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Abstract. There have been many research efforts that built migration
systems which migrate applications under different conditions like load
changes on machines, availability of new machines, non-availability of
existing machines due to reclaiming by owners, providing fault toler-
ance etc. Due to the dynamics involved in computational grids, the main
motivations for migration of executing applications in grid systems are
providing fault tolerance and adapting to changes in machine loads. In
this paper we describe our framework that implements scheduling poli-
cies for migrating executing applications due to load changes on the
resources. Our framework makes migrating decisions based on both sys-
tem load and application characteristics. We also present some results
that validate the usefulness of our migrating system.

1 Introduction

The ability to migrate executing applications onto different sets of resources
provides flexibility to resource management systems to efficiently schedule the
applications on the system under changing system conditions. Different migra-
tion systems [17], [1], [10], [16], [21], [8], [7], [23], [9], [26], [14], [4]
have been implemented to migrate different kinds of applications under different
conditions. Four issues have to be dealt to build efficient migration systems.

1. When - The scheduling and migrating systems have to define the condi-
tions under which migration of executing applications will take place. These
conditions can be few key strokes on the executing systems, sudden non-
availability of the systems on which the applications are executing, avail-
ability of new sets of resources, load imbalance on the systems etc.

2. Where - After the decision to migrate, the scheduling system should deter-
mine the new sets of resources on which the applications will be migrated.
These new sets of resources can be determined based on different sets of
criteria.
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3. How - Different migrating systems employ different methods for migrat-
ing applications for different kinds of applications. Some migrations can be
simple context switches while some migrations can involve complex check-
pointing mechanisms.

4. Who - The migration decisions and the migration process can be imple-
mented by the system automatically or can be specified by the user.

Computational grids [12] involve large system dynamics that migration of ex-
ecuting applications on the grid systems assumes more significance. Specifically,
the main motivations for migrating applications in grid systems are to provide
fault tolerance and adapting to change in loads on the systems. In this paper,
we focus on migration of grid applications when the loads on the grid resources
change. Many existing migration systems implement policies to migrate appli-
cations under changing system loads [17], [10], [16], [23], [26], [14], [4]. Some
of these policies are not clearly defined and some other policies are inadequate
to the grid systems. The policies when implemented on grid system can involve
large scheduling overheads for the grid scheduling and resource management
systems.

In this paper, we describe a framework that defines and implements schedul-
ing policies for migrating grid applications in response to system load changes.
In our framework, the migration of applications depends on

1. the amount of increase or decrease in loads on the resources,

2. the time of the application execution when load is introduced into the system,

3. the performance benefits that can be obtained for the application due to
migration.

Thus, our migrating framework takes into account both the load and application
characteristics. The policies are implemented in such a way that the overhead
to the grid scheduling system is minimal. The framework has been implemented
and tested on top of the GrADS system [2]. Our test results indicate that our
migrating system is useful for applications on the grid.

In Section 2, we describe the GrADS system and the life cycle of GrADS
applications. In Section 3, we introduce our migration framework by describing
the different components for migration. In Section 4, we describe our experiments
and provide various results. In Section 5, we present related work in the field of
migration. We give concluding remarks in Section 6 and we explain our future
plans in Section 7.

2 The GrADS System

GrADS [2] is an ongoing research involving number of institutions and its goal is
to simplify distributed heterogeneous computing in the same way that the World
Wide Web simplified information sharing over the Internet. The University of
Tennessee investigates issues regarding integration of numerical libraries in the
GrADS system. In our previous work [18], we demonstrated the ease with which



numerical libraries like ScaLAPACK can be integrated into the Grid system and
the ease with which the libraries can be used over the Grid. We also showed some
results to prove the usefulness of a Grid in solving large numerical problems.

In the architecture of GrADS, the user wanting to solve a numerical appli-
cation over the grid invokes the GrADS application manager. The life cycle of
the GrADS application manager is shown in Figure 1.

Figure 1. Life cycle of the GrADS application manager
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As a first step, the user invokes the application manager with the problem
he wants to solve along with the problem parameters. The application manager
invokes a component called Resource Selector. The Resource Selector accesses
the Globus Monitoring and Discovery Service(MDS) [11] to get a list of machines
in the GrADS testbed that are alive and then contacts the Network Weather
Service(NWS) [24] to get system information for the machines. The application
manager then invokes a component called Performance Modeler with problem
parameters, machines and machine information. The Performance Modeler us-
ing an execution model built specifically for the application, determines the final
list of machines for application execution. By employing the application specific
execution model, GrADS follows the AppLeS [3] approach to scheduling. The
problem parameters and the final list of machines are passed as a contract to a
component called Contract Developer. The Contract Developer can either ap-
prove or reject the contract. If the contract is rejected, the application manager
develops a new contract by starting from the resource selection phase again. If



