
Title Page

Title: Logistical Quality of Service in NetSolve

Corresponding Author: Jack Dongarra (dongarra@cs.utk.edu)

Authors:

Innovative Computing Laboratory
Computer Science Department
University of Tennessee
Knoxville, TN 37996
USA

FAX: (423) 974-8296

Micah Beck mbeck@cs.utk.edu (423) 974-3548
Henri Casanova casanova@cs.utk.edu (423) 974-2841
Jack Dongarra dongarra@cs.utk.edu (423) 974-8295
Terry Moore tmoore@cs.utk.edu (423) 974-5886
Jim Plank plank@cs.utk.edu (423) 974-4397

Department of Computer Science
University of California, San Diego
San Diego, CA 92093
USA

FAX: (619) 534-7029

 Francine Berman berman@cs.ucsd.edu (619) 534-6195

Rich Wolski rich@cs.ucsd.edu

 1

Logistical Quality of Service in NetSolve
From its inception a principal goal of the Next Generation Internet (NGI) has been to find a way to

provide reliable, scalable, cost effective, and deployable delivery of data with quality of service (QoS)
guarantees as a foundation for innovative NGI applications. But while schemes to provide reliable end-to-
end QoS are being actively pursued on a number of fronts, the well known problems with the scalability,
cost, and deployability of end-to-end QoS continue to obstruct progress toward achieving this end. Our
research focuses on the nature and potential value of an approach to providing QoS that builds on a
strategy for allowing NGI applications to dynamically manage remote storage resources in order to stage
data locally for later delivery. We call this strategy logistical Quality of Service (logistical QoS).

The concept of logistical QoS is a generalization of the typical end-to-end model for reserving QoS,
permitting much more flexible use of buffering of messages in order to achieve QoS delivery without
difficult end-to-end requirements. Whenever data is available to be sent well before it needs to be
received, it can be staged, i.e. moved in advance to a location close to the receiver for later delivery.
Isolating the act of buffering data as a distinct operation, independent of delivery to the receiver, opens up
a new dimension of freedom in the management of communication and storage resources that can offer
NGI application developers a wide variety of new opportunities to innovate.

Our project focuses on the development of logistical QoS as enabling network functionality for
application-driven staging and scheduling of distributed computation on NGI. It is divided into two parts:
1) research on the basic network functionality that is required to support logistical QoS that is reliable,
scalable, cost effective, and easy to use; and 2) research that investigates the integration of logistical QoS
and the basic network technology that underlies it with the scheduling of distributed computations using
NetSolve and the Network Weather Service.

Our work on logistical QoS focuses on the Internet Backplane, as providing a mechanism for
managing remote storage resources, and the Internet Backplane Protocol, as enabling technology for
using that mechanism. The idea underlying the concept of the Internet Backplane is that NGI will enable
us to consider the global network as an extension of the processor backplane, if only we have a low
overhead mechanism for fine grained naming and access to data, analogous to physical addresses and bus
transfers. By this analogy the Internet Backplane is a common namespace for fine-grained management
of distributed resources. The IBP provides a flexible interface to enable this functionality, allowing
reliable and flexible control of remote storage buffers through a general scheme for naming, staging,
delivering and protecting data.

We will test logistical QoS as an enabling technology for NGI computing using NetSolve. NetSolve
is a software environment for networked computing designed to transform disparate computers and
software components into a unified, easy-to-access computational service; it is being used by NSF's
Partnerships for Advanced Computational Infrastructure to build high-performance systems for
distributed computation on leading edge networks. We will investigate the implementation of logistical
QoS within NetSolve and the integration of IBP with the Network Weather Service (used to monitor and
forecast the performance of network and computational resources) to build a scheduling capability that
maximizes the performance of NetSolve across next generation networks.

1.0 Introduction: Logistical QoS and Its Relevance to Network Design
A kind of bootstrap problem tends to obstruct innovation in basic network design for NGI. The

trouble is that the guiding purpose of NGI is to enable revolutionary new types of applications, but those
applications will develop slowly so long as the basic network technologies are not available to inform and
inspire the work of application designers. The problem is exacerbated by the fact that NGI aims to be not
just an incremental improvement on familiar network technologies and applications, but a true watershed
in the development of the Internet. Our investigation of the nature and potential value of what we call
logistical Quality of Service (logistical QoS) is motivated by the concept of a generic, low level network
functionality that can offer NGI application developers a wide variety of new opportunities to innovate.

 2

The focus on quality of service is a natural one. From its inception a principal goal of NGI has been
to find a way to provide reliable, scalable, cost effective, and deployable delivery of data with quality of
service guarantees as a foundation for innovative NGI applications. To achieve such QoS delivery,
current approaches rely on standard end-to-end communication, in which the messages are buffered only
minimally between the sender and the receiver. While schemes to provide reliable end-to-end QoS are
being actively pursued on a number of fronts, the well known problems with the scalability, cost, and
deployability of end-to-end QoS continue to trouble the network community.

Our concept of logistical QoS is a generalization of the typical model that permits much more
flexible use of buffering of messages in order to achieve QoS delivery without difficult end-to-end
requirements. Whenever data is available to be sent well before it needs to be received, it can be staged,
i.e. moved in advance to a location close to the receiver for later delivery. Isolating the act of buffering
data as a distinct operation, independent of delivery to the receiver, opens up a new dimension of freedom
in the management of communication and storage resources. Decisions about staging can then be driven
by heuristics, scheduling, or even policy.

