Fault Tolerant MPI for the
HARNESS MetaComputing system

Graham E Fagg, Antonin Bukovsky, Sathish Vadhiyar and Jack J Dongarra

Department of Computer Science, Suite 203, 1122 Volunteer Blvd.,
University of Tennessee, Knoxville, TN-37996-3450, USA.

fagg@cs.utk.edu

Abstract

Initial versions of MPI were designed to work efficiently on mytiecessors which had very little job control and thus
static process models. Subsequently forcing them to support a dymaotdess model suitable for use on clusters or
distributed systems would have reduced their performance. AsntuiReC collaborative applications increase in size
and distribution the potential levels of node and network failures iseréize need arises for new fault tolerant systems
to be developed. Here we present a new implementation of MPeécddT-MPI that allows the semantics and
associated modes of failures to be explicitly controlled by pplieation via a modified MPI API. Given is an
overview of the FT-MPI semantics, design, example applications, detgiggdls and some performance issues such
as efficient group communications and complex data handling. Alstusked is the experimental HARNESS core
(G_HCORE) implementation that FT-MPI is built to operate upon.

1. Introduction

Although MPI [11] is currently the de-facto standasystem used to build high performance application
for both clusters and dedicated MPP systems, itaswithout it problems. Initially MPI was designed
allow for very high efficiency and thus performanage a number of early 1990s MPPs, that at the tirad
limited OS runtime support. This led to the curré®l design of a static process model. While thiedel
was possible to implement for MPP vendors, easyrngram for, and more importantly something that
could be agreed upon by a standards committee.

The MPI static process model suffices for small foers of distributed nodes within the currently egieg
masses of clusters and several hundred nodes dtated MPPs. Beyond these sizes the mean time
between failure (MTBF) of CPU nodes starts becominfactor. As attempts to build the next generation
Peta-flop systems advance, this situation will oblycome more adverse as individual node reliability
becomes out weighted by orders of magnitude in@éasode numbers and hence node failures.

The aim of FT-MPI is to build a fault tolerant MRnplementation that can survive failures, whileesfhg

the application developer a range of recovery atiother than just returning to some previous check
pointed state. FT-MPI is built on the HARNESS [1kta-computing system, and is meant to be usedsas it
default application level message passing interface

2. Check-point and roll back verses replication techniques

The first method attempted to make MPI applicatidaslt tolerant was through the use of check-
pointing and roll back. Co-Check MPI [2] from theeGhnical University of Munich being the first MPI
implementation built that used the Condor libragr theck-pointing an entire MPI application. In ghi
implementation, all processes would flush their sagges queues to avoid in flight messages gettist lo
and then they would all synchronously check-poittsome later stage if either an error occurrechdask
was forced to migrate to assist load balancing,ahtre MPI application would be rolled back to tlaest
complete check-point and be restarted. This systemasn drawback being the need for the entire
application having to check-point synchronously,iethdepending on the application and its size could

become expensive in terms of time (with potentiegdling problems). A secondary consideration was tha
they had to implement a new version of MPI knownta®IP| as retro-fitting MPICH was considered too
difficult.

Another system that also uses check-pointing b atuch lower level is StarFish MPI [3]. Unlike Co-
Check MPI which relies on Condor, Starfish MPI u#issown distributed system to provide built in ake
pointing. The main difference with Co-Check MPI li@w it handles communication and state changes
which are managed by StarFish using strict atomioug communication protocols built upon the
Ensemble system [4], and thus avoids the messagé firotocol of Co-Check. Being a more recent prbje
StarFish supports faster networking interfaces tidtPI.

The project closest to FT-MPI known by the authsrtiie Implicit Fault Tolerance MPI project MPI-FT
[15] by Paraskevas Evripidou of Cyprus Universifyhis project supports several master-slave models
where all communicators are built from grids thantain ‘spare’ processes. These spare processes are
utilized when there is a failure. To avoid lossroéssage data between the master and slaves, abges

are copied to an observer process, which can rem®dost messages in the event of any failuressThi
system appears only to support SPMD style compartatind has a high overhead for every message and
considerable memory needs for the observer praoedsng running applications.

