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Abstract—This paper compares different Krylov methods
based on short recurrences with respect to their efficiency when
implemented on GPUs. The comparison includes BiCGSTAB,
CGS, QMR, and IDR using different shadow space dimen-
sions. These methods are known for their good convergence
characteristics. For a large set of test matrices taken from the
University of Florida Matrix Collection, we evaluate the meth-
ods’ performance against different target metrics: convergence,
number of sparse matrix-vector multiplications, and execution
time. We also analyze whether the methods are “orthogonal”
in terms of problem suitability. We propose best practices
for choosing methods in a “black box” scenario, where no
information about the optimal solver is available.

Keywords-Krylov solver, GPU, IDR(s), BiCGSTAB, CGS,
QMR, algorithmic bombardment

I. INTRODUCTION

Krylov methods are a popular choice for iteratively solv-

ing large, sparse linear systems. Their often superior con-

vergence properties compared to component-wise relaxation

methods, and their ability to benefit from preconditioning

make them attractive from the theoretical point of view. At

the same time, their generic construction as a combination of

sparse matrix vector products, vector operations, and reduc-

tions makes them attractive for parallel execution, e.g., on

manycore architectures like GPUs. Therefore, linear algebra

software libraries like cuSPARSE, MAGMA, Paralution, or

ViennaCL offer a large variety of Krylov solvers to users [1],

[2], [3], [4].
In recent decades, significant advances were made in de-

signing efficient Krylov methods. Some of these methods are

optimized for specific matrix properties, with the Conjugate

Gradient (CG [5]) algorithm suitable for symmetric, positive

definite problems being the most popular example. Other

Krylov solvers work well for a wide range of problems.

However, for a problem with unknown origin it is difficult to

identify the best method. One strategy to overcome this chal-

lenge is to run multiple Krylov methods simultaneously [6].

The advantage of this “algorithmic bombardment” is that

convergence is determined by the iteration count of the most

suitable solver included in the multi-iteration. Krylov meth-

ods sharing the same algorithmic structure can be combined

efficiently into a multi-iteration method. More precisely,

the individual sparse matrix vector products, generating the

Krylov spaces, can be combined into a sparse matrix times

block-vector product, and the reduction operations like dot

product can be interleaved for minimizing the number of

synchronization points.

This paper intends to explore, experimentally, the Krylov

solver landscape, and provide an overview of how well

the distinct Krylov methods work on GPUs. In particular,

we are interested in investigating the robustness, and in

identifying methods that can be considered “orthogonal”

in terms of suitability for different problem classes. The

software basis for this study is the MAGMA open source

software library [2] containing a large variety of Krylov

solvers implemented on GPUs. Test matrices are taken from

the University of Florida Matrix Collection [7]. Although

we focus exclusively on one single NVIDIA GPU, the

findings on convergence and stability carry beyond that

architecture. In terms of the solvers’ hardware efficiency,

similar results can be expected for all relevant modern

hardware architectures, with the performance scaled to the

respectively higher or lower memory bandwidth.

The rest of the paper is structured as follows. In Section II

we give an overview of related work and introduce the

Krylov methods we include in our evaluation. Section III

gives details about how we define our matrix test suite, the

libufget tool we use to access the matrices in the University

of Florida Matrix Collection, the MAGMA software package

we employ for our evaluation, and the hardware we target.

Section IV is the main contribution of this paper, presenting

the experimental results along with an analysis. We conclude

in Section V.

II. BACKGROUND

A. Related work

Designing Krylov methods that are efficient in solving

non-symmetric systems is an active field of research. A

comprehensive survey on Krylov solvers developed before

1991 can be found in [8]. Since then, a large number

of new methods has been developed, often with improved

convergence and stability properties for a certain problem

class. New methods often arise as a combination of already

existing algorithms. Unfortunately, however, it looks like no

overall best Krylov solver exists, as —for each method—
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it is possible to find a problem class where a different

solver is superior [9]. And the growing variety of solvers

to choose from presents the challenge of selecting a suitable

method to the user. One possible workaround is to base the

selection on a theoretical analysis, matching the problem

characteristics to the algorithm properties. This, however,

requires thorough knowledge of the mathematical theory.

