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Overview

The SciDAC Center for Technology for Advanced Scientific Computing Software (TASCS) focuses on developing tools, components and best practices for 
developing high quality, reusable high-performance computing software. TASCS fosters the Common Component Architecture (CCA) through a community
forum that involves a wide range of participants. The CCA environment aims to bring compone nt-based software development techniques and tools, which
are commonplace in the computing industry, to high performance computing. To do so, several  challenges are being addressed including parallelism,
performance, and efficient handling of large datasets. The CCA has produced a specification  that allows components to be deployed and reused in a highly
extensible yet efficient parallel environment. The primary advantage of this component-base d approach is the separate development of simulation algorithms,
models, and infrastructure. This allows the pieces of a complex simulation to evolve indepe ndently, thereby helping a system grow intelligently as 
technologies mature. The CCA tools have been used to improve productivity and increase capa bilities for HPC software in meshing, solvers, and
computational chemistry, among other applications.

TASCS supports a range of core technologies for using components in high-performance simula tion software, including the Caffeine framework, the Babel 
interoperability tool, and the Bocca development environment for HPC components. In additio n, the CCA helps provide access to tools for performance
analysis, for coupling parallel simulations, for mixing distributed and parallel computing,  and for ensuring software quality in complex parallel simulations.
These tools can help tame the complexity of utilizing parallel computation, especially for sophisticated applications that integrate multiple software packages, 
physical simulation regimes or solution techniques. We will discuss some of these tools and  show how they have been used to solve HPC programming
challenges.

Component-based Software Engineering

The component-based software engineering (CBSE)[1]
methodology has been developed to facilitate the understanding, development, and evolution of large-scale software systems. By emphasizing strong
encapsulation of code with well defined interfaces between modules, a component approach pr ovides a way of decomposing software into units that are 
conceptually manageable, and that interact in specific and easily understood ways.

These characteristics also facilitate the design and evolution of large, complex software s ystems by distinguishing between the functional specification of a 
component (fixed or slowly changing) and its implementation (possibly more rapidly changing , or even having multiple implementations). With thoughtful
design of interfaces, component approaches can promote software reuse and interoperability.  The encapsulation of components makes them useful in 
collaborative software development situations, where individuals or small groups take respo nsibility for the implementation of components conforming to 
interface specifications agreed to by the collaboration as a whole. These characteristics m atch very well with the way that the modern computational science 
community approaches simulation software, which makes the component approach an ideal match  for high-performance scientific computing. Furthermore,
simulation coupling is of rapidly growing importance in scientific computing, and maps dire ctly to the philosophy of software components.

Although the idea of CBSE has a long history, component architectures have only recently be come practical for use in high-performance scientific computing.
Development of the Common Component Architecture,[2] a general component environment, began with the establishment of the CCA Forum[3] in 1998.
The Cactus framework,[4]
originally developed primarily to support numerical relativity simulations, began appearing  in the scientific literature in roughly 1999. Another
domain-specific framework effort, the Earth System Modeling Framework (ESMF),[5] [6] began in 2001.

Scientific computing poses both technical and sociological challenges to the deployment and  adoption of new technologies, such as components and
frameworks. The scientific CBSE community is still in the formative stages of understanding how these concepts can be used most effectively in the context
of advanced computational science applications. At the same time, the field is evolving: co mputing power grows, the tools and software environments evolve,
and applications move to take advantage of new capabilities not just to solve larger proble ms faster, but also at higher levels of physical fidelity. If CBSE is to
become a routine part of computational science, we need to anticipate emerging trends and h ow they will impact the concepts and tools of CBSE. These
emerging trends in high-end scientific computing pose both challenges and opportunities for  component-based software development, and provide incredible 
opportunities to dramatically enhance the reliability, maintainability, and scope of HPC ap plications.

The CCA Component Model

Formally, the Common Component Architecture is a specification of an HPC-friendly component model. This specification provides a focus for an extensive
research and development effort. The research effort emphasizes understanding how best to u tilize and implement component-based software engineering
practices in the high-performance scientific computing arena. The development effort create s practical reference implementations and helps scientific software
developers use them to create CCA-compliant components and applications. 