3. FT-MPI semantics

Current semantics of MPI indicate that a failure af MPI process or communication causes all
communicators associated with them to becamlid. As the standard provides no method to reinstate
them (and it is unclear if we can everee them), we are left with the problem that this cass
MPI_COMM_WORLD itself to become invalid and thusetkentire MPI application will grid to a halt.

FT-MPI extends the MPI communicator states froml{@ainvalid} to a range {FT_OK, FT_DETECTED,
FT_RECOVER, FT_RECOVERED, FT_FAILED}. In essencésthecomes {OK, PROBLEM, FAILED},
with the other states mainly of interest to theeimtal fault recovery algorithm of FT_MPI. Processéso
have typical states of {OK, FAILED} which FT-MPI maces with {OK, Unavailable, Joining, Failed}.
TheUnavailablestate includes unknown, unreachable or “we havesnted to remove it yet” states.

A communicator changes its state when either an ptBtess changes its state, or a communicationimvith
that communicator fails for some reason. Some naetail on failure detection is given in 4.4.

The typical MPI semantics is from OK to Failed whithen causes an application abort. By allowing the
communicator to be in an intermediate state wevallbe application the ability to decide how to altee
communicator and its state as well as how commuitinawithin the intermediate state behaves.

3.1. Failure modes

On detecting a failure within a communicator, tlemmmunicator is marked as having a probable error.
Immediately as this occurs the underlying systemdsea state update to all other processes invalveidat
communicator. If the error was a communication grrmt all communicators are forced to be update,
was a process exit then all communicators thatidelthis process are changed. Note, this mighbeall
current communicators as we support MPI-2 dynamsks and thus multiple MPI_COMM_WORLDS.

How the system behaves depends on the communifzbore mode chosen by the application. The mode
has two parts, one for the communication behaviat ane for the how the communicator reforms if kt a

3.2. Communicator and communication handling

Once a communicator has an error state it can oe&pver by rebuilding it, using a modified versioh
one of the MPI communicator build functions such MPI_Comm_{create, split or dup}. Under these
functions the new communicator will follow the follving semantics depending on its failure mode:

¢ SHRINK: The communicator is reduced so that theadstucture is contiguous. The ranks of the
processes areghanged forcing the application to recall MPI_COMM_RANK.

¢« BLANK: This is the same as SHRINK, except that t@mmunicator can now contain gaps to be
filled in later. Communicating with a gap will caesin invalid rank error. Note also that calling
MPI_COMM_SIZE will return the extent of the commuaitor, not the number of valid processes
within it.

* REBUILD: Most complex mode that forces the creatafmew processes to fill any gaps until the
size is the same as the extent. The new processesither be places in to the empty ranks, or the
communicator can be shrank and the remaining pseeflled at the end. This is used for
applications that require a certain size to exeasté power of two FFT solvers.

« ABORT: Is a mode which effects the application inulietely an error is detected and forces a
graceful abort. The user is unable to trap thighH# application need to avoid this they must skt a
communicators to one of the above communicator rmode

Communications within the communicator are con&dlby a message mode for the communicator which
can be either of:

* NOP: No operations on error. l.e. no user level sage operations are allowed and all simply
return an error code. This is used to allow an agtion to return from any point in the code to a
state where it can take appropriate action as ssopossible.

e CONT: All communication that is NOT to the effectéailed node can continue as normal.
Attempts to communicate with a failed node willuet errors until the communicator state is
reset.

The user discovers any errors from the return cofleany MPI call, with a new fault indicated by
MPI_ERR_OTHER. Details as to the nature and spegifdif an error is available though the cached
attributes interface in MPI.

3.3. Point to Point verses Collective correctness

Although collective operations pertain to pointdoint operations in most cases, extra care has tzem
in implementing the collective operations so tHan error occurs during an operation, the restithe
operation will still be the same as if there hadgthano error, or else the operation is aborted.

Broadcast, gather and all gather demonstrate #nifeptly. In Broadcast even if there is a failureeo
receiving node, the receiving nodes still receive $ame data, i.e. the same end result for theisogy
nodes. Gather and all-gather are different in thatresult depends on if the problematic nodes datd to
the gatherer/root or not. In the case of gathez,rbot might or might not have gaps in the resktir all
gather which typically uses a ring algorithm igisssible that some nodes may have complete infoomat
and others incomplete. Thus for operations thatiitegmultiple node input as in gather/reduce type
operations any failure causes all nodes to retareraor code, rather than possibly invalid datarr@ntly
an addition flag controls how strict the above rideenforced by utilizing an extra barrier calltae end of
the collective call if required.

