Optimizing Performance and Reliability in Distributed Computing
Systems Through Wide Spectrum Storage

James S. Planké Micah Becké

Jack Dongarrady Rich Wolski®

Henri Casanova{) *

Abstract

In this paper, we provide an overview of Logistical
Runtime System (LoRS). LoRS is an integrated en-
semble of tools and services that aggregate primitive
(best effort, faulty) storage allocations to obtain strong
properties such as capacity, performance, reliability, that
Grid applications desire. The paper focuses on the de-
sign and implementation of LoRS, as well as the storage
scheduling decisions that LoRS must make.

1 Introduction

Over the past two decades the exponential growth in
available computing resources has inspired and embold-
ened evangelists within the research community to tout
the revolutionary potential of high performance dis-
tributed computing. The idea of an increasingly rich
and rapidly spreading resource fabric, replete with high
bandwidth network links, high performance processing,
and massive storage, has been a powerful stimulus to
the development of advanced distributed infrastructures
— most notably “the Grid” [12] — for advanced scientific
applications. Conventional approaches [11, 15, 19] to
building a Grid assume an existing fabric layer of net-
working, storage and computational resources [13] on
top of which wide area systems are built, in the tradi-
tion of metacomputing [22]. In this context what distin-
guishes our research program in Logistical Computing
and Internetworking (LoCI), and the work on Logistical
Networking [5, 18] at its core, is our insistence that the
Grid fabric itself must be rethought and rearchitected for
performance, flexibility and scalability. Our guides in
that work are two of the most enduring examples of suc-
cessful system architecture: the Internet and the Unix

* & Department of Computer Science, University of Tennessee. ©
Department of Computer Science, University of California at Santa
Barbara. <) Department of Computer Science, University of Ten-
nessee. University of California at San Diego. This material is
based upon work supported by the National Science Foundation under
grants ACI-0204007, EIA-0224441, ANI-0222945, ANI-9980203,
EIA-9972889, and EIA-9975015, and the Department of Energy un-
der grant DE-FC02-01ER25465.

file system.

Logistical Networking, the core of our proposal,
promotes an unconventional model of network storage
management because it takes the view that storage can
be used to augment data transmission as part of a unified
network resource framework, rather than simply being a
network-attached resource. The adjective “logistical” is
meant to evoke an analogy with military and industrial
networks for the movement of material which requires
the coscheduling of long haul transportation, storage de-
pots and local transportation as coordinate elements of a
single infrastructure.

We have designed and implemented a basic mecha-
nism, called the Internet Backplane Protocol (IBP) [18],
that makes it possible to create a storage fabric fulfill-
ing these conditions, and we have used this technology
to achieve results that we believe are compelling. But
such a storage fabric, while essential, is only a first step
toward providing an adequate foundation for the data
logistics of Grid applications. It is clear that large sci-
entific simulations and other advanced applications fre-
quently require storage services that provide complex
functionality with very strong properties, for example
huge capacity, high reliability, guaranteed access speed,
and indefinite duration. However, IBP be design is too
primitive to be used easily in such a way.

Our work on the design of Logistical Networking has
been “from the bottom up,” revolving around the con-
cept of a Network Storage Stack (Figure 1) . The de-
vice itself is a physical layer, and the operating system
models a data access layer on top of that. IBP imple-
ments an storage network layer, providing a general, in-
teroperable view of scalable “best effort” network stor-
age. On top of IBP we have built the exNode, a data
structure to aggregate storage allocations and represent
complex configurations of data scattered throughout the
network. Having reached this point, we have at our dis-
posal a powerful set of tools for implementing storage
allocation and data scheduling decisions. The important
question is how such decisions are made.

In this paper, we provide an overview of Logistical
Runtime System (LoRS). LoRS is an integrated ensem-
ble of tools and services that aggregate primitive IBP

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

storage allocations to obtain the strong properties de-
scribed above that Grid applications desire. There are
two facets to LoRS research and development. The first
focuses on software infrastructure. Techniques for ag-
gregating storage (caching, striping, replicating, etc) are
well-known from the arenas of databases, operating sys-
tems and parallel programming. We have built LoRS
based on these techniques, and will detail the design de-
cisions that we have made.

