A Fast Batched Cholesky Factorization on a GPU

Tingxing Dong, Azzam Haidat, Stanimire TomoY, and Jack Dongart&t
* Innovative Computing Laboratory
University of Tennessee, Knoxville
Knoxville, TN 37916
T Oak Ridge National Laboratory, USA
! University of Manchester, UK
{tdong, haidar, tomov, dongaf@utk.edu

Abstract—Currently, state of the art libraries, like
MAGMA, focus on very large linear algebra problems,
while solving many small independent problems, which
is usually referred to as batched problems, is not given
adequate attention. In this paper, we proposed a batched
Cholesky factorization on a GPU. Three algorithms — non-
blocked, blocked, and recursive blocked — were examined.
The left-looking version of the Cholesky factorization is
used to factorize the panel, and the right-looking Cholesky
version is used to update the trailing matrix in the recursive
blocked algorithm. Our batched Cholesky achieves up to
1.8x speedup compared to the optimized parallel imple-
mentation in the MKL library on two sockets of Intel
Sandy Bridge CPUs. Further, we use the new routines to
develop a single Cholesky factorization solver which targs
large matrix sizes. Our approach differs from MAGMA
by having an entirely GPU implementation where both
the panel factorization and the trailing matrix updates are
on the GPU. Such an implementation does not depend
on the speed of the CPU. Compared to the MAGMA
library, our full GPU solution achieves 85% of the hybrid
MAGMA performance which uses 16 Sandy Bridge cores,
in addition to a K40 Nvidia GPU. Moreover, we achieve
80% of the practical dgemm peak of the machine, while
MAGMA achieves only 75%, and finally, in terms of
energy consumption, we outperform MAGMA by 1.5x in
performance-per-watt for large matrices.

. INTRODUCTION

Solving many small linear algebra problems is called

200x200 QR decomposition is required to be computed
in radar signal processing [3]. Hydrodynamic simulations
need to compute thousands of matrix-matdg€mm) or
matrix-vectorflgemv) products of matrices of well over
100x100 [6]. NVIDIA also includes batchedgemm,

LU and dtrsm in their recent CUBLAS release. Mo-
tivated by these applications, we proposed a batched
Cholesky factorization that targets many small matrices.

The one sided factorizations such as the Cholesky,
Gauss, and Householder factorizations are based on
block outer-product updates of the trailing matrix. Al-
gorithmically, this corresponds to a sequence of two
distinct phasespanel factorization and trailing matrix
update. Implementation of these two phases leads to a
straightforward iterative scheme shown in Algorithm 1.
Table |1 shows BLAS and LAPACK routines that should
be substituted for the generic routines named in the
algorithm.

Algorithm 1 Two-phase implementation of a one-sided
factorization.
for P, e {P,P,,...,P,} do
PanelFactorize(P;)
TrailingMatrixUpdate(C'?)
end for

batched problem. A batched problem consists of a large

number of matrices (e.g., from thousands to millions
matrices) to be factorized, where the size of each matrix

Cholesky  Householder Gauss
PanelFactorize XPOTF2 xGEQF2 XGETF2
XTRSM
XSYRK XLARFB XLASWP
TrailingMatrixUpdate =~ XGEMM XTRSM
XGEMM

ROUTINES FOR PANEL FACTORIZATION AND THE

is considered to be small (e.g., typically the size is around "B-E !
TRAILING MATRIX UPDATE .

hundreds of rows or columns). For example, batched
Cholesky factorization is widely used in computer vision,
and anomaly detection of images [1], [2]. In Magnetic MAGMA currently focuses on the performance of
resonance imaging (MRI), billions small 8x8 and 32x32very large matrices using a hybrid (CPU-GPU) solution
eigenvalue problems need to be solved. Also, a batchdd]. Since the panel consists of Level 2 BLAS operations,



and hence is memory bound, MAGMA use the CPUswvhere L is ann x n real lower triangular matrix with