The remainder of this paper is organized as follows: In section 2 we elaborate the concept of
logistical QoS and describe the mechanism for data staging that we will develop called the Internet
Backplane. In section 3 we describe our work on application-driven logistical scheduling in distributed
computation. This work will use NetSolve [1-3] which is middleware for doing distributed computation,
and the Network Weather Service, which provides dynamic information about processor loads and
network traffic to NetSolve for the purposes of scheduling. Together with the Internet Backplane, these
components allow us to build a system that utilizes logistical QoS to maximize computational
performance while conserving network resources. In section 5, we describe the wider benefits of
implementing logistical QoS as a basic network functionality within NGI.

2.0 Logistical QoS and Mechanisms for Data Staging

2.1. Background: Logistical QoS in the Context of NGI
The idea of logistical QoS arises from a basic distinction in the requirements that certain applications

have for moving data across the network. Consider, for example, an application of collaborative
telemedicine that is likely to become commonplace with NGI. Two doctors, Dr. S and Dr. J, who live in
different cities want to meet to discuss a particular patient's diagnosis and the treatment alternatives.
Though it would obviously be convenient to hold their meeting on the network, there is a substantial store
of information of various kinds — the patients medical records, X-rays, CAT scans, MRI and PET
images, etc.— that they may need to reference during the course of their discussion. This is a situation
for which one of the emerging forms of "networked collaboration", i.e. synchronous communication
among distributed participants with shared viewing and control of documents and other digital objects,
would seem to be ideal, especially if the session is supported by high-performance networking with QoS.

But when we examine such an on-line, multimedia consultation with a view to providing QoS
support, there seems to be a broad division between two different components of the doctors'
communication and a clear distinction between the QoS requirements associated with each. On the one
hand, there is the CONTEXT for the communication, i.e. all of those data objects (e.g. MRI and PET
images) that exist prior to communication and so can be referred to and talked about during the
communication. On the other hand, there is the CONVERSATION that will occur during meeting itself,
including not only what they say to each other over the audio stream, but also perhaps what they type in a
chat window or what their faces express across a two-way video feed. From a QoS point of view, these
two components of the overall communication can be handled very differently:

 3

T
im

e

A B C

t

0

QoS reservation made for transfer from
C to B in the future; Data is transferred
from A to C in time d by CoS

Data waits in storage at C for time t-d

Data transferred to B from respective
locations (A or C) at t in time δδ (per
specified QoS)

QoS reservation
 is made; data
waits at A until t

§ Delivery of contextual
data can be staged —
Since the contextual data
exists prior to the
communication, the data
can be moved in advance
from an end node to
some intermediate point
(which we call a data
depot) and stored there in
a data staging step. Then
the data is delivered from
the depot to the
appropriate node as
called for and with the Figure 1
required quality of service.
Both movements of the data will require network resources, but the data staging step will be able
to use best effort, class of service, or reservation at very low levels. The final delivery step does
have to meet the QoS specified by the receiver, but this operation can now be performed through
an over-provisioned network, across a single switch [4], or within a local ATM cloud. This is
logistical QoS.

§ Delivery of conversational data needs standard end-to-end QoS — Data cannot be staged when
it either has to be received in real time as its created or when the decision to send it cannot be
anticipated in advance. Conversation is made up of both these types of data. The typical approach
to achieving QoS for these cases is end-to-end reservation [5, 6] The network resources necessary
to send the data with required quality of service are declared in advanced by the respective
senders and guaranteed by the network to be available.

The difference between logistical QoS and end-to-end QoS is made clear in Figure 1. Here, A is the
sender, B is the receiver, and C represents a data depot. The figure compares the two forms of data
delivery for a simple case in which a communication is scheduled at time 0 to occur at time t:

Standard QoS (dashed line) moves all the data components of the communication in a single step.
By contrast, logistical QoS (dotted line) is composed of a data staging step and a communicative delivery
step. For those data elements that can be staged, the result at the receiving end can be just the same
quality as end-to-end delivery in one step, but the work of the sender and the network has been spread
over time and storage space. In fact, some QoS requirements which are impossible to achieve through
end-to-end communication may be possible through logistical QoS. An example is latency requirements
lower than the limit imposed by the speed of light, which is particularly important when using satellite
links. Logistical QoS can bring the data closer to the receiver and push perceived latency below this limit,
whereas end-to-end QoS treats communication as if it were all "conversation" and no "context" and so is
limited by the physics of real-time interaction.

Logistical QoS can be characterized as application-driven because advanced prediction of the
resource requirements for the transfer and final delivery of stagable data depends on the nature of the
application. Allowing QoS to be application driven in this way has a number of advantages. For instance,
logistical QoS can hide communication "problems" like latency variance (commonly called jitter) and
bandwidth variance from the user which would otherwise have to be ensured via end-to-end QoS
mechanism. By knowing the response time requirements of the application, the system can use logistical
QoS in place of end-to-end QoS where appropriate to provide service of identical quality from the user's
point of view. Making this substitution helps to conserve resources by unburdening end-to-end QoS
reservation mechanisms from having to handle this immense class of data. It thereby frees these resources
for other applications with real-time response requirements. Furthermore, it allows our data staging

 4

protocol (described sec. 2.2.2) to optimize its use of the resources. The staging software can decide how,
when, and where to move the data so that the best (e.g. cheapest or most reliable) resources are used to
accomplish the job. This optimization process allows the protocol to leverage existing end-to-end QoS
mechanisms only where it is profitable to do so.