The second facet answers the following question:
Can we effectively aggregate an imperfectly character-
ized collection of network storage resources in such
as way as to make strong guarantees of their com-
bined performance to higher-level applications? Typ-
ically, work on resource aggregation assumes that the
resources available are very restricted, for example the
disks installed on a specific RAID storage system, or
a file cache residing on an end-user’s system in a local
area network. As such, performance models and poli-
cies have rather strong guarantees about the properties
of the components. Because IBP models global stor-
age resource interoperably, decisions regarding choice
of storage resources (in other words, storage schedul-
ing) can make use of a potentially huge, unstructured
pool of storage resources. Obtaining particular aggre-
gate characteristics of subsets of this pool means work-
ing backwards to determine the necessary characteris-
tics of the individual storage resources used. Apply-
ing optimal scheduling algorithms to the entire set of
globally available storage resources is likely to be in-
tractable, so we focus instead on restricting the scope of
resources considered and applying algorithms based on
a mix of theory and experience, much as has been the
case when implementing global routing in the Internet.

We believe that the success of this work has created
a technology that gives Grid application developers un-
paralleled power to manage data and application state in
the wide area, using a shared storage resource fabric that
can be massively provisioned for that purpose.

2 Storage Fabric for the Grid: The
Network Storage Stack

The idea of the “Grid fabric layer,” which we also re-
fer to as the “resource fabric,” is a product of the effort
of today’s Grid architects to provide a blueprint and ra-
tionale for the Grid’s overall design concept [13]. Seen
as analogous to the Link layer of the Internet protocol
stack, the Grid fabric contains all the diverse network-
ing, computing and storage resources that serve as the
underlying foundation for the Grid edifice. The Grid
builds on the resource fabric layer just as the IP network
builds on diverse Link layer resources. However, unlike

Applications

The Logistial Runtime System (LoRS)
Storage aggregation: (Replication, striping, coding, etc).

Logistical networking Advanced scheduling.

The exNode

A network data structure for
aggregating network storage

The L—bone

Storage resource discovery
and proximity resolution.

The Internet Backplane Protocol (IBP)

Allocation and management of storage on network storage depots.
Network storage depot management.

Figure 1: The Network Storage Stack

the architects of the network stack, who make a science
and an art of building thin layers at the bottom of the
stack, the current architecture of the Grid assumes that
the Grid fabric consists of complex systems with failure
modes and performance characteristics that are difficult
to model and predict. In the case of storage, this means
using reliable, high performance systems with redun-
dancy (e.g. RAID) and caching implemented in a single
network, and exporting a file or database interface.

However, the end-to-end argument in network-
ing [21], which applies also to network storage [4], tells
us that building strong properties and high level abstrac-
tions into local systems does not assure these same prop-
erties in the wide area: global management is neces-
sary. When global management is needed, local man-
agement can be either wasteful or even counterproduc-
tive. Similarly, the experience of distributed system
builders shows that network resources must be treated
in an inherently different manner from local resources;
although a uniform model of resources may exist that
spans local and wide-area settings, a uniform method of
usage will not [24]. The prevailing approach to Grid ar-
chitecture accepts file and database abstractions as the
fundamental models for storage in the resource fabric,
and therefore must live with the problems this generates.

For our work in Logistical Networking we have de-
fined a different basic abstraction for the storage re-
source fabric and are in the process of building a Net-
work Storage Stack, diagrammed in Figure 1. Note that
this structure jettisons the well-known methods of us-
age developed for local-area storage, viz. file systems,
databases, VM mapping. This seemingly radical choice
was determined by the desire to create a bottom-up, lay-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

ered design for the network storage stack that adheres to
the same the end-to-end principles used in the design of
the Internet.

2.1 IBP: The Internet Backplane Protocol

The lowest level above basic devices and operating sys-
tems is the Internet Backplane Protocol (IBP). IBP is
a very basic mechanism for clients to allocate and use
storage located at storage depots on the network. The
goal of IBP is network transparency, i.e. it comes as
close as it possibly can to sharing bare storage on the
network. To achieve such transparency it supplies an
abstraction of access layer resources (i.e. storage ser-
vices at the local level) that does at least the following
two things:

e Exposes underlying storage resources in order to
maximize freedom at higher levels.

e Enables scalable Internet-style resource sharing.

