
Biological Sequence Alignment On The Computational

Grid Using The Grads Framework ∗

Asim YarKhan (yarkhan@cs.utk.edu)
Computer Science Department, University of Tennessee

Jack J. Dongarra (dongarra@cs.utk.edu)
Computer Science Department, University of Tennessee
Computer Science and Mathematics Division, Oak Ridge National Laboratory

Abstract.

In spite of the existence of several Grid middleware projects, developing and
executing programs on the computational Grid remains a user intensive process. The
Grid Application Development Software (GrADS) project is working to make the
Grid easy to use despite the dynamically changing status of Grid resources. Several
software packages are being ported to the GrADS framework in order to guide its
development. In this paper, we present the work done to Grid-enable a biological
sequence alignment package (FastA) and to run it under the GrADS framework.
Protein and genome sequence alignment is a basic operation in bioinformatics and
tends to be very compute intensive. We discuss the advantages of using GrADS
framework for FastA.

Keywords: biological sequence alignment, GrADS project, grid scheduling

1. Introduction

The Grid Application Development Software (GrADS) project [4] is
developing a framework to make it simpler to prepare and execute
programs on a computational Grid. In order to guide this develop-
ment, an implementation of the GrADS framework known as GrADSoft
[5, 6] is being developed simultaneously with a set of diverse soft-
ware packages. This set of packages includes the numerical linear alge-
bra library ScaLAPACK [19], the physics/astrophysics problem solving
environment Cactus [1, 2, 13] and satisfiability solvers for circuit design.

This paper describes the work done to enable a biological sequence
alignment application FastA [18] to run on the GrADSoft framework.
The advantages and challenges of a Grid based implementation will be
discussed.

∗ This work is supported in part by the National Science Foundation con-
tract GRANT #E81-9975020, SC R36505-29200099, R011030-09, “Next Generation
Software: Grid Application Development Software (GrADS)”.

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

fasta_grads.tex; 11/07/2003; 9:32; p.1



2 Asim YarKhan and Jack Dongarra

C
on

fi
gu

ra
bl

e
ob

je
ct

pr
og

ra
mWhole

program
compiler

A
pp

lic
at

io
n

Libraries

Software
components

Program preparation
system (PPS)

Realtime
performance

monitor

Binder

Grid 
runtime 
system

Scheduler

Program execution
system (PES)

P
ro

bl
em

 S
ol

vi
ng

E
nv

ir
on

m
en

t
Negotiation

Performance
feedback

Figure 1. The Grid Application Development Software (GrADS) Architecture

2. The Computational Grid and the GrADS Project

Several Grid [10] computing infrastructure projects exist to enable the
use of geographically and administratively distributed resources, such
as Globus [9] and Legion [11]. However, developing and deploying ap-
plication across these Grid resources remains a user intensive process.
Among other tasks, the user is responsible for ensuring that all the
supporting framework exists on the Grid resources, that the resources
are available and not currently busy, that the connectivity between the
resources is sufficient, etc. Additionally, the user needs to track the
application to ensure that the Grid resources have not changed so as
to cause the application to fail or be unacceptably delayed.

The Grid Application Development Software (GrADS) [4] project is
a multi-university research project which works to simplify distributed
heterogeneous computing in the same way that the World Wide Web
simplified information sharing. The GrADS project intends to provide
tools and technologies for the development and execution of applica-
tions in a Grid environment. In the GrADS vision, the end user simply
presents their parallel application to the framework for execution. The
framework is responsible for scheduling the application on an appro-
priate set of resources, launching and monitoring the execution, and, if
necessary, rescheduling the application on a different set of resources.
A high-level view of the GrADS architecture [12] is shown in Figure 1.