2.1.4 The Internet Backplane as an Architecture for NGI Computing
Our approach to data staging uses the idea of the Internet Backplane. The concept of the Internet

Backplane is a synthesis of trends in distributed operating systems [7], from the World Wide Web, and
from the development of the Network Computer and other appliances which rely on network resources
for basic services. Current work growing out of seminal work of David Tennenhouse in Active Networks
at MIT LCS augments the network with compute capability provided as part of the communicative fabric
rather than attached at the periphery. However, the compute power of Active Networks is dedicated to
enhancing the functionality of the network and is not available for application level computing. The
development of the PC-based computational infrastructure and the growth of the Web show that the most
powerful combination is for state managed by end user to actually reside within end user organizations.
At the same time, the World Wide Web has shown the phenomenal power of allowing uniform access to
resources located throughout the network. The Web was designed for the commodity Internet, and so
supports only loosely coupled operations, but NGI provides reliability. Reliability gives us control from a
distance, and control enables management of resources shared by closely coupled distributed operations.

Despite its shortcomings, the World Wide Web has become the distributed file system of the
commodity Internet. NGI allows us to not only access files better, but to consider new forms of access
which require remote management of resources. NGI enables us to consider the global network as an
extension of the processor backplane, if we only had a low overhead mechanism for fine-grained naming
and access to data, analogous to physical addresses and bus transfers. It is this analogy which gives rise
to the notion of an Internet Backplane: a common namespace for fine-grained management of resources.
The thrust of our project is the use of the Internet Backplane to implement data staging, but we are
convinced that the development of such a facility will have far reaching applications beyond the
implementation of logistical QoS. We discuss those implications further in section 4.

2.2 Mechanisms for Data Staging
In order to implement Logistical QoS we must have a mechanism for data staging. An important

element of our project is the development of such mechanisms. Data staging can be layered on top of the
protocol stack, and then requires the overhead of being received and processed by an intermediate process
before being delivered. Another approach is to integrate it lower in the protocol stack, modifying existing
protocols or designing new ones. In this section we describe the functionality required for various
approaches to data staging, and we specify operations which would be supported, regardless of the
specific implementation approach. Deployable, well-engineered approaches to adding such functionality
to concrete protocols will be one product of our research.

2.2.1 Logistical Connections
The most straightforward, but least general way to allow message staging is to extend the semantics

of a TCP/IP connection to allow explicit management of buffers that reside at the receiving node or at
unspecified depots along the connection's path. In such a protocol, the sender may send data to a buffer,
which may be triggered for delivery to the receiver by either the sender or the receiver. Note that the
buffer may be reused, overwritten or re-sent, thus enabling some of the logistical QoS services described
above.

The benefit of this formulation is that there are no issues of buffer naming or protection, since
buffers are not visible except to the participants. However, the limitation is that a single TCP/IP
connection must be maintained, and it is not possible to stage data at a depot that is not part of the
connection. To allow freer control of buffer management at depots, we must formulate a more general

 5

scheme for naming, staging, delivering and protecting data. We call this the Internet Backplane Protocol
(IBP).

2.2.2 The Internet Backplane Protocol
Consider the infrastructure requirements for staged delivery of a message from sender A to receiver

B using depot C. A must be able to stage a message at C and arrange for it to be delivered at a later date
during an interaction with B. If there is no end-to-end component to the interaction between A and B,
then a simple timer might be used at C. However this would be unusual -- it would be much more
common for a staged message to be delivered as part of an interaction which also included end-to-end
communication. In order for the staged message to be coordinated with the overall interaction, there must
be some coordinating signal from either A or B to trigger its delivery.

A minimal protocol to support staged delivery would have two operations: storing (or staging) a
message at depot C and triggering delivery to node B of a message stored at depot C. One problem with
this simple scheme is that messages are often used to implement transfer of a large byte array, and so are
sent in packet flows (streams of packets with the same source and destination). The need to send a flow
with guaranteed QoS rules out a protocol that requires a separate trigger for each message in the flow. We
must be able to stage the entire flow and trigger its delivery with a single operation. Another problem is
the need for security. If access to stored messages is not secure then communication can be intercepted at
any depot. Finally, we must be able to flexibly allocate resources at a depot to different connections.

One direct solution to these problems is to allow large byte arrays to be stored at the depot, and
allowing the entire array to be turned into a packet flow and delivered to the recipient with a single
operation. The original sender or the recipient may trigger this delivery. Other important functionalities
that must be present are remote allocation and management of byte arrays, and copying of byte arrays
from one remote node to another.

We have implemented the following API for IBP version 1.1

Cap_set = IBP_allocate(C, size, attributes)

This allocates a byte array with maximum size size at depot C. A capability set, composed of a
read capability and a write capability, is returned to the caller. These are used by IBP clients to
access the byte array. Note that the clients as such do not choose a name for the byte array. The
name is implicitly part of the capability set returned from the IBP_allocate call.

The attributes contain information about how the IBP server should store the byte array.
Currently, there is only one attribute, volatility, which can take one of two values: non-volatile,
which means that the server will store the byte array until it is explicitly deleted, and volatile,
which means that the IBP server may delete the byte array at its own discretion.

IBP_store(write_cap, ptr, size)

This stores size bytes of data, starting at the pointer ptr to the byte array referenced by the write
capability write_cap. Note that the location of the depot is encoded as part of write_cap.
IBP_store has append semantics, meaning that multiple IBP_store calls may be made to the
same byte array.

IBP_copy(read_cap, write_cap)

This copies the byte array referenced by read_cap to the byte array referenced by write_cap.
Like IBP_store, this has append semantics. Note that the source and destination byte arrays
can be on different hosts, which means that IBP_copy triggers a remote copying of data.

 6

IBP_deliver(read_cap, host, port)
This delivers the byte array referenced by read_cap to the named host and port over a TCP/IP
socket. Once again, the host of the byte array, and the target host for delivery may be different,
meaning that IBP_deliver triggers a remote delivery of data from IBP to a client.