A very comprehensive overview of Krylov methods, their

algorithmic design, and mathematical properties is given

in [10]. For problems with an origin in partial differential

equations, Saad outlines in [5] the complete simulation path:

from the partial differential equations with their numerical

properties, via the discretization methods generating linear

systems of equations, to the efficiency of Krylov methods

when solving these. However, a deep theoretical analysis

may only be justified if a significant amount of work

is spent in the solution process, e.g., if an application

requires solving a sequence of linear systems with the same

characteristics. If the origin of the problem and some key

characteristics are known, a different approach is to base

the selection on empirical knowledge: There exist multiple

studies comparing the efficiency of different Krylov methods

for specific problems, see [11], [12], [13], [14].

In a “black-box scenario,” there is no information about

the problem characteristics available, permitting the reuse of

a theoretical analysis. The only goal is to make a good guess

for this single run. For this black-box scenario, we compare

a set of Krylov solvers with respect to their convergence

properties, and their efficiency when implemented on GPU

hardware. In contrast to previous studies, we base the

analysis not on a specific problem class, but on a large set

of test matrices available in the University of Florida Matrix

Collection (UFMC, [7]). Our goal is to provide suggestions

for which method to choose if little or no information about

the linear system is available.

B. General Krylov solvers attractive for GPU implementa-
tion

Among the most popular Krylov solvers for general

systems are GMRES, BiCG, BiCGSTAB, CGS, QMR,

TFQMR, and IDR(s). Except for GMRES, all these are

based on short recurrence formulation [15]. This means that

in each iteration, only a few of the latest basis vectors are

required to generate the new basis vector. For GMRES, each

new basis vector is orthogonalized against all previous basis

vectors. Its computational cost is thus increasing with the

iteration count. Also, GMRES requires storing all previous

basis vectors. This can be unattractive for problems requiring

a high number of iterations. A workaround that avoids the

explosion in computational cost and memory footprint is the

restarted GMRES. It truncates the orthogonalization process

to a few, last basis vectors that are stored explicitly. The

restart parameter bounding the number of orthogonalizations

is a trade-off between the numerical properties and the com-

putational / storage cost. However, restart parameters larger

than 20 are often advisable for smooth convergence, and a

small variance in the restart parameter can have a significant

impact on the solver’s convergence. Hence, the restarted

GMRES usually has a memory footprint significantly larger

than the other methods listed. Given that the memory size

of GPUs is often much smaller than main memory of the

host system, GMRES is only attractive for GPU acceleration

if the restart parameter is matched to the characteristics

of the hardware and the linear system. This motivates one

to exclude GMRES in an analysis targeting a large set of

problems with different characteristics.

BiCG arises as a non-symmetric variant of the CG algo-

rithm, which is known to be very efficient for symmetric,

positive definite (spd) systems [5]. BiCG, however, carries

some unattractive properties: it requires multiplication with

the transpose of the system matrix, often has non-smooth

convergence, and does not implicitly compute an iterative

residual. In terms of stability, BiCG suffers from two poten-

tial breakdown scenarios: pivot breakdown and, in case of

a non-symmetric system matrix, Lanczos breakdown [16].

This has motivated efforts to modify the BiCG method

in favor of the desirable properties: avoiding breakdown;

avoiding use of the transpose; smooth convergence; and

an implicit residual. An effort to avoid pivot breakdown is

the “quasi-minimal residual” (QMR) method developed by

Freud et al. [17]. QMR does not resolve the Lanczos break-

down that can occur for non-symmetric systems. Avoiding

Lanczos breakdown is much more challenging, and although

numerous research efforts exist, see e.g. [18], [19], most of

the proposed ideas are not very popular in the scientific com-

puting community. Much more successful was the search

for a workaround avoiding the transposed system matrix.