In the GrADS vision, the Program Preparation System (PPS)
handles application-development, composition, and compilation. The
application source code is manipulated in a high level problem solving

fasta_grads.tex; 11/07/2003; 9:32; p.2



Biological Sequence Alignment Using GrADS 3

environment (PSE) to integrate software libraries and to prepare it for
further processing. The compiler analyzes the application and generates
a intermediate representation which is stored as the configurable object
program (COP). The COP encapsulates all the results of the PPS for
later usage, including application specific performance models and data
mappers. The COP may used multiple times and can be stored for later
use.

The Program Execution System (PES) handles resource discov-
ery, scheduling, execution, performance monitoring and rescheduling.
In order to execute an application, the user submits the application
specific parameters to the GrADS system. The application COP is
retrieved and the PES is invoked. The scheduler uses the grid run-time
system which is built on top of Globus [9] Monitoring and Discovery
Service (MDS) and Network Weather Service (NWS) [25] to determine
the availability and status of the appropriate grid resources. The per-
formance model and mapper from the COP are used by the scheduler
to determine a good set of resources for the application. The binder
compiles the intermediate code to the resource-specific format, and
enables the performance monitoring to take place. The application is
then launched on the scheduled resources. A real-time performance
monitor tracks the application performance on the grid resources, and
if the performance contract (i.e., expected performance behavior) [23]
is violated, the rescheduler may migrate the application to alternate
resources.

The previous section outlined the long-term GrADS vision; as com-
ponents of this vision are implemented, they are incorporated in a
prototype implementation of GrADS called GrADSoft.

3. Biological Sequence Matching and the Grid

Sequence matching is one of the most important primitive operations
in computational biology, often forming the basis of more complicated
and sophisticated operations. For example, projects that assemble DNA
from shotgun sequencing use similarity searches to find overlapping
fragments. The two tasks involved in matching sequences are similarity
computation and alignment. In similarity computation, a metric is cal-
culated that measures the syntactic difference between two sequences.
In the alignment task, the costs of additions, deletions and substitutions
required to match one sequence with the other are calculated. The ma-
trix of costs associated with the additions, deletions and substitutions
are determined by biologists. Sequence matching tasks often needing
to be performed repeatedly over huge protein and genome databases.

fasta_grads.tex; 11/07/2003; 9:32; p.3



4 Asim YarKhan and Jack Dongarra

The full pairwise sequence matching task is usually solved as us-
ing dynamic programming technique, similar to calculating the edit
distance between two strings. Well known dynamic algorithms exist to
compute the alignment (e.g., Needleman-Wunsch [17], Smith-Waterman
[22]), however the computational costs of these algorithms high. With
the size of the protein and genome databases growing rapidly, the
methods tend to be too slow on traditional computing resources. Many
heuristic approaches to speeding up the alignment problem exist, two
of the better known are the fast BLAST algorithm [3] and the slightly
slower, more accurate FastA algorithm [18]. FastA is approximately 10-
50 times faster than the Smith-Waterman algorithm and is often used
as a good compromise between speed and accuracy.

Given the size and growth of the protein and genome sequence
databases, it is often undesirable to transport and replicate all databases
over a wide area network. A Grid approach to sequence matching can
keep all the databases at a small number of sites, while bringing the
computation to the data. Additionally, since searches over different
parts of the reference database can be carried out without any com-
munication between nodes, this is a application is a good fit for a
Grid implementation. In this paper we demonstrate one approach to
adapting the sequence alignment package FastA [8] to run on a Grid
using the GrADS framework.

4. FastA, GrADSoft and Data Locality

The FastA sequence alignment implementation developed and coded
by William Pearson [18, 8] has been adapted by us to use remote,
distributed databases. These databases may be partially replicated on
some or all of the grid nodes. The original MPI master-worker imple-
mentation assumed that the reference databases were only available at
the master node. In the original implementation, this reference data was
communicated in equal sized messages from the master to the workers,
so as to provide an approximately equal distribution of the reference
data to each worker.