to performs these operations, “the panel factorizationpositive diagonal elements. In LAPACK, the double
and the GPU to update the trailing matrix. Note that inprecision algorithm is implemented by thpotrf routine.
order to perform the update of the trailing matrix on theA single step of the algorithm is implemented by a
GPU, a memory transfer of the factorized panel fromsequence of calls to the LAPACK and BLAS routines:
the CPU to the GPU is required in each step. By usinglsyrk (symmetric rank-k update)dpotf2 (unblocked

an efficient scheduling technique, this memory transfeCholesky factorization)dgemm (general matrix-matrix
can be overlapped with GPU computation. Although thismultiplication), dtrsm (triangular solver). Throughout
hybrid model makes use of both of the computing rethe paper, we take the double precision as an example to
sources, sometimes it might be a bottleneck. In particulagescribe how we implemented, though other precisions,
when the GPU is working, the CPU might be neededncluding single, single complex and double complex are
to perform other work, such as 1/O, and thus cannot balso implemented.

interleaved and synchronized with the GPU in every step.

Moreover, many clusters have weak CPUs and slow PCA. Non-blocked Cholesky factorization

E connections, so the panel factorization phase and_the The following notations will be used throughout the
memory transfer becomes very slpw, the_reby affectingast of the papera(i, j) is used to denote théi, j)
the overall performance of the hybrid algorithm. In thesé,jement of the matrixd. The submatrix consisting of

cases, a full-GPU implementation might be of great i throughj-th row andm-th throughn-th column is
interest for many applications and users. In order to makgapoted asi(i : j,m : n).

our implementation cover the classical case, we propose a o _
full-GPU implementation of the classical single Cholesky A non-blocked Cholesky factorizationdigotf2) is

factorizationdpotrf targeting toward large matrix. outlined in Figure 1. Due to the symmetry, the matrix
can be factorized either as an upper triangular matrix or

as a lower triangular matrix (e.g., only the shaded data
is accessed if the lower side is to be factorized)AIfs
Hatem et al. presented left |00king a Cholesky faCtOI’vn x n, there aren steps. Steps go from the upper left
ization for multicore with GPU accelerators [8] \olkov corner to lower right corner a|ong the diagonaL At a Step
et al. implemented LU, Cholesky, and QR with right- ; the column vectou(;j : n, ) is to be computed. First,
looking on 8 GPUs [9]. Yang et al. factorized Choleskya dot product of the row vectar(j,0 : j) is needed to
on both FPGAs and GPUs with right-looking [10]. update the element(j, j)(in black). Then the column
Molero et al. developed a batched Cholesky solver for thgector a(j +1 : n—1,5) (in red) is updated by a
matrix in the hyperspectral image processing[1]. Theiggemv a+1:n-10:j5—1)xa(j0:j—1)
matrix size is around hundreds. followed by a scaling operation with the updated element
Our paper is organized as follows. First, we describé& (7, 7). This non-blocke_d Cholesky factorization involves
the Cholesky algorithms in Ill. Then, we detail our WO Level 1 BLAS routinesdot andscal), as well as a
batched implementations and demonstrate their perfonl=e"eI 2 BLAS routlnedge_mv. Since there are. steps,
mance in IV. The performance and power of the Cpu,these routines are calledtimes and thus one can expect

the GPU and the hybrid Cholesky implementations ardhat the performance of this variants will depend on the
compared in V. Finally, we conclude in VI. performances of Level 2 and Level 1 BLAS operations,

hence it is a slow memory bound algorithm.

II. RELATED WORK

I, ALGORITHMS B. Blocked right-looking

_'The_ChoI(_—:‘sky factor|zat|o_n (or Cholesky decompo— The blocked right-looking algorithm is described in
sition) is mainly used as a first step for the numerical

solution of linear equationslz — b, where A is sym- Algorithm 2 and depicted in Figure 2. The factorization

. o - .__.of the matrix A proceeds inn/nb steps of size
metric and positive definite. Such systems often arise in noen P /n P

. o ) I . nb. A single step is implemented by a sequence of
fhheyigtsu?é)%lﬁigorr;sé dvgreedmplr?ygi?::[ I\pl)ﬁedneglnqgigrllj.e 0 calls to the BLAS and the LAPACK routinesipotf2

(unblocked Cholesky factorizationtrsm (triangular
The Cholesky factorization of atnxn real symmetric  solve) anddsyrk (symmetric rank-k update) as described
positive definite matrixA has the formA = LLT, in Algorithm 2.