3.4. FT-MPI usage
Typical usage of FT-MPI would be in the form of amror check and then some corrective action such as

communicator rebuild. A typical code fragment isogm below, where on an error the communicator is
simply rebuilt and reused:

rc= MPI_Send (----, com);

If (rc==MPI_ERR_OTHER)
MPI_Comm_dup (com, newcom);
com = newcom; /* continue.. */

Some types of computation such as SPMD master-dades only need the error checking in the master
code if the user is willing to accept the mastetttas only point of failure. The example below sholswy
complex a master code can become. In this exampk ¢ommunicator mode is BLANK and
communications mode is CONT. The master keeps todickork allocated, and on an error just reallocate
the work to any ‘free’ surviving processes. Nothetcode checks to see if there are surviving worker
processes left after each death is detected.

rc = MPI_Bcast (initial_work...);
if(rc==MPI_ERR_OTHER)reclaim_lost_work(...);

while (! all_work_done) {
if (work_allocated) {
rc = MPI_Recv (buf, ans_size, result_dt,
MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &status);

if (rc==MPI_SUCCESS) {
handle_work (buf);
free_worker (status.MPI_SOURCE);
all_work_done--;

}
else {
reclaim_lost_work(status.MPI_SOURCE);
if (no_surviving_workers) { /* I do somet hing ! */}
} /* work allocated */
/* Get a new worker as we must have received a resu It or a death */
rank=get_free_worker_and_allocate_work();

if (rank) {
rc = MPIl_Send (... rank...);
if (rc==MPI_OTHER_ERR) reclaim_lost_work (rank)
if (no_surviving_workers) { /* I do something ! *}
} /* if free worker */

} /* while work to do */

4. FT_MPI Implementation details

FT-MPI is a partial MPI-2 implementation in its ownght. It currently contains support for both Cdan
Fortran interfaces, all the MPI-1 function callsqréred to run both the PSTSWM [6] and BLACS
applications. BLACS is supported so that SCALAPA@Rplication can be tested. Currently only some the
dynamic process control functions from MPI-2 ar@garted.

The current implementation is built as a numbetaykers as shown in figure 1. Operating system supigso
provided by either PVM or the C Harne€s HCORE Although point to point communication is provided
by a modified SNIPE_Lite communication library takzom the SNIPE project [4].

C-F Interface handling

Attribute / data structures and communicator state handling

Derived Types Buffer Management
Failure handler
Collective Library P2P driver
MultiThreaded SNIPE_Lite O support layer
Comms Librarvy (process control / naming /

ay failure detection)
TCP/UDP || Shmem GM/BIP VIA PVM 3.4 HARNESS
g_hcore

Figure 1. Overall structure of the FT-MPI implementation.

A number of components have been extensively optihj these include:
» Derived data types and message buffers.

» Collective communications.

* Point to point communication using multi-threading.

4.1. Derived Data Type handling

MPI-1 introduced extensive facilities for user Dexd DataType (DDT)[11] handling that allows for in
effect strongly typed message passing. The handiinpese possibly non-contiguous data types ig/ver
important in real applications, and is often a regéd area of communication library design [17]. 3¢0
communications libraries are designed for low laiemand/or high bandwidth with contiguous blocks of
data [14]. Although this means that they must avahecessary memory copies, the efficient handtihg
recursive data structures is often left to simpézations of a loop that packs a send/receive buffe

4.1.1. FT-MPIDDT handling

Having gained experience with handling DDTs withia heterogeneous system from the
PVMPI/MPI_Connect library [18] the authors of FT-MRedesigned the handling of DDTs so that they
would not just handle the recursive data-types ifigx but also take advantage of internal buffer
management structure to gain better performanca.tipical system the DDT would be collected/gatter
into a single buffer and then passed to the commations library, which may have to encode the data
using XDR for example, and then segment the messageackets for transmission. These steps invagvi
multiple memory copies across program modules (cadycache effectiveness) and possibly precluding
overlapping (concurrency) of operations.