The GrADS version of FastA has the reference databases residing at
the worker nodes; the master sends a message informing each worker
what portion of which database it should match against. In a Grid
scenario, the worker nodes need not be homogeneous, so we schedule
varying work loads on the workers in order to minimize the time to
completion for the entire query. The master node distributes queries to
each worker and collects and collates the results.

fasta_grads.tex; 11/07/2003; 9:32; p.4



Biological Sequence Alignment Using GrADS 5

Since databases may be located at more than one worker, workers
may be assigned only a portion of a database in order to minimize
the execution time. FastA provides an interesting scheduling challenge
due to the database locality requirements and large computational
requirements.

5. Performance Model, Mapper, Performance Contracts

The FastA Performance Model estimates the execution time for the
application on a specific set of Grid nodes given measures of vari-
ous machine and network characteristics (e.g., the free memory, CPU
power/availability and network latency and bandwidth). These sys-
tem characteristics are obtained from Globus MDS and the Network
Weather System and may be estimated into the near future. The Per-
formance Model was determined by running a variety of experiments
over query sequences and databases. The observed execution times were
fitted to a nonlinear model based on the length of the query strings
and the databases. Since there is no worker-to-worker communication
in this application, the only communication aspect that was the time
to distribute the queries to the worker nodes and collect results. This
model has been designed to extrapolate beyond the parameters of the
original experiments, but it can only be expected to be accurate within
those parameters.

A Mapper is an necessary complement for the Performance Modeler.
The Mapper allocates different amounts of work to the grid nodes in
order to minimize the overall execution time. The amount of work
allocated depends on which databases are available on each node and
the status of the node and the network. A simple linear approximation
to the entire performance model is used to estimate the execution time
for different data distributions. A freely available linear solver [15, 24]
was used to choose the data distribution so as to minimize the execution
time. Figure 2 shows the GrADSoft framework using data locality and
system status information in order to make scheduling decisions.

Scheduling in GrADSoft works by presenting trial sets of eligible
grid nodes to the application specific Performance Model in order to
obtain an estimated execution time. The Performance Model calls the
Mapper to define a data distribution over the nodes, and then returns
the estimated time required for the problem over this data distribu-
tion and using the current system information from NWS. The set of
nodes which have then lowest estimated execution time for the problem
are used to run the problem. The Scheduler generates the trial sets
of nodes using deterministic greedy orderings along with some prior

fasta_grads.tex; 11/07/2003; 9:32; p.5



6 Asim YarKhan and Jack Dongarra

Grid Resources

Align: GATA...
Against: Mouse,

Yeast

User

GrADSoft

Scheduling
Monitoring
Performance Estimation

Speed/load
Memory

Mouse Yeast

Speed/load
Memory

Mouse Yeast

Grid Site A

Other

Grid Site B

Other

Figure 2. An overview of FastA running on the Grid; system status and database
locality are used in making scheduling decisions

network knowledge so that nodes within a single cluster tend to be
presented together [5, 7, 6]. Other schedulers can also be used in the
GrADSoft framework, for example, experiments have been performed
using a simulated annealing scheduler [26] and an exhaustive search
scheduler exists.

A key feature of the GrADS architecture is the performance contract
which specifies an expected execution performance to be obtained on
a set of grid resources. A performance contract can be developed using
the application specific performance model which takes into account the
capabilities and current state of the grid resources. Since we are dealing
with a changing grid environment, there are many circumstances that
may cause an application to violate its performance contract. Some
possible reasons for failing performance contracts could be that other
processes have been launched on the hosts, or the communication links
have become crowded. The user is informed via a graphical display of
the performance violation, and can query the display to obtain more
detailed information about which performance measures have caused a
problem (e.g., CPU usage, communication bandwidth, etc.).

fasta_grads.tex; 11/07/2003; 9:32; p.6



Biological Sequence Alignment Using GrADS 7

6. Executing FastA using GrADSoft

In the preparation phase, the GrADSoft binder component edits the
FastA binary to enable performance monitoring. Calls to a performance
measurement and monitoring tool AutoPilot [21, 20] are inserted into
the binary. These calls spawn a parallel thread which reports the status
of the execution to an external AutoPilot manager program. AutoPilot
monitors performance information obtained by using the Performance
API (PAPI) [14, 16] in addition to other message passing measures.
Additionally, in the preparation phase, the Performance Model and
Mapper specific to the FastA application are loaded for use by the
GrADSoft scheduler.