the contract is approved, the application manager passes the problem, its pa-
rameters and the final list of machines to Application Launcher. The Application
Launcher spawns the job on the given machines using Globus job management
mechanism and also spawns a component called Contract Monitor. The Con-
tract Monitor through an Autopilot mechanism [20] monitors the times taken
for different parts of applications. The GrADS architecture also has a GrADS
Information Repository(GIR) that maintains the different states of the applica-
tion manager and the states of the numerical application. After spawning the
numerical application through the Application Launcher, the application man-
ager waits for the job to complete. The job can either complete or suspend its
execution due to an external mechanism. These application states are passed
to the application manager through the GIR. If the job has completed, the ap-
plication manager exits, passing success values to the user. If the application
is stopped, the application manager waits for a resume signal and then collects
new machine information by starting from the resource selection phase again.

3 The Migration Framework

The ability to migrate applications in the GrADS system is implemented by
adding a component called Rescheduler to the GrADS architecture The migrat-
ing numerical application, migrator, the contract monitor that monitors the ap-
plication’s progress and the rescheduler that decides when to migrate, together
form the core of the migrating framework. These components are described in
detail in the following subsections.

3.1 The Migrator

Mechanisms have been implemented in the ScaLAPACK LU and QR factor-
ization codes that will enable the ScaLAPACK application to be stopped and
restarted on possibly different number of processors. The checkpointing mecha-
nism is application specific in that calls have to be inserted in the applications
to checkpoint the data and the application has to be modified with conditional
statements to make it work in both the start and restart modes. We use the
Internet Backplane Protocol (IBP) [19] for storage of the checkpoint states. IBP
depots, where storage can be allocated, are started on the processors of the Grid
System.

A component, called Runtime Support System (RSS) is started in the appli-
cation launching phase even before the application is started. The RSS is specific
to the ScaLAPACK application and registers to the GrADS Information Repos-
itory(GIR) with the application identifier. When the application is started, it
gets the location of the RSS from the GIR and contacts the RSS and performs
some initialization. The RSS can receive a STOP signal from any external com-
ponent. The application, between the iterations, contacts the RSS to check if it
has received the STOP signal. When the STOP signal is received, each process
of the application, by means of IBP client API, opens up a storage of specific



size in its IBP depot and checkpoints the data to the IBP storage. The handles
to the stored data are stored in the RSS. When the application is restarted on
a different set of processors, the application contacts the RSS through the GIR,
obtains the handles to the IBP data, reads in the checkpointed data, continues
from its previous state and proceeds to completion. When the number of pro-
cessors in the restarted application is different from the number of processors in
the original configuration, the RSS allocates new IBP storage and redistributes
data from the previous IBP storage to the new storage by means of IBP client
APT for copying.

3.2 Contract Monitor

Contract Monitor is a component that uses the Autopilot infrastructure to mon-
itor the progress of the applications in GrADS. Autopilot [20] is a real-time
adaptive control infrastructure built by the Pablo group at University of Illinois,
Urbana-Champagne. An autopilot manager is started before the launch of the
numerical application. The numerical application is instrumented with calls to
register to the autopilot. The contract monitor retrieves the registration infor-
mation of the application through the autopilot. The ScaLAPACK applications
are also instrumented with calls between each iteration to send the times taken
for the iterations to the contract monitor. The contract monitor compares the
actual iteration times with the predicted iteration times and calculates the ratio
between them. The tolerance limits of the ratio are specified as inputs to the
contract monitor.

When a given ratio is greater than the upper tolerance limit, the contract
monitor calculates the average of the computed ratios. If the average is greater
than the upper tolerance limit, it contacts the rescheduler, requesting for migrat-
ing the application. The average of the ratios is used by the contract monitor to
contact the rescheduler due to the following reasons:

1. A competing application of short duration on one of the machines may have
increased the load on the machine and hence the loss in performance of the
application. Contacting the rescheduler for migration on noticing few losses
in performance will result in unnecessary migration in this case since the
competing application will end soon and the application’s performance will
be back to normal.

2. The average of the ratios also captures the history of the behavior of the ma-
chines on which the application is running. If the application’s performance
on most of the iterations has been satisfactory, then few losses of performance
may be due to sparse occurrences of load changes on the machines.

3. The average of the ratios also takes into account the percentage completed
time of application’s execution.

4. Contacting the rescheduler for migration only when the average of ratios is
greater than the upper tolerance limit significantly reduces the overhead of
migrating decisions.