IBP_decrement(capability), IBP_increment(capability)

These allow the clients to maintain reference counts with a byte array's capabilities.
IBP_allocate initially sets these reference counts to one for both read and write capabilities. If
a client decrements a write capability's reference count to zero, then the associated byte array
becomes read-only. If a read capability's reference count becomes decremented to zero, the
associated byte array is deleted. Note that volatile byte arrays may be deleted arbitrarily by the
IBP server, but while this affects the success of IBP_store, IBP_copy and IBP_deliver calls,
it does not affect the values of the reference counts.

IBP_probe(capability)

This call allows clients to determine the state of a byte array, for example, whether it exists, how
large it is, and the reference count of the capability.

Thus, a fundamental feature of IBP is the use and management of capabilities instead of names. In

IBP 1.1, each capability is simply a character string, which may be copied from client to client if so
desired. If additional security on top of IBP is desired, the capabilities may be encrypted.

The IBP_copy operation allows a node to remotely move staged data from one depot to another for
reasons of scheduling, proximity or reliability. Thus, IBP provides a flexible interface for logistical QoS.
IBP has been implemented in on top of TCP/IP connections using a daemon at each depot. The one
unfortunate aspect of connection-based delivery is that it is awkward to intersperse staged and end-to-end
communication. A UDP protocol would be more flexible in this regard. Another approach would be to
modify TCP/IP to allow the participation of proxy senders such as our depots.

3.0 Scheduling for Logistical QoS in NGI Computing
In the preceding section we have motivated and described primitive mechanisms for data staging in

support of logistical QoS. While various mechanisms could be used, IBP is the most general of these and
for the purposes of this discussion we will assume that it is the one in use.

Like other such mechanisms, IBP requires that communicating applications take responsibility for
making decisions about when and where to stage and then deliver data. But data staging decisions are
non-trivial, so not every application will be able to make them effectively. Distributed computing in the
dataflow model is a special case that lends itself especially well to scheduling and resource allocation. In
the dataflow model, computation is performed by functional components which take input values and
produce output values but have no side effects. This means that a functional component can execute on
any network node that has the available resources as long as inputs and outputs can be transmitted with
the quality of service required for high performance computing. [8]

The dataflow model, as implemented in the Netsolve system described in the next section, is
particularly appropriate to logistical scheduling (i.e. scheduling for logistical QoS) because data staging
decisions add another dimension to the space of possible schedules but otherwise is compatible with the
AppLeS [9, 10, 11] scheduling paradigm. In addition, when the schedule involves several functional
steps, the dependence graph between these steps forms a run time dependence graph that can be analyzed
to find the critical path through the computation. This analysis allows us to identify communications with
quality of service requirements that are not on the critical path. We can use logistical QoS rather than
end-to-end QoS on these communications with no loss of overall performance.

 7

Fig. 2

3.1 NGI Computing with NetSolve and the Network Weather Service

3.1.1 NetSolve
NetSolve makes an excellent test environment for experiments with logistical scheduling. It is a

software environment for networked computing designed to transform disparate computers and software
components into a unified, easy-to-access computational service. It aggregates the hardware and software
resources of any number of computers that are loosely connected across a network and offers up their
combined power through client interfaces that are familiar from the world of uniprocessor computing (e.g.
MATLAB, simple procedure calls). It uses a client-agent-server paradigm (Figure 2) to deliver the power
of distributed resources while hiding the complexity of the underlying system.

As shown on the figure, a
NetSolve server may be arbitrarily
complex: a uniprocessor, a MPP
(Massively Parallel Processor), a
Shared-Memory Multiprocessor, or a
cluster of workstations. Moreover,
there is no upper bound on the
number of servers that can be
aggregated to form a NetSolve
resource pool, and new servers can
be added on the fly with little effort.
This quality of dynamic
composability contributes to
NetSolve flexibility.

When a user wants a certain
computational task to be performed,
he/she can use any one of a number
of familiar software clients to contact an agent with the request. A NetSolve agent keeps track of
information about all the servers in its resource pool, including their availability, load, network
accessibility, and the range of computational tasks that they can perform. The agent then selects a server
to perform the task, and the server responds to the client’s request. The client's computations are
performed remotely at the server. When the agent informs the client software of the best available
resource to service the request, the client's data is sent to the server and the server uses its installed
software components to perform the computation. When the server finishes the computation, it sends the
result back to the client and the agent is notified of the completion of the task.

As shown in Figure 2, there may be multiple instances of NetSolve agents on the network, and
different clients may contact different agents depending on their locations. The agents exchange
information about their different servers and allow access from any client to any server if desirable.
NetSolve can be used either on the open Internet or on a private Intranet (e.g. inside a department at a
university) without participating in any wide area computation.

3.1.1.1 Current State of NetSolve Development
At present NetSolve has been deployed and is being used in several research institutions. The current

version implements NetSolve's client-agent-server model and includes a suite of software for a variety of
clients and servers. The source code is available at http://www.cs.utk.edu/netsolve. Windows
95/NT versions of the client (C, Fortran and MATLAB [12]) are available and an NT server version is
being developed. The NetSolve team has integrated a variety of numerical and scientific packages into
NetSolve computational servers. These numerical libraries cover several fields of computational science,
including Linear Algebra, Optimization, and Fast Fourier Transforms. Moreover NetSolve's highly
composable architecture allows anyone to easily add resources to the system. The most significant
advances in the recent development of NetSolve include the integration of ScaLAPACK (Scalable Linear

 8

Algebra Package) [13] to exploit the power of multiprocessor NetSolve servers using PVM [14]or MPI
[15] and an interface to the Condor[16-18] system. Applications currently being developed using
NetSolve come from diverse fields, including image processing and neuroscience simulation.