GrADSoft uses the grid runtime system to obtain current infor-
mation about available Grid resources. The Scheduler uses this infor-
mation along with the Performance Model and Mapper to generate a
near-optimal schedule for the application. The application is launched
on the selected Grid resources, with a master process being run on the
first host and worker processes being run on all the other hosts. While
the application runs, the AutoPilot monitor thread reports the status
to the AutoPilot manager. The external AutoPilot manager can be used
to present the user with various views of the performance measures in
order to determine if the execution is progressing as expected.

The master process informs each worker about which section of the
reference database it is responsible based on the data distribution and
schedule that is generated by the Scheduler. Each worker process loads
up its section of the reference database into its memory. For each query
sequence, the master sends the sequence to each worker, and collects
the replies from the worker. The master summarizes and presents the
results to the user.

7. Summary

This work was demonstrated at Supercomputing 2002, along with sev-
eral other demonstrations of the GrADS framework. The GrADSoft
architecture greatly reduces the burden on the end user of finding,
selecting and using the appropriate grid resources for their project.
The GrADS framework provides a plausible method for providing large
amounts of computing power to applications on demand. The logistic
tasks of moving the application to the site of the data and gathering
the results are handled by the framework.

fasta_grads.tex; 11/07/2003; 9:32; p.7



8 Asim YarKhan and Jack Dongarra

References

1. Gabrielle Allen, David Angulo, Ian Foster, Gerd Lanfermann, Chuang Liu,
Thomas Radke, Ed Seidel, and John Shalf. The Cactus Worm: Experiments
with dynamic resource discovery and allocation in a grid environment. Inter-
national Journal of High Performance Computing Applications, 15(4):345–358,
2001.

2. Gabrielle Allen, Thomas Dramlitsch, Ian Foster, Nick Karonis, Matei Ripeanu,
Ed Seidel, and Brian Toonen. Supporting efficient execution in heterogeneous
distributed computing environments with Cactus and Globus. In Proceedings
of Supercomputing Conference, November 2001.

3. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic
local alignment search tool. Journal of Molecular Biology, 215:403–410, 1990.

4. Fran Berman, Andrew Chien, Keith Cooper, Jack Dongarra, Ian Foster, Dennis
Gannon, Lennart Johnsson, Ken Kennedy, Carl Kesselman, John Mellor-
Crummey, Dan Reed, Linda Torczon, and Rich Wolski. The GrADS Project:
Software support for high-level Grid application development. International
Journal of Supercomputer Applications, 15(4):327–344, 2001.

5. Holly Dail. A modular framework for adaptive scheduling in grid application
development environments. Master’s thesis, University of California at San
Diego, March 2002. Available as UCSD Tech. Report CS2002-0698.

6. Holly Dail, Fran Berman, and Henri Casanova. A decoupled scheduling ap-
proach for grid application development environments. Journal of Parallel and
Distributed Computing, 2003. To appear.

7. Holly Dail, Henri Casanova, and Francine Berman. A Decoupled Scheduling
Approach for the GrADS Program Development Environment. In Proceedings
of Supercomputing Conference, November 2002.

8. FASTA package of sequence comparison programs at
ftp://ftp.virginia.edu/pub/fasta.

9. I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure
Toolkit. The International Journal of Supercomputer Applications and High
Performance Computing, 11(2):115–128, Summer 1997.

10. Ian Foster and Carl Kesselman. The Globus Toolkit. In Ian Foster and Carl
Kesselman, editors, The Grid: Blueprint for a New Computing Infrastructure,
pages 259–278. Morgan Kaufmann, San Francisco, CA, 1999. Chap. 11.