The DDT system used by FT-MPI was designed to redmemory copies while allowing for overlapping
in the three stages of data handling:
» gather/scatter : Data is collected into or fromusively structured non-contiguous memory.
» encoding/decoding : Data passed between heterogemeachine architectures than use different
floating point representations need to be convestethat the data maintains the original meaning.
» send/receive packetizing : All of the send or reestannot be completed in a single attempt and
the data has to be sent in blocks. This is usudillg to buffering constraints in the
communications library/OS or even hardware flowtroh

4.1.2. DDT methods and algorithms

Under FT-MPI data can be gathered/scattered by cesging the data type representation into a
compacted format that can be efficiently transvdr§®ot to be confused with compressing data disedss
below). The algorithm used to compact data tygeesentation would break down any recursive dape ty
into an optimized maximum length new representatiem-MPI checks for this optimization when the
users application commits the data type using thel Mype _commit API call. This allows FT-MPI to
optimize the data type representation before amgroanication is attempted that uses them.

When the DDT is being processed the actual usax ds¢lf can also be compacted into/from a contiggio
buffer. Several options for this type of bufferiage allowed that include:

e Zero padding: Compacting into the smallest buffeace

« Minimal padding: Compacting into smallest space imaintaining correct word alignment

« Re-ordering pack: Re-arranging the data so thahalintegers are packed first, followed by floats
etc. i.e. type by type.

The minimal and no padded methods are used wheringahe data type within a homogeneous set of
machines that require no numeric representatiom@ing or decoding. The zero padding method benefits
slower networks, and alignment padded can in soases assist memory copy operations, although és re

benefit is when used with re-ordering.

The re-ordered compacting method shown in figurés2jesigned to be used when some additional form
encoding/decoding takes place. In particular mowimg re-ordered data, type by type through fixed XD
buffers improves its performance considerably. Tyyes of DDT encoding are supported, the firsthe

slower generic SUN XDR format and the second is@erbyte swapping to convert between little and big
endian numbers.

E EE EE
i I

Figure 2. Compacting storage of re-ordered DDT.
Without padding, and with correct alignment.

4.1.3. FT-MPIDDT performance

Tests comparing the DDT code to MPICH (1.3.1) omiaety three element DDT taken from a fluid
dynamic code were performed between Sun SPARC Sadad Red Hat (6.1) Linux machines as shown in
table 1 below. The tests were on small and mediurayes of this data type. All the tests were perfedn
using MPICH MPI_Send and MPI_Recv operations, s the point to point communications speeds were
not a factor, and only the handling of the datadgpvas compared.

Type of operation 11956 bytes | % compared tg 95648 bytes | % compared
(arch 2 arch) (method) (encoding) B/W MB/Sec | MPICH B/W MB/Sec | to MPICH
Sparc 2 Sparc MPICH 5.49 5.47

Sparc 2 Sparc DDT 6.54 +19 % 9.74 +78 %
Linux 2 Linux MPICH 7.11 8.79

Linux 2 Linux DDT 7.87 +10 % 9.92 +81 %
Sparc 2 Linux MPICH 0.855 0.729

Sparc 2 Linux DDT Byte Swap 5.87 +586 % 8.20 +1024
Sparc 2 Linux DDT XDR 531 +621 % 6.15 + 743 %

Table 1.Performance of the FT-MPI DDT software compared/BICH.

The tests show that the compacted data type hagdiimes from 10 to 19% improvement for small
messages and 78 to 81% for larger arrays on sameeria representation machines. The benefits ofdyuff
reuse and re-ordered data elements leads to combiéeimprovements on heterogeneous networks
however. Noting that this test used MPICH to penfothe point to point communication, and thus the
overlapping of the data gather/scatter, encodingddang and non-blocking communication is not shown
here, and is expected to yield even higher perfarcea

4.1.4. FT-MPI DDT additional benefits and future

The above tests were performed using the DDT softwas a standalone library that can be used to
improve any MPI implementation. This software isrigemade into a true MPI profiling library so thas

use will be completely transparent. Two other effarlosely parallel this section of work on DDTSAEX

[19] from HLRS, RUS Stuttgart, requires the heterngous data conversion facilities and a projectnfro
NEC Europe [16] concentrates on efficient data typpresentation and transmission in homogeneous
systems.