Sonneveld developed the very efficient “conjugate gradient

square” algorithm (CGS, [20]). Squaring the BiCG polyno-

mial removes the need for the transposed system matrix,

and for linear systems where BiCG converges, CGS is often

an attractive, faster alternative. Unfortunately, CGS inherits

the non-smooth convergence properties, and the breakdown

conditions from BiCG [20]. For enhanced numerical stabil-

ity, and smoother convergence, Van der Vorst developed the

BiCGSTAB method [21]. This algorithm can be seen as a

combination of BiCG and GMRES using the restart param-

eter 1 [22]. BiCGSTAB offers an attractive balance between

numerical stability and fast convergence. There are also

efforts to combine QMR, CGS and BiCGSTAB to obtain

a method sharing multiple enhancements, see TFQMR as a

combination of QMR and CGS [23], and QMRBiCGSTAB

as a combination of QMR and BiCGSTAB [24]. The relation

between these solvers, all based on on a Bi-Lanczos process

generating the Krylov space, is visualized in Figure 1.

A much more recent Krylov solver is the “induced di-

mension reduction” algorithm with a flexible shadow space

dimension (IDR(s)) developed by Sonneveld et al. [25]. For
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Figure 1: Outlining dependencies between some Krylov

methods based on a Bi-Lanczos process.

different shadow space dimensions s, IDR(s) is a robust

and efficient short recurrence Krylov subspace method. At

the same time it can be seen as generalization of different

Krylov solvers, as it can be shown that for the shadow

space dimension s = 1, IDR(1) becomes very similar to

BiCGSTAB [26]. Unfortunately, for shadow space dimen-

sions s > 1, the structure of a single IDR(s) iteration is very

different from the other Krylov solvers based on short recur-

rences. Each iteration then consists of a two-way loop nest.

This complicates, and practically prevents, the integration of

IDR(s) for s > 1 into an algorithmic bombardment scheme.

Hence, for s > 1, IDR(s) can merely be applied as a stand-

alone method. Similar to the previous discussion on the

storage cost of the GMRES algorithm, we limit the IDR(s)

analysis in this study to the shadow space dimensions s = 2,

s = 4, and s = 8 (which was also proposed by Sonneveld

et al. [25]). A variant of the IDR(s) that is not included

in this study is the Ritz-IDR proposed by Simoncini et

al. [27]. Motivated by the possibility to regard the IDR(s) as

a Petrov-Galerkin method, the poles of the rational function

are chosen as Ritz values [27]. The convergence of Ritz-

IDR is competitive, and for small shadow space dimensions

s often superior, to the initial algorithm proposed in [25].

III. TEST FRAMEWORK

A. Test matrices

We evaluate the efficiency of the Krylov solvers’ GPU

implementations using a subset of the non-symmetric matri-

ces available in the University of Florida Matrix Collection

(UFMC, [7]). More precisely, we include all matrices in the

test suite that fulfill the following conditions:

• The matrix is square.

• The matrix is non-symmetric.

• The matrix has more than 1,000 rows.

• The matrix has less than 5,000,000 rows and less than

100,000,000 nonzeros.

• At least one of the Krylov solvers included in the study

converges.

This scenario reflects the situation where no information

about the linear system is known, except for being struc-

turally or numerically non-symmetric. We consider this a

realistic “black-box” scenario where no information about

the system characteristics – except the non-symmetry –

is provided. We handle the symmetry differently as this

information is usually available, and for symmetric, positive

definite (spd) systems, the Conjugate Gradient is well-known

to be a very efficient alternative [5]. In Figure 2, we visualize

the size distribution (left) and the nonzero distribution (right)

of the 94 matrices included in the test suite. In the Appendix

we give a list of the matrix IDs that allows for identifying

the matrices in the UFMC.

B. The libufget library

The UFMC, where we source our example matrices, is

normally interfaced by a MATLAB interface or a Java

application. Both interfaces allow one to search and down-

load matrices by their name or their ID. Additionally, the

Java interface has the ability to search for matrices using

meta data information, but once identified each matrix has

to be downloaded manually. Having our conditions from

the previous subsection in mind, this is not applicable for

large matrix sets. In the case of the MATLAB interface

we we have an even worse situation because we have

to check each matrix for fulfilling the required properties

after downloading it. Furthermore, both interfaces cannot be

easily used from C or integrated into standalone programs.