3.1.1.2 NetSolve on the NGI
NetSolve is a novel approach to designing middleware for building computational grids across high

performance networks such as NGI. Its philosophy is to give access to distributed computational
resources via simple and unified interfaces. This approach brings a great level of flexibility to the
NetSolve users, and allows NetSolve to adapt to different classes of users. Indeed, the NetSolve user
community is composed not only of people who use NetSolve as a computational engine, but also those
who use it as an operating environment for building domain-specific metacomputing applications. As a
result, NetSolve is experiencing a rapid increase in popularity and is likely to generate substantially
higher demand on the network as it is used for more complex and diverse applications. There are many
situations in which NGI will be essential to enable NetSolve to satisfy these new requirements. Examples
include:

§ Real-time applications that enable visualization by transforming the user’s input data into a
stream of video images.

§ Some computing environments may provide a NetSolve system access to CPUs only for limited
period of time. In such settings, it is crucial to be able to transfer large amounts of data to the
CPU in time, before it is preempted.

§ We have started experimenting with the use of multiple NetSolve servers that take part in the
parallel execution of large iterative algorithms. Such applications require a very low latency since
the servers need to be synchronized at every iteration.

A standard way of addressing the question of how to provide NetSolve with the necessary
performance guarantees is by using end-to-end QoS mechanisms to reserve bandwidth. However, not
every example has an absolute need for end-to-end QoS. If the communication involved is not on the
critical path of computation, logistical QoS can be used instead. The advantages to the Netsolve user are
many: the use of possibly expensive wide area QoS services are minimized, as is the chance that the
network will have to reject the communication and thus halt the computation due to congestion. The
problem then becomes one of designing schedulers that can find opportunities for using logistical QoS
through data staging and can take account of them in finding high performance, low cost schedules. The
implementation and design of such schedulers is the object of section 3.2.1, and they are clearly leveraged
by IBP as it has been defined in Section 2.2.2.

3.1.2 Network Weather Service
The other key component for this NGI computing strategy is the Network Weather Service (NWS)

[19]. NWS periodically monitors the performance that is deliverable to an application from system
resources, and forecasts what that performance will be for the time frame in which the application will
execute. By working with forecasts of resource performance, scheduling agents can craft a schedule
which makes the best use of the resources that will be available at the time the application will execute.

To generate dynamic performance forecasts, the NWS operates a distributed set of sensors from
which it gathers readings of the instantaneous conditions. Sensors return measurements of deliverable
resource performance such as network bandwidth and latency between hosts, or CPU availability as a
percentage. These measurements may either be based on available performance data or may result from a
small probe that the system conducts of each resource. For example, to measure CPU availability, the
NWS periodically runs local performance monitoring utilities such as uptime and vmstat (on Unix
systems) and attempts to calculate from the resulting data the fraction of the CPU that is available as a
percentage of time. Alternatively, to measure network bandwidth, the NWS moves a small amount of
data between hosts and times the transfer. This latter approach potentially introduces some load on the
network being measured. Active performance experiments such as the bandwidth sensor must be tuned

 9

so that the amount of load they introduce is relatively insignificant compared with the available resource
capacity. The current supported NWS sensors are CPU availability, end-to-end network bandwidth, and
latency. While end-to-end network measurements often imply scalability problems, the NWS organizes its
network performance experiments hierarchically so that only representative host pairs are queried.

The NWS then treats any series of measurements taken from a sensor as a statistical time series for
the purposes of forecasting. To make forecasts, the system applies a variety of different models to the
relevant series simultaneously. Each separate model then produces a forecast of what the next
measurement in that series will be. When the next measurement is available from the sensor, the NWS
calculates the forecasting error associated with each of the time series models. The forecast generated by
the model that yields the lowest cumulative forecasting error at any given time is reported as the forecast.

3.2 Scheduling with Logistical QoS for NGI Computing
To model our scheduling problem, we consider a computing environment that can be viewed as a

completely connected graph where the vertices are called locations and the edges are called
communication links. The links can be used to exchange data between two locations, and the performance
of the communication along one link at a certain time is measured by a metric that may be multi-
dimensional. This model is of course applicable to the Internet, with varying communication latencies and
bandwidths between different sites. Each location can be the host to a processing unit (workstation,
cluster of workstations, MPP, etc.) and to any number of storage units (memories, disks, etc.) that are
accessible to the processing unit. Some of the storage units will play the role of depots where data can be
staged for logistical QoS. Each processing unit runs a server (e.g. a NetSolve server) that can grant users
access to CPU time on the unit. Software components that can be used to perform users' computations on
processing units are stored on some of the storage units in the network. Finally, the input data to a user's
computation are also stored on some storage units (e.g. on the user's host).

Let us suppose that the user performs computation on such a system during a session. At the
beginning of the session, an initial set of input data is available on some of the storage units. The user
performs possibly several computations, each of them generating output data that can be input to a
subsequent computation. More generally, a computation can be viewed as having a "context" that consists
of user data (original input, intermediate data) and possibly of computation specific information
(checkpoint files, temporary files). That data can be used by different components of the computation and
can be replicated across different data depots in advance to increase the benefits of locality. This is what
we call staging in the context of this document. In this section, we explain what research is involved in
the design of the staging-capable schedulers.

We postulate that a computation can be segmented in the four following steps:
1. choosing a processing unit,
2. making sure that all the input data and the software components are available to the

processing unit,
3. performing the actual computation, thereby generating output data,
4. possibly moving output data to other locations.