The CCA specification is expressed as a set of abstract interfaces[7]
written in the Scientific Interface Definition Language (SIDL). SIDL is used by the Babel l anguage interoperability tool (discussed further below), which 
implicitly defines bindings to the various languages that Babel supports (currently Fortran  77, Fortran 90, C, C++, Python, and Java).
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The primary players in a CCA application are Components that encapsulate a particular piece of software, Ports that define the interfaces between 
components, and Framework
that glue the aforementioned components together and allow them to communicate through the ports that are defined. Figure 1 illustrates how several such
components combine together to form a single application. This conceptual model should be f amiliar to anyone that has used component-based systems 
before, except that the components explicitly support parallelism and the ports facilitate fine-grained communication of large quantities of data without the 
copying that is inherent in many such systems.

The core of the CCA specification is the Services
interface. This is the primary means by which components interact with the framework, allowing the component to inform the framework of component 
capabilities and interfaces, and to request access to other services the framework may prov ide, such as information about connections between itself and other 
components, or the ability to instantiate and otherwise manipulate other components. The Se rvices interface allows a component to declare two different types
of ports, those that it will provide and those that it will use. These ports can also be thought of as callee and caller. These ports make it possible for  a CCA
framework to effectively mediate connections between components, and allows components to be assembled by another entity (a user through a GUI, a script, 
or even another component). The CCA component model espouses a minimalist approach, requiri ng only that components implement a single
method/function (called setServices) that establishes contact between the component and the  framework.

Figure 1. A CCA Component wiring diagram showing the interconnection of components in a rea ction-diffusion combustion simulation.

CCA ports are simply a babel-described interface, and are also identified by a type and nam e. An optional set of properties associated with each port can
describe additional functionality, such as the minimum/maximum number of connections. Components may provide multiple ports and even multiple
instances of the same port. In addition to defining the port mechanism, the CCA specificati on also defines a number of specific ports that are useful in
multiple applications, such as the GoPort (for starting an application), parameter ports fo r communicating basic configuration information to the application, 
and ports for communicating events to other components. The CCA reuses this port mechanism to export services provided by the framework that allow a
component to assemble and manage other components, monitor available components, and watch for application events. Using this mechanism, graphical user
interfaces become simply a component that is instantiated in the system and are not tied to  the underlying framework. These services also allow dynamic
behavior of the application itself, such as swapping components, and provide a mechanism fo r a hierarchy of components that are assembled at multiple levels
of abstraction.

Software Tools

Beyond the core specification, a number of software tools have been developed that assist u sers in developing HPC applications around component
technology. These tools, developed both through the TASCS Center, and through CCA collabora tors, provide interoperability between programming
languages, assistance with packing and deployment, and tools for performance analysis. Ther e also exists a handful of different CCA-compliant frameworks 
that target different operating environments. A few of these tools are described here and a dditional information can be found at the CCA Forum home page.

Babel (pronounced babble)[8]
addresses the language interoperability problem using a Scientific Interface Definition Lan guage (SIDL) that provides the ability to interact between 
programming languages and platforms, while addressing the unique needs of parallel scientif ic computing. Given a SIDL description that describes the calling
interface (but not the implementation) of a particular software library, Babel generates glue code that allows software implemented in one supported language 
to be called from any other supported language. SIDL supports complex numbers and dynamic multi-dimensional arrays as well as parallel communication
directives that are required for parallel distributed components. SIDL also provides other common features that are generally useful for software engineering, 
such as enumerated types, symbol versioning, and name space management, and employs an obje ct-oriented inheritance model similar to Java. Babel provides
a code splicing capability that preserves old edits during the regeneration of implementati on files after modifications to the SIDL source.

Babel recently added a remote method invocation that provides a consistent mechanism to com municate between objects regardless of where they are located.
This model provides a simpler and more consistent object-oriented programming model than CO RBA or COM, and provides an API for third-party plug-ins
to customize the underlying communication model. A simple TCP/IP protocol is provided that outperforms both CORBA and Web Services. Babel RMI fills
a niche in “short-haul” distributed computing - within a machine room, or even in a single machine with concurrent MPI runs.