This higher level of abstraction allows a uniform IBP
model to be applied to storage resources globally, which
is essential to creating the most important difference be-
tween access layer block storage and IBP byte array ser-
vice: Any participant in an IBP network can make use of
any access layer storage resource in the network regard-
less of who owns it. The use of IP networking to access
IBP storage resources creates a global storage service.

Whatever the strengths of this application of the IP
paradigm, however, it leads directly to two problems.
First, in the case of storage, the chronic vulnerability of
IP networks to Denial of Use (DoU) attacks is greatly
amplified. The free sharing of communication within a
routed IP network leaves every local network open to be-
ing overwhelmed by traffic from the wide area network,
and consequently open to the unfortunate possibility of
DoU from the network. While DoU attacks in the In-
ternet can be detected and corrected, they cannot be ef-
fectively avoided. Yet this problem is not debilitating
for two reasons: on the one hand, each datagram sent
over a link uses only a tiny portion of the capacity of
that link, so that DoU attacks require constant sending
from multiple sources; on the other hand, monopoliz-
ing remote communication resources cannot profit the
attacker in any way, it can only harm the victim. Un-
fortunately neither of these factors holds true for access
layer storage resources. Once a data block is written to a
storage medium, it occupies that portion of the medium
until it is deallocated, so no constant sending is required.
Moreover it is clear that monopolizing remote storage
resources can be very profitable for an attacker and his
applications.

Second, a problem with sharing storage network-
style is that the usual definition of a storage service is

based on processor-attached storage, and so it includes
strong semantics (near-perfect reliability and availabil-
ity) that are difficult to implement in the wide area net-
work. Even in “storage area” or local area networks,
these strong semantics can be difficult to implement and
are a common cause of error conditions. When extended
to the wide area, it becomes impossible to support such
strong guarantees for storage access. We have addressed
both of these issues through special characteristics of the
way IBP allocates storage:

e Allocations of storage in IBP can be time limited.
When the lease on an allocation expires, the storage
resource can be reused and all data structures asso-
ciated with it can be deleted. An IBP allocation
can be refused by a storage resource in response
to over-allocation, much as routers can drop pack-
ets, and such “admission decisions” can be based
on both size and duration. Forcing time limits puts
transience into storage allocation, giving it some of
the fluidity of datagram delivery.

e The semantics of IBP storage allocation are weaker
than the typical storage service. Chosen to model
storage accessed over the network, it is assumed
that an IBP storage resource can be transiently un-
available. Since the user of remote storage re-
sources is depending on so many uncontrolled re-
mote variables, it may necessary to assume that
storage can be permanently lost. Thus, IBP is
a “best effort” storage service. To encourage
the sharing of idle resources, IBP even supports
“volatile” storage allocation semantics, where al-
located storage can be revoked at any time. In all
cases such weak semantics mean that the level of
service must be characterized statistically.

IBP storage resources are managed by “depots,” or
servers, on which clients perform remote storage opera-
tions. As shown in the table below, the IBP client calls
fall into three different groups:

Storage Management
IBP.allocate (), IBP_-manage ()
Data Transfer
IBP_load (), IBP_store ()
IBP_copy (), IBP_mcopy ()
Depot Management
IBP_status ()

As already mentioned, the allocation function is the
most important element. IBP_.allocate () is used
to allocate a byte array at an IBP depot, specifying the
size, duration (permanent or time limited) and other at-
tributes. A chief design feature is the use of text-based

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

capabilities (cryptographically secure passwords). A
successful allocation returns a set of three capabilities:
one for reading, one for writing, and one for manage-
ment of the allocated byte array. A more detailed ac-
count of the API and its other functions, as well as a
description of the status of the current software the im-
plements that IBP client, servers, and protocol is avail-
able at http://loci.cs.utk.edu.

2.2 The exNode

In order to create interoperable services based on ag-
gregate IBP storage resources a standard container is
needed for the creation and exchange of complex ag-
gregate structures. We view the exNode as the first and
most important, but not necessarily the only such data
structure.