Algorithm 3), and therefore delays subsequent updates
of the remaining right side columns of the matrix. For
example, in the second step of Figure 3, the panel
A2 By is first updated by the resulting; of step 1 then
factorized and so on for next steps. Yet, in the update of
panel A3 B3, the data inB; and B, will be read again.
Because this algorithm needs to access all the previous
panel matricess; in the left side, it is called left-looking.

Fig. 1. Non-blocked Cholesky factorization

Algorithm 3 The blocked left looking Cholesky factor-
ization.
for i € {1,2,3,...,n/nb} do
if (i > 1) then
Update Current panel 4;,B; = A;B; —
(T);_(T),_," (dgemm), where (T);_, = a((i — 1) x nb :

Once a panell; B; at a step is computed it will never
be accessed. The trailing matii% is now considered as
a new matrix and the loop is repeated. This algorithm
keeps updating the right hand side trailing mat€iy,
so it is called right-looking. Note that thdtrsm and the n,0: (i = 1) x nb)
dsyrk routines are Level-3 BLAS [11], thus they perform end if )
efficiently on both CPUs and GPUs architectures, for this Panel Factorize L, ==Cholesky;) (dpotf2)
reason, the blocked implementation performs very well Compute B; = B,(L)™ (dirsm)
and reaches high flops per seconds. end for

Algorithm 2 The blocked right looking Cholesky factor- ~ Both the right-looking and the left-looking variants

ization. have the same costs?/3 operations. Previous study
for i € {1,2,3,...,n/nb} do showed that there is little performance difference in
Panel Factorize L; :=Cholesky@;) (dpotf2) the serial code. However, one can be favored than the
Compute B; = B;(£T) " (dtrsm) other in a parallel design. The right-looking variant
Trailing Matrix Update ¢; = ¢; — B; BT (dsyrk) where ~ generates more parallelism, but also has more writes
Ci =a(i x nb:n,ixnb:n) since the output matrix is large compared to a small
end for input, while the left-looking variant emphasizes the data

locality but have more reads. This difference is important
to our CUDA code implementations, and we found that a
merged implementation of both into a recursive algorithm
can provide us the best performance.

Fig. 2. Blocked right-looking

C. Blocked left-looking
Fig. 3. Blocked left-looking

The difference between the left-looking and the right-
looking variants is in the update of the trailing matrix.
The right-looking variant operates in a panel and applie%
its corresponding updates to the right (see Figure 2). The’
left-looking applies all updates coming from the left up, In this section we propose a recursive mixed imple-
to the current panel, then factorize it, (as described imentation of both left and right looking variants. Our

Recursive blocked Cholesky



main algorithm proceeds as a right looking variant bytheoretical peak in double precision28.8 Gflop/s per
steps of sizenb. The difference comes from improving core. The TDP (Thermal Design Power) of each socket is
the panel factorization, which consists of the Level 2115Watts. It is also equipped with a NVIDIA K40c cards
BLAS operationsdpotf2 anddtrsm. In order to achieve with 11.6 GB memory per card running &25 MHz,
higher performance, especially on GPU architecture, weonnected to the host via two PCle I/O hubs&EB/s
should make efforts to increase the use of blocked teclzandwidth. The TDP of K40c is 235Watts. A number of
niques. The panel matrid; = L;L (dpotf2) and the software packages were used for the experiments. On the
triangular solveB; = Bz(LZ)_l (dtrsm) of Algorithm 2~ CPU side, we used the MKL (Math Kernel Library) [5]
can also be factorized using the blocked algorithm inand on the GPU accelerator we used CUDA version 5.5.
stead ofdpotf2 [12]. In theory, the matrix can be blocked

recursively until the blocking size can equal to a single

element. For that, we create a second level of blocking bf. Batched CUDA routines

developing a new blocked CUDA implementation of the In a batched problem, there are many small dense

izati + i ) i .
panel factorization dpotf2+dtrsm) routines. However, matrices that must be factorized simultaneously. Each

achieving h'gh. performgnce IS r_10t stra|gh_tforward._Wematrix consists of an independent Cholesky problem,
proposed a mixed left-right looking recursive technique