Ccaffeine[9]
is the main CCA framework implementation for HPC parallel computing and it supports the component analogs of both the single program/multiple data 
(SPMD) and multiple program/multiple data (MPMD) parallel programming models. We refer to these as single or multiple component/multiple data (SCMD
or MCMD) models. Figure 2 depicts the SCMD case; each process is loaded with the same set o f components wired together in the same way. Interactions
among components within a given process (vertical direction) take place through the normal CCA means - through Ports. Interactions within a parallel
component (called a parallel cohort) take place via the parallel programming model that the  component uses (typically MPI). “Diagonal’” interactions -
between component A on one process and component B on another process - are not prohibited by the CCA, but are currently not supported in Ccaffeine.
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Figure 2. A schematic representation of the CCA parallel programming environment in the sin gle component/multiple data (SCMD) paradigm.

Bocca
is a system for creating, managing, and deploying CCA-based components. Bocca can create co mponents, define ports and interfaces, and manage the build
system for the resulting component. Bocca is a new addition to the CCA tool suite, but prom ises to dramatically simplify the process of creating a component
from scratch and subsequently maintaining it.

Performance Monitoring and Tuning. TAU is a robust and portable measurement interface and system for software performance evaluation. Using SIDL to
describe TAU’s measurement API, Babel has enabled access to TAU across all supported langua ges. CCA/Babel has also enabled incorporation of dynamic
selection of measurement options into the TAU performance evaluation tools. Users can choos e from a variety of measurement options interactively at
runtime, without re-compilation of applications. Proxy components are automatically generat ed to mirror a component’s interface, allowing dynamic
interposition of proxies between callers and callees, via hooks into the intermediate Babel  communication layer. Such inter-component interaction
measurements can correlate performance to application parameters, used for constructing more sophisticated performance models.

Figure 3. A Component wiring diagram showing how explicit coupling components can manage th e interfaces in a multi-physics climate simulation.

Components for Parallel Coupling. Multiphysics and multiscale models face a formidable obstacle: the parallel coupling prob lem. Parallel coupling
involves the description, transfer, and transformation of distributed data. We are developi ng a set of CCA components (the Parallel Coupling Infrastructure, or
PCI Toolkit) that leverage successful parallel coupling technology - the Model Coupling Too lkit - to simplify the process of remapping data between 
disparate discretizations and processor mappings.

Additional tools. In addition to these tools and software frameworks, the TASCS Center maintains additional  component-based software for developing HPC 
applications on CCA technology. A graphical user interface allows interactive construction and monitoring of HPC applications. CCA-lite is a slimmed down
version of the CCA specification designed for statically-linked components that are written  in C, C++ and/or Fortran. Additional frameworks, such as the
SCIJump distributed/parallel framework from Utah and the LegionCCA Grid-based framework from SUNY Binghamton, also provide alternative deployment
vehicles for CCA components.

Applications

CCA is applicable to a broad range of parallel applications. We highlight a few of these en deavors.

Combustion Modeling. One of the most sophisticated implementations of the CCA paradigm to date is in combustio n modeling. The endeavor, which started
in 2001 at the Computational Facility for Reacting Flow Science (CFRFS) project, [10] seeks to create a facility for the high fidelity simulation of flames 
involving realistic physical models, nonlinear PDEs, and a spectrum of time and length scal es. Given the complexity of the problem and the multiplicity of
physical and mathematical models required for the task, a component based approach was a na tural fit. CCA was chosen primarily for its high performance 
and simplicity. General purpose components, implementing a particular numerical or physical  functionality, are reused in various code assemblies. 

Fusion. The standardization of fusion codes has become of paramount importance with the beginning  of the fusion integrated modeling. In 2006, two SciDAC
projects, SWIM (Center for Simulation of RF Wave Interactions with Magnetohydrodynamics)[11] and CPES (the Center for Plasma Edge Simulation),[12]
were funded. In 2007, another integrating SciDAC project FACETS (the Framework Application for Core-Edge Transport Simulations)[13] started. Each of
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these three projects addresses a different area of integration, and some of them will possibly unite in the upcoming Fusion Simulation Project sometime in
2008. All projects are looking at components technologies to assist them in defining and co mposing participating codes. FACETS uses the CCA language
interoperability tool, Babel, to wrap F90 modules for the use in its C++ framework.