We solved this issue by developing a C-library named

libufget which allows us to access the UFMC directly from a

C program. The library downloads the MATLAB file which

contains the meta-data from the UFMC and converts it into

an SQLite database. Like the MATLAB interface the library

provides a by-name and a by-id interface to download

matrices. Furthermore, the SQLite database allows us to

search for matrices using SQL queries on their meta-data.

The search result is obtained as an iterator over all matrices

matched by the query. This iterator is used to execute a piece

of code for each matrix returned by the query. By translating

our conditions from Subsection III-A into the following

SQL query: SELECT * FROM matrices WHERE
rows==cols && numerical_symmetry!=1.0 &&
rows > 1000 && rows < 5000000 && nnz <
100000000, we perform all benchmarks automatically

without any interruption or manual downloading of the

test matrices. The libufget library enables us to check the

influence of different matrix properties like symmetry,

positive-definiteness, or bandwidth on the algorithms by

only changing the SQL query. This allows for rapid and

easy-to-use penetration testing of matrix related algorithms.

C. MAGMA software package

MAGMA [2] is an accelerator-focused linear algebra

library developed at the University of Tennessee. It provides
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Figure 2: Histograms reflecting the size distribution (left) and the nonzero distribution (right) of the test matrices contained

in the test suite.

back-ends for NVIDIA GPUs, Intel’s Xeon Phi manycore

accelerators (MIC), and any OpenCL-compatible system

such as AMD GPUs. Originally focused on dense lin-

ear algebra routines, MAGMA now also contains a large

variety of solvers, preconditioners, and eigensolvers for

sparse linear systems. Comprehensive support for NVIDIA

GPUs is provided, some basic routines and functionalities

are also available in OpenCL and for the Xeon Phi. The

performance of the Krylov solvers available in MAGMA is

highly competitive to other GPU-accelerated packages [4].

The subset of Krylov methods we choose from the solvers

available in MAGMA are expected to work well for a large

range of problems, and have proven to efficiently exploit the

compute power of modern GPUs [28], [29].

D. GPU hardware setup

The GPU target architecture is a NVIDIA Tesla K40

GPU (Kepler microarchitecture) with a theoretical peak

performance of 1,682 GFlop/s (double precision). The 12

GB of GPU main memory can be accessed at a theoretical

bandwidth of 288 GB/s. In a bandwidth analysis using

large data-streams, we achieved values around 193 GB/s.

The Krylov solvers we use keep all matrix and vector

data and most of the scalar values in the GPU memory.

Given this background, all vector operations are handled by

the accelerator. For completeness, we nevertheless want to

mention the host being an Intel Xeon E5 processor (Sandy

Bridge). The MAGMA implementation is using CUDA and

cuSPARSE in version version 7.5 [30].

E. Solver parameters

The individual linear systems Ax = b used for the experi-

mental solver analysis are all composed of the different test

matrices from the University of Florida Matrix Collection,

and a right-hand side b ≡ 1. All Krylov solvers are started

with an initial guess x ≡ 0. Convergence in iteration k is

defined as the residual norm ‖b− Axk‖ for the iteration

vector xk being at least 10 orders of magnitude smaller than

the norm of the right-hand side:

‖b−Axk‖< 10−10‖b‖.
We impose an additional stopping criterion to avoid unbound

execution times. Theoretically, any Krylov solver is con-

verged once the Krylov subspace spans the the complete

system space, and no early breakdown due to numerical

issues has occurred [5]. For a linear system of size n, this

is fulfilled once n Krylov basis vectors are generated, i.e.,

after n sparse matrix vector products. The Krylov methods

we consider differ with respect to how many basis vectors

are generated in each iteration: BiCGSTAB, CGS, and QMR

all have 2 sparse matrix-vector multiplications (SpMVs) per

iteration; IDR(s) has 2s+1 SpMVs in every outer iteration,

respectively. For a fair comparison, we set the upper iteration

bound for the distinct solvers with respect to the SpMV count

and the matrix dimension. To account for numerical effects

related to the finite precision of floating point numbers, we

allow the methods to execute up to 2n SpMVs.