. where the factorization itself is a sequence of BLAS
to factorize each panel and replace tdpdtf2+dtrsm) . .
: o . calls. A natural way to implement this batched model
routines. The panel factorization of;, = A(i : n,nb)

follows a recursive pattern as described below. in CUDA s 1o organize it as a sequence of baiched
P ' BLAS routines. This means that all the matrices will be

processed simultaneously by the same kernel. Yet, each
matrix problem is still solved independently, identified
by a unique batch ID. We follow this model in our

Algorithm 4 The blocked right looking Cholesky factor-
ization.
defineib = nb

for i € {1,2,3,...,n/nb} do Eatcﬂeg |mplemkentat||ons ang develqpsd afSﬁt of new
Panel Factorize of A(i x nb : n,nb) atche _CUDA ernels. For the remainder of the paper,
a- defineib — ib/2 the routine name refers to a batched version of the
for k € {1,2} do respective routine without explicitly noted.
if ib < minblock then The batched CUDA routines that we implemented and
unblocked panel factorizatiodpotf2 study in this paper are:
else
go to (a) dsyrk,
end if dot
b-update next panel using dgemm and '
dtrsm scal,
end for
Trailing Matrix Update ¢; = ¢; — B; BT (dsyrk) where dgemv, and
Ci=a(i xnb:n,ixnb:n)
end for dgemm.

C. Batched non-blocked Cholesky
V. BATCHED IMPLEMENTATION AND

PERFORMANCE ONA GPU The performance of the non-blocked Cholesky is
shown in Figure 7. A K40 GPU is used for the tests
throughout the paper. A breakdown of the execution time

We conducted our experiments on a Intel multicores shown in Figure 4. It shows that when the matrix
system with dual-socket, 8-core Intel Xeon E5-2670size increase, thdgemv dominates the overall execution
(Sandy Bridge) processors, each running2dt GHz. time. Sincedgemv is a bandwidth bound routine, the
Each socket had0 MB of shared L3 cache, and each algorithm’s performance will be limited by the GPU's
core had a private56 KB L2 and 64 KB L1 cache. bandwidth. The performance achieved by the standard
The system is equipped witi2 GB of memory and the dgemv routine is shown in Figure 5.

A. Hardware Description and Setup



algorithm outperforms the bandwidth-limitetjemv, it
is still not very satisfactory (see next).
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D. Batched blocked right-looking Cholesky Fig. 7. Performance of the three algorithms

This implementation follows the steps described in _
Algorithm 2, but it differ by merging the factorization E- Batched recursive blocked Cholesky
of the panel submatrix4; and B; into one kernel to The technique of the batched recursive Cholesky is
minimize the overhead of calling CUDA kernel for small similar to the one described in Algorithm 4. The reason
tasks. The trailing matrixC; in Algorithm 2 is updated for this choice is that on the first hand, the right looking
using the Level 3 BLAS routinalsyrk, as shown in variant used for updating the trailing matrix provides a
Figure 2. Compared to the non-blocked algorithm, aigh level of parallelism — the update is for the entire
large number of Level 2 BLASIgemv operations are trailing matrix — and thus can be performed efficiently on
replaced by Level 3 BLASdsyrk operations in the a GPU. On the other hand, the panels are factorized using
blocked right-looking. the recursive left schema. This provides better results as i

The performances using various batch sizes is Shov\minimizes the cosFIy writes bac_k to the main memory _by
in Figure 6. For matrices of size larger than 500, the€ePINg the data in cache for its reuse, and thus writes
performance impact of increasing the batch count i§>ack the flnal_ result only once and also it recurswely
insignificant, because the streaming multi-processors dfcreéases the inner blocking of the local panel operations

the GPU are slowly getting saturated. The blocking sizé{vhICh V_V'” gives a Level 2.5 BLAS. Note_ that caching
of our algorithm is tunable, and experimentally we deter!S possible because of the small panel sizes.
mined that the optimal size for a K40 GPU is four. The The performance of the three algorithms described
performance of the blocked algorithm slightly exceedsabove, along with the comparison to an optimized par-