In our exposed-resource paradigm, implementing ab-
stractions with strong properties — reliability, fast ac-
cess, unbounded allocation, unbounded duration, etc. —
involves creating a construct at a higher layer that ag-
gregates more primitive IBP byte-arrays below it, often
distributed at multiple locations. For example, caching
requires that data be held in a home site, but tempo-
rary copies are made at various remote sites. Similarly,
replication requires that multiple copies of data exist in
various locations for purposes of performance and fault-
tolerance. More advanced logistical applications require
that data be explicitly routed through the network, and
thus may have many “homes” throughout their lifetime.

IBP Depots

The Network

\ Local System
Capabilities
\

LRI
exNode k%‘

. |
inode | ;\ } Kernel

User space

Block addresses

Disk
Blocks

Figure 2: The exNode in comparison to the Unix inode

To apply the principle of aggregation to exposed stor-
age services, however, it is necessary fo maintain state
that represents such an aggregation of storage alloca-
tions, just as sequence numbers and timers are main-
tained to keep track of the state of a TCP session. For-
tunately there is a traditional, well-understood model to
follow in representing the state of aggregate storage al-

locations. In the Unix file system, the data structure used
to implement aggregation of underlying disk blocks is
the inode (intermediate node). Under Unix, a file is im-
plemented as a tree of disk blocks with data blocks at
the leaves. The intermediate nodes of this tree are the
inodes, which are themselves stored on disk. The Unix
inode implements only the aggregation of disk blocks
within a single disk volume to create large files; other
strong properties are sometimes implemented through
aggregation at a lower level (e.g. RAID [7]) or through
modifications to the file system or additional software
layers that make redundant allocations and maintain ad-
ditional state (e.g. AFS [16], HPSS [25]).

Following the example of the inode, we have chosen
to implement a single generalized data structure, which
we call an external node, or exNode, in order to man-
age aggregate allocations that can be used in implement-
ing network storage with many different strong seman-
tic properties. Rather than aggregating blocks on a sin-
gle disk volume, the exNode aggregates buffers in IBP
depots to form something like a file, with the buffers
acting as disk blocks. Two major differences between
exNodes and inodes are that the IBP buffers may be of
any size, and the extents may overlap and be replicated.
In the present context, the key point about the design of
the exNode is that it allows us to create storage abstrac-
tions with stronger properties, such as a network file,
which can be layered over IBP-based storage in a way
that is completely consistent with the exposed resource
approach.

Since our intent is to use the exNode file abstraction
in a number of different applications, we have chosen to
express the exNode concretely as an encoding of storage
resources (e.g. IBP capabilities) and associated meta-
data in XML. Like IBP capabilities, these serializations
may be passed from client to client, allowing a great de-
gree of flexibility and sharing of network storage. If the
exNode is placed in a directory, the file it implements
can be imbedded in a namespace. But if the exNode is
sent as a mail attachment, there need not be a canonical
location for it. The use of the exNode by varying ap-
plications will provide interoperability similar to being
attached to the same network file system. The exNode
metadata must be capable of expressing at least the fol-
lowing relationships between the file it implements and
the storage resources that constitute the data component
of the file’s state: (1) The portion of the file extent im-
plemented by a particular resource (starting offset and
ending offset in bytes), (2) the service attributes of each
constituent storage resource (e.g. reliability and perfor-
mance metrics, duration), and (3) the total set of storage
resources which implement the file and the aggregating
function (e.g. simple union, parity storage scheme).

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

2.2.1 The L-Bone

The L-Bone (Logistical Backbone) is a distributed run-
time layer that allows clients to perform IBP depot dis-
covery. IBP depots register themselves with the L-Bone,
and clients may then query the L-Bone for depots that
have various characteristics, including minimum storage
capacity and duration requirements, and basic proximity
requirements. Once the client has a list of IBP depots,
it may then request that the L-Bone use the Network
Weather Service (NWS) [26] to order those depots ac-
cording to bandwidth predictions using live networking
data. Thus, while IBP gives clients access to remote
storage resources, it has no features to aid the client in
figuring out which storage resources to employ. The L-
Bone’s job is to provide clients with those features.
Currently, the L-Bone is written on top of LDAP, and
supports the functionalities described above. Since it
is based on LDAP, L-Bone functionality could also be
provided by other similar services, such as the Globus
Metadirectory Service (MDS) [8], and indeed we an-
ticipate MDS will provide users with information about
IBP resources as those resources become more widely
deployed and more heavily provisioned. The L-Bone
is currently composed of 143 depots at locations in
the United States, Europe, Asia, and Australia, serv-
ing over ten terabytes of network storage. This num-
ber will continue to grow as more users participate in
our projects. On the basis of ongoing collaborations be-
tween the PI’s and various segments of the Grid commu-
nity, we anticipate broad deployment and heavy provi-
sioning of an IBP-based storage resource fabric across
Planet Lab, ESNET, Internet2, and the PACI commu-
nity. L-Bone (or MDS) services will provide basic in-
formation services for this resource fabric. For the L-
Bone API, and its up-to-date composition, see http:
//loci.cs.utk.edu/lbone.

