain decomposition preconditioners for
communication-avoiding Krylov methods on hybrid CPU/GPU cluster,
in: Proc. of the Conf. on High Perf. Comput. Networking, Storage and
Analysis (SC), 2014, pp. 933–944.

[7] L. Grigori, S. Moufawad, Communication avoiding ILU0 preconditioner,
SIAM J. Sci. Comput. 37 (2015) C217–C246.

[8] H. Morgan, M. G. Knepley, P. Sanan, L. R. Scott, A stochastic perfor-
mance model for pipelined Krylov methods, CoRR abs/1602.04873.

[9] J. van Rosendale, Minimizing inner product data dependence in con-
jugate gradient iteration, in: IEEE Int’l Conf. for Par. Proc., 1983, pp.
44–46.

[10] G. Ballard, et al., Communication lower bounds and optimal algorithms
for numerical linear algebra, Acta Numerica 23 (2014) 1–155.

[11] J. Demmel, L. Grigori, M. Hoemmen, J. Langou, Communication-
optimal parallel and sequential QR and LU factorizations, SIAM J. Sci.
Comput. 34 (2012) A206–A239.

[12] I. Yamazaki, K. Wu, A communication-avoiding thick-restart Lanczos
method on a distributed-memory system, in: Workshop on Algorithms
and Programming Tools for Next-Gen. High-Perf. Scientific Software
(HPCC), 2011, pp. 345–354.

[13] I. Yamazaki, H. Anzt, S. Tomov, M. Hoemmen, J. Dongarra, Improving
the performance of CA-GMRES on multicores with multiple GPUs, in:
IEEE Int’l Par. and Dist. Proc. Symposium (IPDPS), 2014, pp. 382–391.

[14] G. Stewart, Block Gram-Schmidt orthogonalization, SIAM J. Sci. Com-
put. 31 (2007) 761–775.

[15] A. Stathopoulos, K. Wu, A block orthogonalization procedure with
constant synchronization requirements, SIAM J. Sci. Comput. 23 (2002)
2165–2182.

[16] Z. Bai, D. Hu, L. Reichel, A Newton basis GMRES implementation,
IMA Journal of Numerical Analysis 14 (1994) 563–581.

[17] J. M. Pérez, P. Bellens, R. M. Badia, J. Labarta, CellSs: Making it
easier to program the Cell Broadband Engine processor, IBM Journal
of Research and Development 51 (5) (2007) 593–604.

[18] R. M. Badia, et al., Parallelizing dense and banded linear algebra
libraries using SMPSs, Concurr. Comput. 21 (18) (2009) 2438–2456.

[19] A. Duran, et al., OMPSS: A proposal for programming heterogeneous
multi-core architectures, Parallel Processing Letters 21 (2011) 173–193.

[20] C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier, StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures,
Concurr. Comput. 23 (2011) 187–198.

[21] M. Tillenius, SuperGlue: A shared memory framework using data
versioning for dependency-aware task-based parallelization, SIAM J.
Sci. Comput. 37 (6) (2015) C617–C642.

[22] A. YarKhan, Dynamic task execution on shared and distributed memory
architectures, Ph.D. thesis, Univ. of Tenn. (2012).

11271127