the non-blocked one, as shown in Figure 7. Although thisllel batched Cholesky on CPUs using the Intel MKL



library, is shown in Figure 7. The matrix sizes range from
32 to 512. To be fair, we tuned the CPU implementatior
as optimal as we can. A simple way of using the CPL
batched Cholesky is to call the multi-thread version ol
the MKL Library and to factorize the small matrices
one after one. Such implementation provided a bai
performance around 30 Gflop/s. Since the matrix size i
in an order of hundreds, thus more than 8 small matrice
can fit into the L3 cache level of the CPU and so ar
optimized CPU implementation might be achieved by
threading pthread” independent sequential factorization
on each thread using the sequential MKL BLAS. Our

experiments shows that this technique is the best among

100%
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Fig. 8. A breakdown of the recursive blocked Cholesky

many other CPU implementations. Therefore, for the

batched problem the threading should be on the batchqﬂl Figure 9. Our batchedgemm is 2 x

faster than the

level rather than inside the processing of each matriX~ B AS routine. In our code. we use our batchumyrk

In our test, 2,000 matrices were distributed onto 1Q/ersion which is 4x

faster (than alsyrk based on the

OpenMP threads running sequential MKL BLAS. Thebatcheddgemm from CUBLAS). The only difference

results shows that except for matrices of size 64, wher
the matrix fit the private L2 cache level of each threa

our dsyrk writes in the lower triangular part of the
utput matrix. The performance afsyrk is important

which makes the CPU variant faster, our proposed reCUty the overall performance, since it takes a big part of

sive blocked algorithm on the GPU always gives the be

performance. Compared to MKL, the recursive algorithm

achieves up to 1.& speedup.

e running time. Our test showed that if we took the
cublasDgemmbatched, the overall performance will be
down to 100 Gflop/s at size 512.

The recursive blocked algorithm has the least number

of BLAS-2 operations and achieves a performance that

is characteristic for Level 3 BLAS. However, all the al-
gorithms have the same amount of BLASdal anddot
routines. A breakdown of the time is shown in Figure 8.
A specific CUDA dgemm kernel that we developed is
used in the left looking panel factorizatiodsyrk is used

in the update of the right looking trailing matrix. The
optimal blocking size in the recursive algorithm, which
is the size of the panel matrid, is 32. The optimal
blocking size of A is 8. Since 32 is the panel size,
there is nodsyrk at size 32. For small matrix sizes, the
performance of the dot product is critical for the overall
performance. Thelot product (reduction) is performed
along the rows, resulting in consecutive threads readin
elements at a step of Ida. Since the data is stored i

column major, the memory accesses are non-coalesce
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g
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d CUBLAS has included a batched LU (getrfBatched)

. . . . sihce version 5.5, but does not have a batched Cholesky.
which has negative effect on its performance. With the . :
Cholesky can be treated as a special version of LU

matrix size increasing, this reduction is not significan
compared to the more flops intensigsyrk routine.

F. Comparison with CUBLAS batched routines

CUBLAS does not have a batchddyrk routine, but
has a batchedgemm — cublasDgemmBatched. To be a
fair, we compared it with our batchetjemm, as shown

t

decomposition tailored to symmetric and positive definite
matrices. For the same data input, LU is two times
slower than Cholesky, because LU accesses the whole
matrix instead of a lower or upper side. We compared
our implementation with cublasDgetrfBatched and our
Cholesky is up to & faster than the CUBLAS routine

as shown in Figure 10.



TABLE 1. THREE CHOLESKY IMPLEMENTATIONS

2.7E+03

Name Panel MatrixA | Panel Matrix B | Trailing Matrix C
2.4E+03 MKL CPU CPU CPU
21E+03 ‘O Batched Cholesky MAGMA CPU GPU GPU
1.8E+03 O Batched LU full-GPU-dpotrf GPU GPU GPU