IV. EXPERIMENTAL RESULTS

In a first experiment we analyze the robustness and

efficiency for the distinct solvers. The height of the bars

in Figure 3 reflects for how many linear systems the distinct

methods achieved convergence. Additionally, we color a

part of the bars in yellow. This part corresponds to the

matrix count where a certain solver is the overall winner

with respect to the runtime metric. Finally, a small grey bar
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Figure 3: Successful convergence and fastest solver analysis.

The grey bars indicate problems that did not converge within

the iteration limit, but did not experience an early breakdown

either.

indicates the number of problems where convergence was

not achieved within the iteration limit, but no breakdown has

occurred to this point. The methods may be unable converge

with the demanded accuracy, converge for a larger iteration

limit, or fail.

We observe that for the general test suite, QMR and

IDR(s) are the most robust solvers. Also, the number of

problems that can be solved with IDR(s) increases with the

shadow space dimension. CGS fails for almost 60% of the

test cases, but if it converges, it is very fast.

Next we investigate whether it is possible to identify

methods that are “orthogonal” in the sense of problem

suitability. Motivation is the strategy presented in [6], where

a set of methods is interleaved, resulting in a poly-iterative

solver. The key idea of this “algorithmic bombardment” is to

successively drop the methods that break down, and benefit

from the fast convergence of the most suitable method

included in the set. Although the poly-iterative approach has

some overhead compared to running a single method, it can

be implemented very efficiently for a set of Krylov-based

methods having a similar algorithm structure. The central,

and often computationally most expensive, building block

of all Krylov methods is a sparse matrix vector product

needed to generate the Krylov subspace. Aside from that,

the algorithms are usually composed of inherently parallel

vector updates, global reduction operations that require

synchronization, and some scalar computations. The most

attractive feature of the poly-iterative approach is to block

the sparse matrix vector products generating the distinct

subspaces into one blocked sparse matrix vector product

that reads the sparse matrix only once, independent of

the number of generated Krylov subspaces. Also, merg-

ing the reduction phases helps maintain a low number of

synchronization points. As a consequence, interleaving a

set of algorithmically similar Krylov methods often results

in small runtime overhead compared to running only one

iterative solver. The relative overhead decreases with an

increasing number of non-zero elements per matrix row.

Choosing only one Krylov solver, the successful outcome

and the time-to-solution performance is unknown. Opposed

to that, the poly-iterative approach not only increases the

chance of successful completion, but also provides the best

convergence rate among the methods included in the set.

Algorithmic bombardment is particularly attractive if the

methods included are “orthogonal” in the sense of problem

suitability.

In Figure 4 we show a “head-to-head” comparison of the

distinct solvers we evaluate in this paper. For each solver

combination, there is a figure showing how many systems

can be solved with both methods (green bar), which method

is superior (location of green bar), and how many systems

can be solved by one but not the other solver (red and blue

bar, respectively). As previously observed, IDR(s) converges

for all shadow space dimensions for a larger set of problems

than any of the other methods. Comparing the different

shadow space dimensions for IDR(s), a smaller shadow

space dimension s may offer faster convergence for some

of the problems, but robustness increases with the shadow

space dimension. More precisely, we did not find a single

problem where choosing a larger shadow space dimension

destroys convergence of IDR(s). We note again that the

upper iteration limit is adapted to the number of SpMVs,

i.e., a larger shadow space dimension has a lower iteration

limit.

When combined with BiCGSTAB, CGS, or QMR, IDR(s)

is usually slower for the systems where both methods

converge. In terms of robustness, the combination IDR(8)

and QMR is the overall winner, converging for all 94 test

cases. However, the structural difference between IDR(s)

and the other Krylov solvers, makes it hard to combine

them efficiently in poly-iteration fashion. Ignoring IDR(s),

QMR works best in combination with BiCGSTAB. For the

systems where both, BiCGSTAB and CGS converge, CGS

is usually faster. BiCGSTAB is more robust than CGS, but

not as fast, and therefore a less attractive counterpart to

QMR. Although impossible to visualize in this fashion, we

want to mention that the combination BiCGSTAB, CGS,

and QMR, as proposed in [6], converges for 63 of the 94

test cases (67%). This is a lower success rate than the 96%

convergence of IDR(8).