3 The Logistical Runtime System

Our work with IBP has demonstrated conclusively that
when applications can allocate and use time-limited,
secure storage from network storage depots, they can
dramatically improve their performance and functional-
ity [10, 6, 1, 9, 2]. These demonstrations have validated
our research agenda, and have spurred us to continue
research in this arena. Each of these applications, how-
ever, was carefully programmed to implement the cus-
tomized storage management functions it needed. Taken
as a whole, they both demonstrate the need for, and mo-
tivate the design of higher level tools, abstractions and
services for network storage.

We term this combination of tools, abstractions, and
methodologies with a common, high-performance in-

frastructure for implementing them the Logistical Run-
time System (LoRS). Our goal in developing LoRS is to
ease the programming burden associated with building
Grid applications by encapsulating the strategies that are
necessary to implement useful storage functions (e.g.
replication, caching, aggregation) within a set of run-
time system services. At the same time, the storage ser-
vice architecture must be extensible so that new abstrac-
tions may be incorporated easily. As such, LoRS will
serve as a mechanism for generalizing the customized
storage strategies that many Grid applications now im-
plement and re-implement on a case-by-case basis.

The importance of this generalization capability can-
not be overstated for the Grid. At present, most Grid ap-
plications are customized, one-time-only solutions that
are difficult to develop. While systems such as the Grid
Information System [8] are attempting to generalize in-
formation management functions, we know of no other
effort that is focusing on Grid storage abstractions. The
LoRS will serve as a model for and a focal point for this
important aspect of high-performance distributed com-
puting.

3.1 LoRS Tools

A simple, yet useful part of the Logistical Runtime Sys-
tem is a set of tools that make it easy to employ and
aggregate network storage in the form of IBP depots in
robust and powerful ways. Again, these tools build on
the lower levels of the network storage stack (Figure 1):
IBP is the basic storage substrate, serving time-limited
storage buffers to its clients. The L-Bone is employed to
find IBP depots matching various properties (size, dura-
tion, network proximity), and to do live proximity detec-
tion measurements using the Network Weather Service.
The exNode is the data structure for storing data, that
may be serialized with XML so that it may be passed
around the network.

The tools are as follows:

LoRS_upload: This tool uploads a local file into the
network and returns an exNode for the upload. This up-
load may be parameterized in a variety of ways. For
example, the user may partition the file into multiple
blocks (i.e. stripe the file) and these blocks may be repli-
cated on multiple IBP servers for fault-tolerance and/or
proximity reasons. Moreover, the user may specify
proximity metrics for the upload, so the blocks have a
certain network location.

LoRS_download: This takes an exNode as input,
and downloads the file that it represents into a local
file. This involves coalescing the replicated fragments
of the file, and must deal with the fact that some frag-
ments may be closer to the client than others, and some
may not be available (due to time limits, volatility, and

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

standard network failures). LoRS_download may only
download portions of the file, and if desired, it can oper-
ate in a streaming fashion, so that the client only has to
consume small, discrete portions at a time.

LoRS _refresh: This takes an exNode as input, and
updates time limits of the IBP buffers that compose the
file.

LoRS_augment: This takes an exNode as input, adds
more replicas to it (or to parts of it), and returns an up-
dated exNode. Like LoRS _upload, these replicas may
have a specified network proximity.

LoRS_trim: This takes an exNode, deletes specified
fragments, and returns a new exNode. These fragments
may be specified individually, or they may be speci-
fied to be those that represent expired IBP allocations.
LoRS_augment and LoRS_trim may be combined to
effect a routing of a file from one network location to
another — first it is augmented so that it has replicas
near the desired location, then it is trimmed so that the
old replicas are deleted.