1.5E+03
1.2E+03
9.0E+02
6.0E+02
3.0E+02

Time(ms)

the full-GPU-dpotrf algorithm to match the MAGMA
. o o_,o/" performance. In our case, since thgemm computation
32 64 128 256 384 512 for the trailing matrix update is large, it takes up all
Matrix Size the resources after it is issued. Only close to the end of
its computation, a few of the panel factorization kernels
Fig. 10. Performance of our batched Cholesky vs cublasbgetr can be Iaun?heq' as shown in Figure 12. Therefore, the
Batched panel factorization can not be completely overlapped.
Despite this, our profiler show that the GPU is fully busy
doing either the panel factorization or the trailing matrix
V. CHOLESKY FOR LARGE MATRICES AND ITS update.
ENERGY CONSUMPTION

The performance of the three implementations is
In contrast to the batched problems on small matricegshown in Figure 11. For small matrix sizes, less than
from the previous sections, this section focuses on a,500, MKL is the fastest. This is expected as matrices
classical Choleskylpotrf for large matrices. The entire of size up to 2,200 fit the L3 cache of the CPU. For
matrix size is at least a few thousands, while its panematrices larger than 2,200, MKL stagnates at the same
size is in the order of hundreds. The difference betweeperformance which is the peak it can reach. MAGMA's
MAGMA and our implementation is that the factorization performance rises quickly before size of 10,000, and
of the panel is performed on the GPU, while in MAGMA outperforms thefull-GPU-dpotrf by 300 Gflop/s at
is on the CPU. The differences are shown in Table II. Im0,000. After that, MAGMA's performance slowly levels,
this section, we call our implementatiéul-GPU-dpotrf  while the full-GPU-dpotrf's performance continues to
to make the name more self-explanatory. rise steadily. The difference is narrowed to less than
100 Gflop/s at around matrices of size 25,000. Since
he practical peak performance of the CPUs is around
00 Gflop/s, we consider that compared to MAGMA
which uses the CPUs, a difference below 200 Gflop/s
The panel factorization in our algorithm is basedto be acceptable, and for less than 100 Gflop/s to be
on our batched recursive blocked algorithm.Since thaery good. We compute the ratio that can be reached
panel size is small and therefore its computation willby either of the Cholesky algorithms in proportion to the
not saturate all computational resources of the GPUesources used. Our implementation reaches around 80%
one can try to overlap the panel computation with theof the available practicalgemm peak on the K40c GPU
trailing matrix update. One way of doing it, is to put the which is around 1200 Gflop/s, while MAGMA reaches
two computations through two different CUDA streams.around 75% of the practical peak of the resources it uses
However, experiments showed that, it might not be fully(1200+300 Gflop/s).
overlapped with thedgemm computations. The first
explanation of this behavior is that the CUDA kernels
are non-preemptive [17]. Once a kernel is issued ang  pegrformance-per-watt
starts running on the GPU, it will try to occupy all the
computational resources it needs. If the kernel uses all Besides performance, energy consumption has be-
the computing units of the GPU, then no other kernetome another major concern in HPC. An indicator for it
can be started. Thus the CUDA scheduler might not bé& given by the performance-per-watt measure. As Eq. 3
able to initiate and overlap all the small BLAS in the demonstrates, it evaluates how many flops are performed
recursive blocked panel with the largggemm com-  for one joule of energy. The higher the number, the more
putation. Therefore, the panel factorization will preventefficient the computation is.

MAGMA has adopted the left-looking Cholesky algo-
rithm. The panel factorization on the CPU is overlappe
and hidden bydgemm computations on the GPU [7].
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‘ ‘ same matrix size, because the GPU during the MAGMA
1000l e run only performs the flop intensive BLAS-3 routines.

800-

The two socket CPU power usage of the three im-

Ry | plementations is shown in Figures 14, 16 and 17. The
K red line is one socket and the blue line is the other
] socket. In these tests, we gradually increase the matrix
size from 1,088 to 10,320. Each spike represents one
‘ ‘ ‘ run. The bigger the matrix, the longer the run time and
vacsze 0 00 the wider the bar. From the power usage, we can see that

the hybrid and thdull-GPU-dpotrf only use a small part
Fig. 11. Performance of the full-GPU, MAGMA Hybrid and MKL  of the CPU capability, because they only achieved 50-