4.2. Collective Communications

The performance of the MPI's collective communioas is critical to most MPI-based applications [8].
general algorithm for a given collective communioatoperation may not give good performance on all
systems due to the differences in architecturedwork parameters and the storage capacity of the
underlying MPI implementation [7]. In an attempt tmprove over the usual collective library built on
point to point communications design as in the log®del [9], we built a collective communications
library that is tuned to its target architecturetigh the use a limited set of micro benchmarks. ©tie
static system is optimized we then tune the topgldgnamically by re-orders the logical addresses to
compensate for changing run time variations. Otpegjects that use a similar approach to optimizing
include [12] and [13].

4.2.1. Collective communication algorithms and benchmarks

The micro-benchmarks are conducted for each of difeerent classes of MPI collective operations
broadcast, gather, scatter, reduce etc individuaky the algorithm that produces the best broatlosight
not produce the best scatter even though they apgiedar.

The algorithms tested are different variations tdnslard topologies and methods such as sequential,
Rabenseifner [10], binary and binomial trees, ugiifferent combinations of blocking/non-blockingree

and receives. Each test is varied over a numberro€essors, message sizes and segmentation shxes. T

segmenting of messages was found to improve bisediandwidth obtained depending on the target

network.

These tests produce an optimal topology and segsieatfor each MPI collective of interest. Testaast
vendor MPI implementations have shown that ourextive algorithms are comparable or even faster as
shown in figure 3.

broadzas1 [IEM 1hin nodesh
SR T T T T T T T T

anomaically uned broadcasi
arreE b IEM MPI broadzas

8192 b

Time [L=]

ME 1

12!5 1 1 1 1 1 1 1 1
4 15 4 25 1024 4095 16354 EENE5 S521440455564+06
Meczage Sze[byies]

Figure 3. FT-MPI tuned collective broadcast verses IBM MPbadcast
on IBM SP2 thin node system.

4.2.2. Dynamic re-ordering of topologies

Most systems rely on all processes in a communicab process group entering the collective

communication call synchronously for good perforroani.e. all processes can start the operationawith

forcing others later in the topology to be delay&tiere are some obvious cases where this is natdke:

(1) The application is executed upon heterogeneounsputing platforms where the raw CPU power varies
(or load balancing is not optimal).

(2) The computational cycle time of the applicatican be non-deterministic as is the case in marthef
newer iterative solvers that may converge at défgrates continuously.

Even when the application executes in a regulatepaj the physical network characteristics can eaus
problems with the simple logP model, such as whenning between dispersed clusters. This problem
becomes even more acute when the target systeerschais so low that any buffering, while waitingrfo

slower nodes, drastically changes performance chexiatics as is the case with BIP-MPI [14] and SCI
MPI [8].

FT-MPI can be configured to use a reordering stygténat changes the non-root ordering of nodestirea
depending on their availability at the beginningtbé collective operation. Figure 4 shows the pssxcby
example of a binomial tree.

Case 2a
A A A A
B Do»p
fﬂo ’ fff ?yg&)
C B B

Case 1
A A
D D f{b
O’Rt)B C{p B
C

Case 2b
Figure 4. Re-ordering of a collective topology.

In Figure 4.1 Case 1 is where all processes withitree are ready to run immediately and thus
performance is optimal. In Case 2, both processaadBC are delayed and initially the root A canynl
send to D. As B and C become available, they algeal to the topology. At this point we have to ceo
whether to add the nodes depth first as in Caser2aeadth first as in Case 2b. Currently breaditst has
given us the best results. Also note that in CASH firocess B is not ready to receive, it effeotst only
its own sub-tree, but depending on the message/segsize, it is possible that it would block anyet
messages that A might send, such as to Ds subetred-aster network protocols might not implemeoin
blocking sends in a manner that could overcomelthigation without effecting the synchronous stati
optimal case, and thus blocking sends are ofted usstead.