The LoRS tools are much more powerful as tools
than IBP capabilities, since they allow users to aggregate
storage units in network storage depots. However, the
tools have two basic limitations. First, more complex
applications require complex interactions between the
data represented by exNodes. As such, simple tools will
not be enough. Second, although the tools have been
designed so that they may encompass a variety of aggre-
gation needs, the actual algorithms, abstractions, mech-
anisms and policies needed to implement these types of
aggregation have been left unspecified. A large amount
of our research focuses on these algorithms, abstrac-
tions, mechanisms, and policies. We describe this re-
search in the next section.

3.2 LoRS Algorithms

Algorithms for aggregating storage are straightforward,
and have seen use in database systems, operating sys-
tems, parallel programming systems and checkpointing
sytems. The algorithms that we plan to implement as
methods for aggregation in the LoRS tools and services
are:

e Capacity: This involves simply aggregating stor-
age resources to allow users to store files that are
bigger than any one storage depot.

e Caching: This involves placing temporary copies
of data near anticipated downloaders.

e Striping: This involves breaking up logical data
units (e.g. files) into blocks, and putting the blocks
in separate locations so that they may be simul-
taneously downloaded, either by one downloading
client, or multiple downloading clients.

e Replication: Replication is like caching, except
there is no notion of a “home” copy and a “tem-
porary” copy. The intent of replication is either to
have replicas near downloading clients for perfor-
mance, or to be able to tolerate server/network fail-
ures, since clients have a choice of servers from
which to download [3]. Obviously, replication can
be done on whole data files, or on blocks of data
files.

e Coding: When files are broken into blocks and
striped across multiple servers, coding blocks may
be calculated from the data blocks, and then used
to recover lost blocks following a failure. Recov-
ery involves calculating the contents of the lost
block(s) from the contents of the extant blocks and
the coding blocks. Standard coding methods are
parity [7, 14] which involves only exclusive-or’s of
data blocks, and Reed-Solomon coding [17], which
can achieve the same level of fault-tolerance with
fewer coding blocks.

e Logistical Routing: When data needs to move
from network location to another, the staging of
this data may be done explicitly for optimal control
of performance. The power of Logistical Routing
has been shown in a mail attachment routing appli-
cation [10] and in a low-level networking demon-
stration [23].

3.3 LoRS Abstractions

The simplest storage abstraction is one that is based on
a specific homogeneous physical resource, resulting in
predictable access characteristics. For example, con-
sider a conventional file system built on a specific disk
volume and attached to the I/O bus of one system. The
speed, reliability and capacity of each file are functions
of the characteristics of the disk and the system to which
it is attached, which, by and large, is straightforward to
model and reason about [20].

However, this simple view changes when a storage
service is built on a collection of heterogeneous re-
sources, with policy being used to determine the how
to allocate those resources to meet a set of competing
requirements. For example, in the world of single sys-
tems:

e A hierarchical file system may be based on a
robotic tape library and a disk cache, using poli-
cies such as LRU and read-ahead as well as specific
user directives to anticipate future requirements.

o A distributed file system may combine the use of a
highly reliable centralized server with local caches
to provide a shared service.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

In these cases, the “file” as an abstraction is difficult
to use for modeling, scheduling, or reasoning, because
the performance characteristics of a file depend on how
and where it is stored in the complex, heterogeneous
system.

The abstractions that suit our purposes are based on
the exposed nature of our resources. For example, IBP
has been designed so that when one allocates an IBP
buffer, one may use the knowledge about its location,
reliability, and current performance conditions (all as re-
ported by the L-Bone and NWS) to reason about it for
scheduling purposes.

In terms of scheduling and aggregation of resources,
there are a variety of dimensions of service about which
we need to reason. For example, to schedule for perfor-
mance, we need to know about IBP depot performance,
network locations, and network conditions. To aggre-
gate for fault-tolerance, we need to know about failure
rates. When dealing with large data sets, we need to
know about capacity. And so on.

Therefore, the abstractions that we need for schedul-
ing and aggregation of storage resources are the myriad
dimensions of services that need to be reasoned about in
order to make effective storage allocation decisions. We
see these as including, but not being limited to: capac-
ity, base performance, reliability (MTTF), availailability
MTTF/(MTTF+MTTR)), time limits, current proxim-
ity to network locations.