687687



BiCGSTAB CGS QMR IDR(2) IDR(4) IDR(8)
B

iC
G

ST
A

B

Test matrices
50 0 50

BiCGSTAB BiCGSTAB

Solvable systems: 44

Test matrices
50 0 50

BiCGSTAB CGS

Solvable systems: 52

Test matrices
50 0 50

BiCGSTAB QMR

Solvable systems: 62

Test matrices
50 0 50

BiCGSTAB IDR(2)

Solvable systems: 62

Test matrices
50 0 50

BiCGSTAB IDR(4)

Solvable systems: 76

Test matrices
50 0 50

BiCGSTAB IDR(8)

Solvable systems: 91

C
G

S

Test matrices
50 0 50

CGS BiCGSTAB

Solvable systems: 52

Test matrices
50 0 50

CGS CGS

Solvable systems: 41

Test matrices
50 0 50

CGS QMR

Solvable systems: 58

Test matrices
50 0 50

CGS IDR(2)

Solvable systems: 67

Test matrices
50 0 50

CGS IDR(4)

Solvable systems: 81

Test matrices
50 0 50

CGS IDR(8)

Solvable systems: 93

Q
M

R

Test matrices
50 0 50

QMR BiCGSTAB

Solvable systems: 62

Test matrices
50 0 50

QMR CGS

Solvable systems: 58

Test matrices
50 0 50

QMR QMR

Solvable systems: 54

Test matrices
50 0 50

QMR IDR(2)

Solvable systems: 72

Test matrices
50 0 50

QMR IDR(4)

Solvable systems: 83

Test matrices
50 0 50

QMR IDR(8)

Solvable systems: 94

ID
R

(2
)

Test matrices
50 0 50

IDR(2) BiCGSTAB

Solvable systems: 62

Test matrices
50 0 50

IDR(2) CGS

Solvable systems: 67

Test matrices
50 0 50

IDR(2) QMR

Solvable systems: 72

Test matrices
50 0 50

IDR(2) IDR(2)

Solvable systems: 60

Test matrices
50 0 50

IDR(2) IDR(4)

Solvable systems: 76

Test matrices
50 0 50

IDR(2) IDR(8)

Solvable systems: 91

ID
R

(4
)

Test matrices
50 0 50

IDR(4) BiCGSTAB

Solvable systems: 76

Test matrices
50 0 50

IDR(4) CGS

Solvable systems: 81

Test matrices
50 0 50

IDR(4) QMR

Solvable systems: 83

Test matrices
50 0 50

IDR(4) IDR(2)

Solvable systems: 76

Test matrices
50 0 50

IDR(4) IDR(4)

Solvable systems: 76

Test matrices
50 0 50

IDR(4) IDR(8)

Solvable systems: 91

ID
R

(8
)

Test matrices
50 0 50

IDR(8) BiCGSTAB

Solvable systems: 91

Test matrices
50 0 50

IDR(8) CGS

Solvable systems: 93

Test matrices
50 0 50

IDR(8) QMR

Solvable systems: 94

Test matrices
50 0 50

IDR(8) IDR(2)

Solvable systems: 91

Test matrices
50 0 50

IDR(8) IDR(4)

Solvable systems: 91

Test matrices
50 0 50

IDR(8) IDR(8)

Solvable systems: 91

Figure 4: Krylov solver comparison: The green bar reflects the linear systems that can be solved by both methods, the location indicates which method

converges faster. The red and blue bars reflect test systems that can be handled by only one of the methods. An interactive visualization of the data can be
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Execution time is the metric of interest when using the

plain Krylov solvers. A popular strategy for improved con-

vergence properties is to enhance the Krylov methods with a

preconditioner. The efficiency analysis focusing exclusively

on execution time is then no longer valid, as each basis

vector is then generated for the preconditioned system.

Depending on the problem and the preconditioner proper-

ties, the preconditioner application can be very expensive

compared to the rest of the Krylov solver.