Note that in our model, the software components can be seen as read-only user data.
To provide a model of this process it is convenient to define the data map abstraction. A data map is

a function that associates each remote storage unit with the set of software components and user data
present at that unit during a session. Before any computation has been performed, the data map is such
that no location contains any data that is the output of a computation. Several depots can contain the same
user data, modeling replication. The two basic operations that can be performed by the system can now
be viewed as functions that operate on a data map to generate another data map. The first is a computation
that generates output at the location where the chosen processing unit for the computation is located. The
second is a transfer that moves data around among distributed storage units. One can associate a cost to
each operation. The cost of a transfer, for instance can be the estimated by the aggregate time that it takes
to communicate data over the different links. The cost of a computation can be represented by the
estimated time for a processing unit to access the software components and input data and to generate

 10

output data. A session can be seen as a succession of basic operations, and the sum of all the costs of
these operations is the cost of the entire session. We want to emphasize here that even though time is the
most intuitive cost, the notion of cost is fairly general and the cost may be in fact be multi-dimensional.

3.2.1 Building a Scheduler
The objective of a scheduler in this setting is to minimize the cost of a user's session, resulting in

increased performance for the end-user. Minimizing costs can be achieved by data staging on the
appropriate data depots in conjunction with corresponding choices of the computing units to be used
during a user's session. The scheduler must therefore have some knowledge of what the user intends to do
during his/her session. Different levels of knowledge are available depending on the paradigms of the
application the user is using to access the computational environment (e.g. NetSolve). For instance the
user may send requests to the scheduler one by one at run-time. This is the current NetSolve paradigm. In
such a case, we say that the scheduler must perform a one-step decision to assign a processing unit to the
user's computation. One can envision a more sophisticated paradigm where the user specifies
simultaneous computations at once and several processing units must generally be assigned to each
computation. It is also possible that the user can specify a sequence of groups of simultaneous
computations and provide that information for the scheduler. In that case, we say that the scheduler must
make a multi-step decision. The most general cases would be for the user to specify an entire data-
dependency graph for his/her session and let the scheduler process the graph to decide on a schedule in a
multi-step fashion.

In order to make decisions about a particular schedule and evaluate the corresponding costs, the
scheduler must predict the state of the computing environment in terms of network performances and
processor loads. We intend to use the Network Weather Service (NWS) and integrate it with the IBP
protocol for such predictions (see Section3.2.1). Depending on the confidence in the prediction, the
scheduler will choose the appropriate level of sophistication for the schedules. Indeed, the time spent to
improve a scheduling decision must be chosen according to the expected level of accuracy of the
prediction.

The AppLeS project proved that the use of schedulers embedded in agents can take distributed
applications to new levels of performance in dynamically changing distributed environments. However,
that p roject also showed that not only the design, but also the implementation of such scheduling agents
is very difficult. NetSolve's framework hides the low-level details of distributed computing, but it offers
only rudimentary scheduling strategies for the moment, especially since it does not try to perform data
staging. Combining the NetSolve framework with the scheduling philosophy of AppLeS is well
positioned to provide an enhanced environment for the efficient execution of distributed applications. The
deployment of such an environment on the NGI will be leverage the IBP protocol of Section 2.2.2.

3.2.2 Cases of Interest
In order to experiment with the IBP and to better understand the scheduling issues with staging in

the computing environment described in the previous section, it is possible to implement a succession of
schedulers that correspond to cases of increasing complexity. We will first consider one-step schedules
that consist of evaluation of a single functional compuation and then consider multiple-step schedules,
which consist of multiple functional computations connected by data dependencies.

§ NetSolve's current model — This is the most direct implementation, since the current NetSolve
model requires only a one-step schedule and there is no data staging. In the data dependence
graph of this case, all data flows between the client and the server. There is already a widely used
implementation of such a paradigm. However, re-implementing such a simple scheduler provides
a perfect testbed for the IBP and would undoubtedly provide feedback to the IBP implementers.

§ NetSolve with basic staging — Many members of the NetSolve user community have expressed
a desire for “caching capabilities” at the server side. Instead of implementing an ad-hoc solution,
using a combination of IBP and a real scheduler makes it possible to allow the servers to keep
copies of some of the user's input and output data. This is really a sub-case of data staging where

 11

Data transfer

Capability transfer

Y = netsolve(‘f’,X)

Client Server #1 Server #2

Compute Y

Z = netsolve(‘g’,Y)

Compute Z

Store(Z)

X

Y

Z

Capability of B

Capability of B

Fig. 3

each server is also a data depot, and in the data dependence graph all data flows either between
the client and the server or is a loop from the server to itself (in the case of consuming cached
data). This scheme can lead to replication of a piece of data on more than one server, but a server
can only copy data from the client. In order to manage the cache the scheduler has to make some
assumptions about the probability of using of the data in future computations at that server, but
this is still be a one-step schedule for the scheduler. The performance of NetSolve would be
greatly improved by such a scheduler, as it would allow NetSolve to use data locality within a
computation for the first time.

§ NetSolve with general staging — In this case, the scheduler can perform any transfer it deems
appropriate in order to minimize the cost of the user’s computations. For instance, a server might
acquire one part of a user’s input from the client host, and one part of the input from another
nearby server. The data dependence graphs are quite general in this case. This can still be done
in a one-step schedule. In Figure 3, we give an example of how the IBP mechanisms can be used
by NetSolve to achieve performance via data staging.

In this example, the user
wants to perform two
computations during his/her
session and the output of the
first computation is the input to
the second computation.
However, the first computation
can only be performed on
Server 1, whereas the second
computation can only be
performed on Server 2. This
might be due to the presence of
essential software components that cannot be exchanged among the servers (e.g. for architecture
incompatibility reasons). Such cases are very common and reported by many NetSolve users. The
left part of the figure shows the instruction flows on the three participant hosts as well as the data
transfers. The output to the first computation, Y, stays staged on Server 1 (which is also a data
depot) and is delivered to Server 2 when it is needed for the second computation. Thanks to IBP,
it is possible to exchange capabilities instead of actual data, and to use those capabilities to access
staged data. A scheduler decides that the computations should be performed as it is shown in the
example, and then uses IBP to implement such a schedule.