Implementationally, these dimensions of service will
be reported to scheduling clients by the L-Bone (which
employs the NWS for monitoring and prediction).

3.4 LoRS Methodologies

A final component of the Logistical Runtime System is
the methodology used to select resources for aggrega-
tion. This falls into the category of scheduling. For-
mally, we can view each resource ¢ as having, at each
point in time, a vector r; of properties. These are
static and dynamic measurements along each dimension
of service (e.g. capacity, reliability, performance rela-
tive to a host, etc). As stated above, r; can be deter-
mined by physical characteristics and by the monitor-
ing/predictive ability of the Network Weather Service,
and reported by the L-Bone.

Each application j goes through a variety of schedul-
ing points involving the aggregation of resources. At
each of these points, it selects a suite of resources to ag-
gregate according to the LoRS algorithms. The goal is
for this aggregation to fulfull baseline metrics along a
number of dimensions (e.g. capacity, reliability, perfor-
mance). These metrics may be represented by a vector
a;. Note, the two vectors defined so far do not have the
same dimensionality — the vectors r; concern individ-

ual properties of a resource, and the vectors a; concern
collective properties of an aggregation of resources.

Each LoFS aggregation algorithm k aggregates re-
sources in a known way, so that when a set S of re-
sources is aggregated, the collective properties of the set
may be computed from the individual properties of the
resources in the set by a function Fj, of the algorithm.
For example, given independent failure modes, if the
probability of an IBP depot’s being functional is 0.99,
then replication of data on n depots will yield an over-
all probability of (1 — (.01)™) that an application will
be able to download the piece of data from one of the
replicas.

Therefore, the job of a scheduler is to select a set of
resources that, when aggregated according to algorithm
k for application j, meets the application’s desires. For-
mally, this is a set S such that:

Fk(S) > a;.

While the tractability of this approach may be a concern,
many of the aggregation functions (F},) will involve sim-
ple mathematical expressions (arithmetic as above, or
determining maxima and minima), leading us to believe
that in many cases, especially when the application’s de-
sires are reasonable to fulfill, we will be able to use this
approach to make good scheduling decisions.

4 Conclusions

Our Logistical Computing and Internetworking reserach
agenda has reached the point of maturity where it must
be driven by the requirements of Grid applications in the
field. In the area of storage, the requirements of applica-
tions are expressed as broad quality of service require-
ments covering reliability and performance. The role of
the Logistical Runtime System is to address these re-
quirements, parameterized by a small number of well-
defined characteristics, and to perform scheduling and
management functions to implement them on top of the
advanced Grid Fabric.

What is unprecidented in the task that we have set
ourselves is the scope of the collection of possible re-
sources that our schedulers can work with. In a Logis-
tical Network, every network that has a router may also
have an IBP depot that can be used to store data. The
state of those depots will be in constant flux and so must
be monitored and predicted. Because our goal is to meet
the demanding requirements of high performance Grid
applications, we must aggregate “best effort” underlying
resources to create a highly engineered storage platform.

The convergence of storage, networking and ulti-
mately computation is often touted by those who cham-
pion wide area distributed computing and the Grid. The

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

slogan that “the network is the computer” is often re-
peated in this context. If the network is to become our
computer, the fabric on which we compute must be more
flexible, more open to scheduling of both storage and
computation than conventional approaches allow. Lo-
gistical Computing and Internetworking is an attempt to
rethink the Grid fabric with the intention of making the
use of globally distributed resources natural and trans-
parent. Then the era of Grid computing will truly be
upon us.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

A. Agbaria and J. S. Plank. Design, implementation, and
performance of checkpointing in NetSolve. In Interna-
tional Conference on Dependable Systems and Networks
(FTCS-30 & DCCA-S), pages 49-54, June 2000.

D. C. Arnold, S. S. Vahdiyar, and J. Dongarra. On the
convergence of computational and data grids. Parallel
Processing Letters, 11(2):187-202, 2001.

S. Atchley, S. Soltesz, J. S. Plank, M. Beck, and
T. Moore. Fault-tolerance in the network storage stack.
In IEEE Workshop on Fault-Tolerant Parallel and Dis-
tributed Systems, Ft. Lauderdale, FL, April 2002.