4.3. Point to Point Multi-thread communications

FT-MPIs requirements for communications have foraedo use a multi-threaded communications library.
The three most important criteria were:
¢ High performance networking is not effected by coment use of slower networking (Myrinet
verses Ethernet)
« Non-blocking calls make progress outside of APIgal
¢ Busy wait (CPU spinning) is avoided within the rime library

To meet these requirements, in general communicagquests are passed to a thread via a sharecgkdaeu
be completed unless the calling thread can completeoperation immediately. Receives are placed it
pending queue by a separate thread. There is amirspand receiving thread per type of communiaatio
media. l.e. a thread for TCP communications, adhréor VIA and a thread for handling GM message
events. The collective communications are builtmfias point to point library.

4.4. Failure detection

It is important to note that the failure handlerosin in figure 1, gets notification of failures frobwth the
point to point communications libraries as well g® OS support layer. In the case of communication
errors this is usually due to direct communicatisith a failed party fails before the failed parti€ss layer
has notified other OS layers and their processés. fandler is responsible for notifying all taskseorors

as they occur by injecting notify messages intogbad message queues ahead of user level messages.

5. OS support and the Harness G_ HCORE

When FT-MPI was first designed the only Harness nétr available was an experiment Java
implementation from Emory University [5]. Tests veeconducted to implement required services on this
from C in the form of C-Java wrappers that made Rddlls. Although they worked, they were not very

efficient and so FT-MPI was instead initially degpkd using the readily available PVM system.

As the project has progressed, the primary authewetbped the G_ HCORE, a C based HARNESS core
library that uses the same policies as the Javsieer This core allows for services to be built tka-MPI
requires.

5.1. G_HCORE design and performance

The core is built as a daemon wrote in C code fratvides a number of very simple services that ban
dynamically added to [1]. The simplest service lie tability to load additional code in the form of a
dynamic library (shared object) and make this aalal to either a remote process or directly to toee
itself. Once the code is loaded it can be invoksithg a number of different techniques such as:
« Direct invocation: the core calls the code as action, or a program uses the core as a runtime
library to load the function, which it then callérdctly itself.
* Indirect invocation: the core loads the functiordghen handles requests to the function on behalf
of the calling program, or, it sets the function ap a separate service and advertises how to access
the function.

The Indirect invocation method allows a range ofiops such as:
e The H_GCOREs main thread calls the function directl
« The H_GCORE hands the function call over to a sefmthread per invocation
*« H_GCORE forks a new process to handle the requestd per invocation)
* H_GCORE forks a new handler that only handles tiipe of request (multi-invocation service)

Remote invocation services only provide very simplarsalling of argument lists. The simplest calirfat
passes the socket of the request caller to the-pidgnction which is then responsible for marsiadl its
own input and output much like skeleton functiomsler SUN RPC.

Currently the indirect remote invocation services eallable via both the UDP and TCP protocols. [€gb
contains performance details of the G_HCORE conmp#éwethe Java based Emory DVM system tested on
a Linux cluster over 100Mbytes Second ethernet.

Local Local Local Remote Remote Remote
(direct (via (new thread) | (RMI) (TCP) (UDP)
invocation) | TCP/Sockets
to core)
Emory Java -/- 10.4 0.172 1.406 8.6 -/-
DVM
G_HCORE 0.0021 0.58 0.189 -/- 1.17 0.32

Table 2. Performance of various invocation methods in redltonds.

From Table 2 we can see that socket invocation uddea performs poorly, although RMI is comparable
to C socket code for remote invocation. The fastesnhote invocation method is via UDP on the
G_HCORE at just over three hundred millisecondsepyet to end invocation.

5.2. G_HCORE plug-in management

The plug-ins used by the G_ HCORE can either betat#ocally via a mounted file system or downloaded
via HTTP from a web repository. This loading schermserery similar to that used by JAVA. The search
actions are as follows:
¢ The local file system is checked first in a diregt@onstructed from the plug-in name. I.e.
Package FT_MPI, might have a component TCP_COMS&sThe G_HCORE would first look in
<HARNESS_ROOT>/lib/FT_MPI for a TCP_COMS sharedettj
« If the plug-in was not in its correct location asseh of the temporary cache directory would occur,
i.e. <HARNESS_ ROOT/cache/lib/FT_MPI. If the plugwas found its time to live index would
be checked to see if it was still current.
¢ If the plug-in was not local, then the internal 1% “get by HTTP” routine would be used. This
currently functions with either a pure download,imgust a shared object stored in native format
on a remote web server, or with a complex downldat contains a PGP signed MIME encoded
plug-in. This later method allows for signed plugsithat are protected against external tampering
once they are published.