§ More advanced models —The natural extension to the three previous schemes is to add multi-
step decision making to the scheduler. This greatly increases the number of possibilities and
parameters in the decision making process, especially when one considers the full dynamic data-
dependency graph. The implementation of such schedulers will face difficult theoretical problems
as highlighted in Section 3.2.3. At the moment, NetSolve does not provide any user interface that
could make use of a multi-step scheduler because data staging cannot be conveniently
implemented. Therefore, multi-step schedules must return all data to the client at every step, and
so present no advantage over one-step schedules.

§ Constraint-based models — One issue we have not mentioned so far is the fact that there might
be several constraints on the system. One example is limited disk space in the storage units. There
may be situations where there is a shortage of disk space before a user's session is terminated and
the scheduler must then choose to discard some of the cached/replicated user data. Another
example would be in the case of non-free resources, where a certain amount of money is charged
for the use of a resource (storage or processing). The user may then ask the scheduler to minimize
the time it takes to perform the session while staying below a fixed monetary cost.

 12

3.2.3 Implementation of Schedulers
As we have already mentioned, the schedulers will be implemented on top of IBP. The use of IBP

frees the implementers from the hassle of data logistics and lets them concentrate on the important
theoretical issues. We assume that schedulers will be making decisions at run time, using predictions from
the Network Weather Service to make scheduling decisions. However, we have seen that for general
paradigms (multi-step, data-dependency graph), finding the optimal schedule can require extensive
computations. In fact, the general cases are bound to be NP-complete. The schedulers will then use
heuristics, still being developed, to approximate an optimal schedule. The trade-off between the additional
time spent to improve a scheduling decision and the corresponding gain in session cost is a very important
issue and will be decided based on the confidence in the NWS predictions. For a highly predictable
environment, it is worth spending some extra time refining the schedule, whereas a more naive schedule
would be sufficient in a more uncertain environment. In addition to the use of prediction confidence, and
in the case of multi-step decision making, the scheduler should periodically re-evaluate its schedule to
steer and adapt it to changing network and processor conditions.

In the NetSolve framework, such schedulers will be implemented within the NetSolve agent. IBP,
however, will be integrated with every component of the software, including client interfaces, agents, and
servers.

3.2.4 Extensions for Fault Tolerance
A subsidiary use of IBP and logistical scheduling is to extend NetSolve's support for fault tolerance.

The NetSolve system is that can already be used to deliver fault tolerance transparently through the use of
checkpointing mechanisms implemented completely on the server. However, such checkpointing
produces data that must be stored outside the server in order to allow it to be retrieved in case of failure.
In cases where the storage containing the checkpoint can fail, more than one replica of this data must be
maintained. This is particularly true in cases where storage is “borrowed” from servers which can reclaim
it if needed.

As is well known in checkpointing community, the time taken to produce and store a checkpoint can
be huge in the case of parallel computations on large data sets. For this reason, location of the checkpoint
data is of crucial importance. Logistical scheduling can be used as a way to achieve high performance
through the use of data locality, but also as a way to implement fault tolerance across different computing
resources. One can envision storage servers whose only role is to store checkpoint files until
corresponding computations have completed successfully. Such servers fit perfectly in our model since
the checkpoint file can be modeled as an output that is not visible to the user.

3.2.5 The NWS and the Internet Backplane

We plan to integrate the Network Weather Service and the Internet Backplane so that the NWS is
aware of the existence of storage resources at IBP depots and can track and predict their availability for
any particular computation. Programs written to use IBP can then be made resource aware and hence
optimize their resource usage, including their use of distributed storage, "on-the-fly."

Our initial experiences with Netsolve show that software infrastructure can shield the user from the
complexities of network programming while delivering good performance (see Section 3.1.1). Similarly,
experiences with the NWS and Application Level Schedulers (AppLeS) indicate that scheduling agents
which consider dynamically varying resource performance levels perform well in network environments
[9, 10, 11]. To combine the benefits of these two separate approaches, we must enhance the current NWS
functionality by developing new resource sensors for the IBP and extending the current forecasting
system.

Since the application interface can often impact performance dramatically, it is important to monitor
performance levels from the IBP layer itself. To do so, we are developing IBP performance sensors to be
integrated into the overall system. In particular, the storage performance of potential staging sites will be
an important parameter for an IBP scheduler to consider. We will develop both passive storage
performance sensors based on current monitoring technology and active storage performance experiments

 13

as part of this work. Similarly, the availability of ``in-core'' memory space at potential staging and
execution sites will be important to IBP scheduling. The current NWS memory sensors are rudimentary
and can make only a gross approximation of available real memory.

We will also need to develop longer range forecasting techniques for the IBP. Current NWS
forecasting methods yield one-step-ahead forecasts. A scheduler using NWS forecasts must consider
them valid for only a single future sampling period, typically 10 to 60 seconds. Since the time frames of
interest to IBP applications may be large, we will require longer range forecasting as well. In addition,
current network infrastructure provides high-fidelity capacity monitoring facilities. It is possible, for
example, to get accurate packet arrival rates from various network routers and gateways. We will develop
combinational forecasters that correlate existing monitor data, particularly for network resources, with
end-to-end performance measurements to derive more accurate forecasts. Our initial experiences with
such hybrid techniques indicate that they can yield better forecasts than their univariate counterparts.