11. Andrew S. Grimshaw, William A. Wulf, and the Legion team. The Legion
Vision of a Worldwide Virtual Computer. Communications of the ACM,
40(1):39–45, January 1997.

12. K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper, L. Torczon,
F. Berman, A. Chien, H. Dail, O. Sievert, D. Angulo, I. Foster, R. Aydt,
D. Reed, D. Gannon, L. Johnson, C. Kesselman, J. Dongarra, S. Vadhiyar,
and R. Wolski. Toward a framework for preparing and executing adaptive grid
programs. In 16th International Parallel and Distributed Processing Symposium
(IPDPS ’02 (IPPS and SPDP)), pages 171–171, Washington - Brussels - Tokyo,
April 2002. IEEE.

13. Chuang Liu, Lingyun Yang, Ian Foster, and Dave Angulo. Design and evalua-
tion of a resource selection framework for Grid applications. In Proceedings of
the 11th IEEE Symposium on High-Performance Distributed Computing, July
2002.

14. K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, and T. Spencer.
End-user tools for application performance analysis using hardware counters.

fasta_grads.tex; 11/07/2003; 9:32; p.8



Biological Sequence Alignment Using GrADS 9

In International Conference on Parallel and Distributed Computing Systems,
August 2001.

15. lp solve FTP site at ftp://ftp.es.ele.tue.nl/pub/lp_solve.
16. Philip Mucci. The performance API PAPI. White Paper of the University of

Tennessee, http://icl.cs.utk.edu/projects/papi/, March 2001.
17. S. B. Needleman and C. D. Wunsch. A general method applicable to the

search for similarities in the amino acid sequence of two proteins. J. Mol.
Biol., 48:443–453, 1970.

18. W.R. Pearson and D.J. Lipman. Improved tools for biological sequence com-
parison. Proceedings of the National Academy of Sciences of the United States
of America, 85:2444–2448, 1988.

19. Antoine Petitet, Susan Blackford, Jack Dongarra, Brett Ellis, Graham Fagg,
Kenneth Roche, and Sathish Vadhiyar. Numerical libraries and the Grid.
The International Journal of High Performance Computing Applications,
15(4):359–374, November 2001.

20. Randy L. Ribler, Huseyin Simitci, and Daniel A. Reed. The Autopilot
performance-directed adaptive control system. Future Generation Computer
Systems, 18(1):175–187, September 2001.

21. R.L. Ribler, J.S. Vetter, H. Simitci, and D.A. Reed. Autopilot: Adaptive
Control of Distributed Applications. Proceedings of the 7th IEEE Symposium
on High-Performance Distributed Computing, July 1998.

22. T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences. Journal of Molecular Biology, 147:195–197, 1981.

23. Frederik Vraalsen, Ruth A. Aydt, Celso L. Mendes, and Daniel A. Reed. Per-
formance Contracts: Predicting and monitoring grid application behavior. In
Proceedings of the 2nd International Workshop on Grid Computing, Nov 2001.

24. H.P. Williams. Model Building in Mathematical Programming. Wiley,
Chichester, New York, second edition, 1995.

25. Rich Wolski, Neil T. Spring, and Jim Hayes. The Network Weather Service:
a Distributed Resource Performance Forecasting Service for Metacomputing.
Future Generation Computer Systems, 15(5–6):757–768, October 1999.

26. Asim YarKhan and Jack J. Dongarra. Experiments with scheduling using sim-
ulated annealing in a Grid environment. Lecture Notes in Computer Science,
2536:232–242, 2002.

Address for Offprints: Innovative Computing Laboratory, Computer Science De-
partment, University of Tennessee, 1122 Volunteer Blvd Suite 413, Knoxville, TN
37996-3450, USA, Phone: USA 865-974-8295

fasta_grads.tex; 11/07/2003; 9:32; p.9



fasta_grads.tex; 11/07/2003; 9:32; p.10