The locations of the plug-ins available are storeithin a distributed replicated database (DRD). sThi
information is pushed to the database when plugaires‘published’ at the individual web servers. Time

of standard web servers for plug-in distribution svehosen to aid in individual site deployment of
HARNESS, as existing servers can be used withouifioation.

5.3. G_HCORE services for FT-MPI

Current services required by FT-MPI break down ifdor categories:

« Spawn and Notify service. This plug-in allows rem@rocesses to be initiated and then
monitored. The service notifies other interestedgeisses when a failure or exit of the invoked
process occurs.

* Naming services. These allocate unique identifiers distributed environment.

« Distributed Replicated Database (DRD). This senaltews for system state and additional
MetaData to be distributed, with replication speaifat the record level. This plug-in has a
secondary benefit as it can be used by the Emor/i3\VPVM plug-in to implement the PVM 3.4
Mailbox features directly.

6. FT-MPI Tool support

Current MPI debuggers and visualization tools sashotalview, vampir, upshot etc do not have a eptc

of how to monitor MPI jobs that change their comnieators on the fly, nor do they know how to monitor
a virtual machine. To assist users in understandigge the author has implemented two monitor tools
HOSTINFO which displays the state of the Virtual dane. COMINFO which displays processes and
communicators in colour coded fashion so that udersw the state of an applications processes and
communicators. Both tools are currently built usithge X11 libraries but will be rebuilt using the \la
SWING system to aid portability. An example dispdaguring a SHRINK communicator rebuild operation
is shown in figures 5 to 7, where a process (rafjkegits and the communicator is reduced in size and
extent.

[=] HARNESS FT_MPI Virtual Machine Communicator Infomation |

communicator; MPI_COMM_WORLD num procs; 3 HPI size; 3

Rank 1D 0 1 2

Proc Status . . .

Proc id 08001 03002 08003

Figure 5. Cominfo display for a healthy three process MPI laggiion. The colours of the inner boxes
indicate the state of the processes and the outeiraicates the communicator state.

J_‘LI HARMESS FT_MPI Virtual Machine Communicator Infomation

communicator: MPI_COMM_WORLD num procs: 2 HWPI size: 3

Rank 1D 0 2

Proc Status . .

Proc id 02001 0xB003

Figure 6. COMINFO display for an application with an exitpdocess. Note that the number of nodes and
size of communicator do not match.

7| HARNESS FT_MPI Virtual Machine Communicator Infomation

communicator; HPI_COMM_WORLD rum procs; 2 WPL size; 2

Rank ID 0 1

Proc Status .

Proc id OxB00L 0:B003

Figure 7. Cominfo display for the above application after@amunicator rebuild using the SHRINK
option. Note the communicator status box has chdtgek to a blue (dark) colour.

7. Conclusions

FT-MPI is an attempt to provide application prograers with different methods of dealing with failsre
within MPI application than just check-point andstart. It is hoped that by experimenting with FT-MP
new applications methodologies and algorithms Wwél developed to allow for both high performance and
the survivability required by the next generatidrterra-flop and beyond machines.

FT-MPI in itself is already proving to be a usefuéhicle for experimenting with self-tuning colleet
communications, distributed control algorithms,igas dynamic library download methods and improved
sparse data handling subsystems, as well as béiagl¢fault MPI implementation for the HARNESS
project.

8. References

1. Beck, Dongarra, Fagg, Geist, Gray, Kohl, MigtlarK. Moore, T. Moore, P. Papadopoulous, S.
Scaott, V. Sunderam, "HARNESS: a next generatiotrdiisted virtual machine", Journal of Future
Generation Computer Systems, (15), Elsevier Sciéve 1999.

2. G. Stellner, “CoCheck: Checkpointing and Procktigration for MPI”, In Proceedings of the
International Parallel Processing Symposium, pp-526, Honolulu, April 1996.