4.0 Conclusion: Expanding Our Definition of the Network
The network is often thought of as consisting of resources which hold no application state. There is

no model of storage use other than file servers and file caches. The Network Computer is distinguished
from a PC by the lack of stored application state, and so is often characterized as “diskless.” But since a
diskless NC cannot achieve adequate performance, developers have already added a disk for the purpose
of caching application state held in file servers. Caches are transparent, but they are not flexible. A
flexible, low overhead-distributed storage model is needed, but there is no appropriate standard.

Adding storage to the definition of the network will enable a new generation of application designers
to make much stronger assumptions about the level of control they can exercise over remote resources.
The new communicative capabilities of the NGI will be multiplied by the possible ways in which
information can be staged and delivered.

One effect of increasing control over storage at the network’s periphery is that the storage itself can
be implemented in the network core. The application-specific decisions about exactly where to place data
and when to move it can be made by applications using facilities such as the Network Weather Service or
even offloaded to services implemented completely within the network. In this scenario, a network can
model flows that persist over weeks or years as well as flows that are over in a few milliseconds.
Information will flow at an appropriate pace without creating artificial boundaries, and the network will
manage all of it. Other consequences include the following:

§ The Power of Global Naming —When a pool of resources is named by a set of names that have
a global interpretation throughout the network, then we have the power of pointers. A name can
be stored or communicated at will without any danger of leaving its scope. The Web created
global names (URLs) for files accessed by application-level protocols. This created a community
of users. IBP creates global names for files accessed by a very lightweight protocol, and so will
create a community of applications.

§ Flexible Storage Management — The key to creating a high performance interface to any
architecture is flexibility: the ability to make it enter any state and exhibit any behavior that is
possible at the lower level. It is very difficult to create a high performance interface that also
hides basic resources. The TCP/IP interface hides buffer management, and so cannot model
staging except by the introduction of unnecessary high level overhead such as setup of multiple
connections. IBP expresses storage explicitly, and thus allows a much greater degree of
flexibility in its management.

§ Storage Enables Scalability — Since a stored file can be copied, each copy can serve a large
number of user and can also be used to create subsequent copies. Thus the dissemination of any
file defines a multicast tree which exists over time as well as space. If there is adequate support
for the convenient location and creation of subsequent copies, then this is the most scalable
approach to data dissemination possible. Using multicast delivery of messages when storage

 14

dissemination will do is convenient but destroys scalability. File dissemination can be made
convenient instead.

§ Storage vs. Network: The Trade-off Changes — Storage does not trade off well against the
local area network because LAN bandwidth (100-1000Mb/s) has overtaken disk bandwidth (40-
80 Mb/s). Disk compares very well to typical flows in a next generation wide area network (10-
20Mb/s)

 15

Works Cited

1. Casanova, H., J. Dongarra, and K. Seymour, Client User's Guide to NetSolve, . 1996.
2. Casanova, H. and J. Dongarra, NetSolve: A Network Server for Solving Computational Science

Problems. The International Journal of Supercomputer Applications and High Performance
Computing, 1997.

3. Casanova, H. and J. Dongarra, NetSolve's Network Enabled Server: Examples and Applications.
IEEE Computational Science & Engineering, 1998.

4. J. Crowcroft, et al., A Rough Comparison of the IETF and ARM Service Models. .
5. Banerjea, A., et al, The Tenet Real-Time Protocol Suite: Design, Implementation and Experiences.

IEEE/ACM Transactions on Networking, 1996. 4.
6. Zhang, L.,et al, RSVP: A New Resource ReSerVation Protocol. IEEE Network, 1993. September.
7. Morris, J.H., et al., Andrew: A Distributed Personal Computing Environment. Communications of

the ACM, 1986. 20(3): p. 184-201.
8. Beguelin, A., et al. Graphical development tools for network-based concurrent computing. in

Supercomputing 91. 1991. Albuquerque.
9. Berman, F., et al. Application-Level Scheduling on Distributed Heterogeneous Networks. in Proc.

of Supercomputing'96, Pittsburgh. 1996.
10. Berman, F. and R. Wolski, Scheduling from the perspective of the application. High-Performance

Distributed Computing, 1996.
11. Spring, N. and R. Wolski. Application level scheduling of gene sequence comparison on meta-

computers. in ACM 1998 International Conference on Supercomputing. 1998.
12. MathWorks Inc., MATLAB Reference Guide. 1992.
13. Blackford, L.S., et al., ScaLAPACK Users' Guide. 1997, Philadelphia, PA: Society for Industrial

and Applied Mathematics.
14. Geist, A., et al., PVM: Parallel Virtual Machine. A Users' Guide and Tutorial for Networked

Parallel Computing. 1994, Cambridge, MA: MIT Press.
15. Snir, M., et al., MPI: The Complete Reference. 1996, Cambridge, MA: MIT Press.
16. Litzkow, M. and M. Livny. Experience with the Condor Distributed Batch System. in Proc. of

IEEE Workshop on Experimental Distributed Systems. 1990.
17. Litzkow, M., M. Livny, and M.W. Mutka. Condor - A Hunter of Idle Workstations. in Proc. of the

8th International Conference of Distributed Computing Systems. June 1988.
18. Pruyne, J. and M. Livny, A Worldwide Flock of Condors : Load Sharing among Workstation

Clusters. Journal on Future Generations of Computer Systems, 1996. 12.
19. Wolski, R., Forcasting network performance to support dynamic scheduling using the Network

Weather Service, in Proceedings of the 6th IEEE Symposium on High Performance Distributed
Computing. 1997, IEEE Computer Society Press: Los Alamitos, CA. p. 316-325.