GFLOP/s

600-

400r

200r P

solution of Choleksy factorization 70 W, while MKL achieves 110 W for one socket. This
\ _— indicates that a less powerful CPU is enough to achieve
S 47.9% dgemm_sm_heavy_ldg_nt dgemm_sm_heavy _ldg nt
TETT e —— the same performance. For the full-GPU Cholesky the
o 2l o G Sk CPU is only used to drive the GPU code. CPU’s narrow
T 6.9% kemel_cdotlint, doubler, int int) power bars in this case mean that the CPU is at the idle
¥ 6.6% dgemm_sm35_|dg_nt_64xB8x128x8x32 .
T 4.8% kernel_dscal(int, double*, int, int) pOWGr mOSt Of the tlme
- 1.0% void dgemm_largek<bool=0, bool=1, int
T The performance and GPU power of thdl-GPU-
T 0.2% kernel_set poiter(double®, nt, nt, int, d. dpotrf is shown in Figure 18. With the size increasing,
o o e coulie. -1, 000179, - the performance increases linearly, but the power rises
) slowly and levels off.
Fig. 12. The CUDA profiler showed that only a few routines imgla The performance-per-watt is shown in Figure 19. The

factorization were able to be launched at the end stagéggemm. .
The vertical lines are the footage of the routines. The widfitesents watts include both CPU and GPU power. For fié-

the running time. GPU-dpotrf we consider two metrics:

e Full-GPU-1: where we consider the CPU power
e Full-GPU-2: where we do NOT consider the CPU

Fl ower
Per formance(Flop/s) = # 1) P
ime( jc) We consider the Full-GPU-2, because the watt usage
Power(Watt) = Energy(Joule) (2) in the Full-GPU-1 are exaggerated since a less power-

Time(Sec) ful CPU using less watts is able to achieve the same
GPU performance. Second, we want to compare it with
the peak performance-per-watt of the GPU. The peak

Flops 3) performance-per-watt of a K40 in double precision is

Joule 6 Gflops/W [18]. It is interesting that the trend for the

performance-per-watt in Figure 19 is almost the same as

that in Figure 11. At the very beginning, MKL is the

and NVML to measure the GPU power [16]. The best, since the GPU wake-up power is a big contributor

measurement frequency provided by these tools is ong L .
. other curves. For moderate matrix sizes in the range
miliisecond. The K40 GPU power usage of the MAGMA of 2,000 to 5,000, MAGMA performs the best due to itg

hybrid and thefull-GPU-dpourf are shown in Figures 13 performance advantage in this range. Its performance-

and 15, respectively. To collect more meaningful date_l er-watt then levels off, as its performance also levels

we made one hundred runs for each routine. This g - afrer that, the full-GPU takes the lead since its

needed because the kernels for sr_nall_matrlx s12€S Tl rformance increases linearly before 10K, but the power
at hundreds of microseconds, which is less than th

: . . evels off as in Figure 18. The performance-per-watt for
resolution (millisecond) provided by PAPI and NVML. our Cholesky factorization is 4.5, compared to 3 for
While the hybrid MAGMA runs faster, its power is MAGMA at matrix of size 10K. In all, our performance-
also higher than that of the full-GPU solution for the per-watt is 75% of the theoretical performance-per-watt

Dividing equation 1 by 2 give:

Per formance — per — watt =

We use PAPI to measure the CPU power [14] [15]



for the K40.
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Fig. 13. GPU power of the MAGMA hybrid factorization.
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Fig. 14. CPU power of the MAGMA hybrid factorization.
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Fig. 15. GPU power of the full-GPU factorization.

VI. CONCLUSION
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CPU power of the full-GPU factorization.
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Fig. 17. CPU power of MKL with 32 threads.
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Fig. 18. Performance and power of the full-GPU Choleskydact
ization.

hardware targeting thousands of small matrices of size
hundreds by hundreds. We compared three variants of
the algorithm, the non-blocked, the blocked right-looking
We designed different techniques for developing highand the recursive blocked left-right-looking implemen-
performance batched dense linear algebra kernels intation. The performance of the non-blocked version is
GPU accelerator environments. In particular, we have imbounded by the performance of the Level 2 BLAS routine
plemented a batched Cholesky factorization using GPUdgemv. The blocked right-looking performs better than
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