3. Adnan Agbaria and Roy Friedman, “Starfish: Faldtierant Dynamic MPI Programs on Clusters
of Workstations”, In the 8th IEEE International Sposium on High Performance Distributed
Computing, 1999.

4. Graham E. Fagg, Keith Moore, Jack J. Dongarfégdlable networked information processing
environment (SNIPE)", Journal of Future Generat@omputer Systems, (15), pp. 571-582,
Elsevier Science B.V., 1999.

5. Mauro Migliardi and Vaidy Sunderam, “PVM Emulati in the Harness MetaComputing System:
A Plug-in Based Approach”, Lecture Notes in Compuseience (1697), pp 117-124, September
1999.

6. P. H. Worley, I. T. Foster, and B. Toonen, “Algthm comparison and benchmarking using a
parallel spectral transform shallow water modelfp&edings of the Sixth Workshop on Parallel
Processing in Meteorology, eds. G.-R. Hoffmann &hdreitz, World Scientific, Singapore, pp.
277-289, 1995.

7. Thilo Kielmann, Henri E. Bal and Segei Gorlat&andwidth-efficient Collective Communication
for Clustered Wide Area Systemf?DPS 2000 Cancun, Mexico. (May 1-5, 2000)

8. Lars Paul Huse, “Collective Communication on eded Clusters of Workstations”, Proc of the
6" European PVM/MPI Users’ Group Meeting, Lecture B®tn Computer Science, Vol. 1697,
Springer Verlag, pp. 469-476, Bareclona, SeptemiS&0.

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

David Culler, R. Karp, D. Patterson, A. SahayEKSchauser, E. Santos, R. Subramonian and T.
von Eicken. LogP: Towards a Realistic Model of RelaComputation. In Proc. Symposium on
Principles and Practice of Parallel ProgrammingdPB), pages 1-12, San Diego, CA (May 1993).
R. Rabenseifner. A new optimized MPI reducepailpm.
http://www.hlrs.de/structure/support/parallel_conipg/models/mpi/myreduce.htr1997).

Marc Snir, Steve Otto, Steven Huss-Ledermarvid@/alker and Jack Dongarra. MPI- The
Complete Reference. Volume 1, The MPI Core, seasgtition (1998).

M. Frigo. FFTW: An Adaptive Software Architecturerfthe FFT. Proceedings of the ICASSP
Conference, page 1381, Vol. 3. (1998).

R. Clint Whaley and Jack Dongarra. Automatigdilined Linear Algebra Software. SC98: High
Performance Networking and Computiridtp://www.cs.utk.edu/~rwhaley/ATL/INDEX.HTM
(1998)

L. Prylli and B. Tourancheau. “BIP: a new prott designed for high performance networking on
myrinet” In the PC-NOW workshop, IPPS/SPDP 1998ja@do, USA, 1998.

Soulla Louca, Neophytos Neophytou, AdrianosHaatas, Paraskevas Evripidou, “MPI-FT: A
portable fault tolerance scheme for MPI”, Proc RBDPTA '98 International Conference, Las
Vegas, Nevada 1998.

Jesper Lasson Traff, Rolf Hempel, Hubert Ritzdmd Falk Zimmermann, “Flattening on the Fly:
Efficient Handling of MPI Derived Datatypes”, Proc¢ the 6" European PVM/MPI Users’ Group
Meeting, Lecture Notes in Computer Science, VoR16Springer Verlag, pp. 109-116,
Bareclona, September 1999.

W.D. Gropp, E. Lusk and D. Swider, “Improviniget performance of MPI derived datatypes”, In
Third MPI Developer’'s and User’s Conf (MPIDC’99)pp25-30, 1999.

Graham E Fagg, Kevin S. London and Jack J. Roreg "MPI_Connect, Managing
Heterogeneous MPI Application Interoperation anddess Control", EuroPVM-MPI 98, Lecture
Notes in Computer Science, Vol. 1497, pp.93-96,i8pmr Verlag, 1998.

Edgar Gabriel, Michael Resch, Thomas BeiselRather Keller, “Distributed Computing in a
Heterogeneous Computing Environment”, EuroPVM-MB] Becture Notes in Computer
Science, Vol. 1497, pp.180-187, Springer Verlag)4.9