M. Beck, T. Moore, and J. S. Plank. An end-to-end ap-
proach to globally scalable network storage. In ACM
SIGCOMM °02, Pittsburgh, August 2002.

M. Beck, T. Moore, J. S. Plank, and M. Swany. Lo-
gistical networking: Sharing more than the wires. In
C. A. Lee S. Hariri and C. S. Raghavendra, editors, Ac-
tive Middleware Services. Kluwer Academic, Norwell,
MA, 2000.

H. Casanova, G. Obertelli, F. Berman, and R. Wolski.
The AppLeS parameter sweep template: User-level mid-
dleware for the grid. In SCO0 Conference on High-
Performance Computing, November 2000.

P. M. Chen et al. RAID: High-performance, reliable sec-
ondary storage. ACM Computing Surveys, 26(2):145—
185, June 1994.

K. Czajkowski, S. Fitzgerald, 1. Foster, and C. Kessel-
man. Grid information services for distributed resource
sharing. In Procedings of the Tenth IEEE International
Symposium on High-Performance Distributed Comput-
ing (HPDC-10). IEEE Press, 2001.

W. Elwasif, J. S. Plank, and R. Wolski. Data staging
effects in wide area task farming applications. In IEEE
International Symposium on Cluster Computing and the
Grid, pages 122—-129, Brisbane, Australia, May 2001.

W. Elwasif et al. IBP-Mail: Controlled delivery of large
mail files. In NetStore *99: Network Storage Symposium,
October 1999.

I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. International Journal of Super-
computer Applications, 11(2):115-128, Summer 1998.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

I. Foster and C. Kesselman. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann, San
Francisco, CA, July 1998.

L. Foster, C. Kesselman, and S. Tuecke. The anatomy of
the grid: Enabling scalable virtual organizations. Inter-
national Journal of Supercomputer Applications, 15(3),
2001.

G. A. Gibson. Redundant Disk Arrays: Reliable, Par-
allel Secondary Storage. The MIT Press, Cambridge,
Massachusetts, 1992.

A. S. Grimshaw, W. A. Wulf, and The Legion Team. The
Legion vision of a worldwide virtual computer. Commu-
nications of the ACM, 40(1):39-45, January 1997.

J. H. Morris, M. Satyanarayan, M. H. Conner, J. H.
Howard, D. S. H. Rosenthal, and F. D. Smith. Andrew:
A distributed personal computing environment. Commu-
nications of the ACM, 29(3):184-201, 1986.

J. S. Plank. A tutorial on Reed-Solomon coding for fault-
tolerance in RAID-like systems. Software — Practice &
Experience, 27(9):995-1012, September 1997.

J. S. Plank, A. Bassi, M. Beck, T. Moore, D. M. Swany,
and R. Wolski. Managing data storage in the net-
work. [EEE Internet Computing, 5(5):50-58, Septem-
ber/October 2001.

J. Pruyne and M. Livny. A worldwide flock of condors
: Load sharing among workstation clusters. Future Gen-
eration Computer Systems, 12, 1996.

C. Ruemmler and J. Wilkes. An introduction to disk
drive modeling. IEEE Computer, 27(3):17-29, March
1994.

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
arguments in system design. ACM Transactions on Com-
puter Systems,, 2(4):277-288, November 1984.

L. Smarr and C. E. Catlett. Metacomputing. Communi-
cations of the ACM, 35(6):44-52, 1992.

M. Swany and R. Wolski. Data logistics in network com-
puting: The logistical session layer. In IEEE Interna-
tional Symposium on Network Computing and Applica-
tions. IEEE, October 2001.

J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note
on distributed computing. Technical Report SMLI TR-
94-29, Sun Microsystems, November 1994.

R. W. Watson and R. A. Coyne. The parallel 1/O archi-
tecture of the high-performance storage system (HPSS).
In IEEE Mass Storage Systems Symposium, 1995.

R. Wolski, N. Spring, and J. Hayes. The Network
Weather Service: A distributed resource performance
forecasting service for metacomputing. Future Gener-
ation Computer Systems, 15(5-6):757-768, 1999.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

	IPDPS 2003
	Return to Main Menu