If we assume that an expensive preconditioner provides

the same convergence improvement to each of the consid-

ered methods, we should focus the analysis on the number

of generated basis vectors. The latter corresponds to the

number of executed sparse matrix vector products. This

motivates the extension of the survey by a second target

metric: number of executed SpMVs. Figure 5 compares the

solver’s superiority with respect to both metrics. Considering

the runtime metric, IDR(8) was primarily attractive due to

its robustness. Looking at SpMV count, the more expensive

orthogonalization in IDR(8) is not reflected, and IDR(8)

wins in most cases. Consequently, for an expensive pre-

conditioner providing the same convergence improvement

to all methods, IDR(8) would also win most problems in

the runtime metric.

Turning back to the basic Krylov solvers, we are interested

in the cost we have to pay for the higher robustness of

IDR(8). For each matrix, there is a fastest solver, but which

one depends on test matrix. We normalize for each matrix

the solver runtimes to the runtime of the fastest solver for

this particular problem. In Figure 6, we visualize this metric

we call “normalized runtime” for a subset containing the first

30 test matrices listed in the Appendix. For each solver, we

then compute the average of the normalized runtimes over all
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Figure 6: Normalized runtimes: for each matrix, the fastest

solver is identified, and all solver execution times are nor-

malized by the runtime of the fastest solver. Test problems

are the first 30 matrices listed in the Appendix.

matrices, however, only consider converging combinations.

If a solver did not converge for a certain test matrix, its

average runtime is not affected. This quantity is visualized in

Figure 7, taking all 94 test cases into account. For the robust

IDR(8), the average runtime is around 1.9 times longer

than when choosing the fastest solver for every problem.

BiCGSTAB, CGS, and QMR have lower values, but again,

this metric does not reflect the fact that those methods fail for

a significant portion of the test matrices. The combination

of converging for 96% of the problems and an average

runtime less than twice slower than the fastest method makes

IDR(8) attractive for a black-box scenario. Although not

scientifically relevant, we want to mention that it takes

IDR(8) about 1 hour and 15 minutes to solve 91 of the

considered 94 problems.

V. SUMMARY

In this paper, we evaluate the efficiency of different

Krylov solvers based on short recurrences when being

implemented on GPUs. For BiCGSTAB, CGS, QMR, and

IDR(s) we take the respective implementations from the

MAGMA software library and compare their efficiency for

different target metrics. The study is based on a large set of

test matrices available in the University of Florida Matrix

Collection.

The analysis reveals the superiority of IDR(s) in terms

of robustness, in particular when using large shadow

space dimensions. In terms of time-to-solution performance,

BiCGSTAB, CGS, and QMR are often faster for converging

cases. Interleaving these solvers in terms of a poly-iterative

algorithm results in a fast solver for many problems. In terms

of robustness, IDR(8) is still superior, converging for about
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Figure 7: Runtime normalized to the fastest method. The

average is computed considering only convergent problems.

96% of the test cases. Compared to the respectively fastest

solver, IDR(8) is on average less than twice slower. This

good balance between robustness and performance makes

IDR(8) an attractive choice in a black-box scenario where

no information about the optimal solver is available.

Future work will address the benefits coming from precon-

ditioning, and try to correlate the solvers’ superiority with

the problems’ origins.

APPENDIX

The matrices included in this study can be accessed in the

University of Florida Matrix Collection under the following

IDs: 227, 235, 237, 245, 246, 287, 288, 289, 290, 291, 370,

371, 377, 396, 467, 468, 540, 542, 543, 814, 815, 820, 823,

825, 826, 828, 829, 833, 834, 835, 864, 895, 897, 898, 909,

910, 911, 912, 913, 914, 915, 925, 927, 928, 930, 931, 932,

934, 982, 984, 1053, 1054, 1106, 1107, 1108, 1109, 1170,

1187, 1188, 1196, 1197, 1319, 1320, 1321, 1322, 1323,

1324, 1416, 1790, 1854, 1858, 1859, 1868, 1869, 1898,

1941, 2233, 2234, 2240, 2241, 2242, 2245, 2274, 2278,

2279, 2562, 2563, 2564, 2565, 2566, 2647, 2648, 2649,

2655.
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