Quantum Chemistry. In response to the strong need for a community software base in the quantum chemistry community, members of the Quantum 
Chemistry Scientific Application Partnership (QCSAP) have leveraged the software engineering practices and tools developed by the CCA Forum to create a 
community-based architecture for chemistry simulation. By designing flexible interfaces by which quantum chemistry capabilities can be shared, the scaling
of human effort is drastically improved, allowing the exploration of new algorithms and hardware in a fraction of the time required by traditional approaches. 
A screenshot of such an application is shown in Figure 4. For the quantum chemistry package s adopting this new design paradigm [GAMESS (Ames
Laboratory), NWChem (Pacific Northwest National Laboratory) and MPQC (Sandia National Laboratories) thus far], many advantages have already been 
realized, including the abilities to leverage more efficient optimization components writte n by domain experts, transparently share low-level integral 
evaluation routines, more efficiently utilize high performance computers, and automatically  tune applications for specific molecular systems and hardware 
environments.

Figure 4. Screenshot of a graphical component front-end developed within the QCSAP.

The Future

Some of the ongoing work includes advances in component capabilities for massively parallel  and heterogeneous architectures, runtime enforcement of 
behavioral semantics, additional expressibility for complex interactions between components , and parallel coupling. We provide brief highlights below; see
[[3], [14]] for additional details.

Emerging HPC Environments. Scientists developing petascale computational science capabilities continue to face major  challenges in effectively using 
emerging high-performance computing (HPC) architectures, which are characterized by large p rocessor counts and increasing use of heterogeneous, 
specialized environments. We are thus developing new tools for CCA users to simplify and ac celerate the development of true petascale applications on
diverse hardware platforms. Our goals are that CCA users will be able to flexibly and dynamically express higher levels of parallelism,[15] transparently 
exploit specialized coprocessing resources, and support intelligent application-level respo nses to the hardware failures that are inevitable on systems of this 
scale. For example, we are working with a bioinformatics/proteomics application team to ana lyze data generated by mass spectrometers at PNNL.[16]

Software Quality and Verification. To help make the vision of interchangeable components a reality for scientific software, we are developing capabilities
for the composition- and execution-time verification of interface semantics.[17] [18] Component interfaces, expressed separately from implementations, can
be extended with semantic information to provide concise specifications that are both human -readable and interpreted by software. Unlike traditional 
verification techniques based either on post-execution comparisons with prior or analytical  results or on algorithm-based fault tolerance techniques, this 
approach enables error detection closer to the point of failure. The result is improved tes ting, debugging, and runtime monitoring of software quality, thereby 
providing software developers with a powerful tool for catching errors early and ensuring c orrect software usage. 

Computational Quality of Service. As computational science progresses toward ever more realistic multi-physics applications , no single research group can 
effectively select or tune all components of a given application, and no solution strategy can seamlessly span the entire spectrum efficiently. Common
component interfaces enable easy access to suites of independently developed algorithms and  implementations. The challenge then becomes how, during
runtime, to make the best choices for reliability, accuracy, and performance. As motivated by simulations in combustion,[10] quantum chemistry,[19]
fusion,[13] and accelerators,[20]
TASCS researchers are addressing this challenge by developing tools for Computational Quali ty of Service (CQoS), or the automatic selection and 
configuration of components to suit a particular computational purpose and environment. [21] The two main facets of CQoS tools are (1) measurement and
analysis infrastructure and (2) control infrastructure for dynamic component replacement and domain-specific decision making.[22]

Parallel Data Redistribution and Parallel Remote Method Invocation. Parallel components raise questions about the semantics of method invocations and 
the mechanics of parallel data redistribution involving these components. Method invocation s between parallel components are an opportunity to automate the
data redistribution and translation semantics of the interaction between those components. The so-called MxN problem (where M processors associated with
one component coordinate with N processors associated with another) arises often when multi ple simulation components are joined in a single application.
This allows an application to utilize a combination of task-based parallelism and domain de composition to achieve integration, regardless of the scaling 
characteristics and resource constraints of the individual components. Support for this cap ability is being integrated into the Babel compiler.

Conclusion

The Common Component Architecture is a solid foundation for developing modular, maintainabl e high-performance simulations. Through support of the
TASCS Center and collaborators, the surrounding ecosystem continues to flourish, and provid es new functionality for taming the complexity of multi-physics,
multi-scale, scalable applications. 
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