When the rescheduler refuses to migrate the application, the contract monitor
adjusts its tolerance limits to new values. Similarly when a given ratio is less
than the lower tolerance limit, the contract monitor calculates the average of
the ratios and adjusts the tolerance limits if the average is less than the lower
tolerance limit. The dynamic adjusting of tolerance limits serves three purposes:

1. It reduces the overhead involved in contract monitor when the ratios between
actual and predicted times are not the original expected ratios.

2. It reduces the amount of communication between the contract monitor and
the rescheduler.

3. It hides the deficiencies in the application-specific execution time model.

3.3 Rescheduler

Rescheduler is the component that evaluates the performance benefits that can
be obtained due to the migration of an application and initiates the migration of
the application. The rescheduler is a daemon that operates in 2 modes: migration
on request and opportunistic migration. When the contract monitor detects in-
tolerable performance loss for an application, it contacts the rescheduler request-
ing it to migrate the application. This is called migration on request. In other
cases when no contract monitor has contacted the rescheduler for migration, the
rescheduler periodically queries the GrADS Information Repository(GIR) for re-
cently completed applications. If a GrADS application was recently completed,
the rescheduler determines if performance benefits can be obtained for an exe-
cuting application by migrating it to use the resources that were freed by the
completed application. This is called opportunistic rescheduling.

In both cases, the rescheduler first contacts the Network Weather Service
(NWS) to get the updated information for the machines in the grid. It then
contacts the application-specific performance modeler to evolve a new schedule
for the application. Based on the total percentage completion time for the ap-
plication and the total predicted execution time for the application with the
new schedule, the rescheduler calculates the remaining execution time, ret_new,
of the application if it were to execute on the machines in the new schedule.
The rescheduler also calculates ret_current, the remaining execution time of the
numerical application if it were to to continue executing on the original set of
machines. ret_current is calculated based on the progress of the application and
the total predicted time of execution for the application on the original set of
machines. The rescheduler then calculates the rescheduling gain as

(ret_current — (ret_new + 240))

rescheduling_gain =
ret_current

where 240 is the worst case time in seconds needed to reschedule the appli-
cation. This involves the time for the application manager to pass the phases of
resource selection, application-specific rescheduling, contract development and
application launching and the time for the redistribution of data if the ap-
plication is restarted on a different number of processors. If the rescheduling



gain is greater than 30%, the rescheduler sends STOP signal to the application,
and stores the stop status in GIR. The application manager then waits for the
RESUME signal. The rescheduler stores the RESUME value in the GIR thus
prompting the application manager to evolve a new schedule and restart the
application on the new schedule. If the rescheduling gain is less than 30% and
if the rescheduler is operating in the migration on request mode, the resched-
uler contacts the contract monitor prompting the contract monitor to adjust its
tolerance limits.

The interactions between the different components involved in the migration
framework is illustrated in Figure 2.

Figure 2. Interactions in the Migration framework
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4 Experiments and Results

The GrADS experimental testbed consists of about 40 machines that reside
in institutions across the country including University of Tennessee, University
of Illinois, University of California at San Diego, Rice University etc. For the
sake of clarity, our experimental testbed consists of two clusters in University
of Tennessee, a cluster called torc consisting of 8 machines and another cluster
called msc consisting of 8 machines. The two clusters are connected to each other
by 100 Mb Ethernet links. Both the clusters consist of Pentium IIT machines
running Linux and the machines within a cluster are connected to each other by



100 Mb switched Ethernet. Machines in torc have clock speed of 550 MHz while
machines in msc have clock speed of 933 MHz.

In the following experiments, we demonstrate both opportunistic migration
and migration on request. The loading program we used to demonstrate migra-
tion on request is a simple C code that consist of a single looping statement that
loops forever. This program was compiled without any optimization in order to
achieve the loading effect. For all the experiments, ScaLAPACK QR factoriza-
tion was used.

4.1 Migration on Request

In all the experiments in this section, 8 torcs and 4 mscs were used. Since, mscs
are faster than torcs, all the 4 mscs were used for the initial schedule. The loading
programs were introduced in the 4 mscs.

Figure 3. Effect of amount of load on migration decision
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In the first set of experiments, we demonstrate the effect of amount of load
on the migration decision. In these experiments, we use the same problem size,
matrix size of 14000, and introduce the load at the same point in application
execution, at iteration number 70. The total number of iterations in the appli-
cation is 375. In Figure 3, the x-axis represents the number of loading programs
used in the system and the y-axis represents the iteration in the application
execution when the application was migrated. We note that more the amount of
load introduced in the system, earlier the application is migrated.

In the second set of experiments, we illustrate that the migrating decisions
can be affected by the time in the application execution when the load was
introduced into the system. In these experiments, we use the same problem size,
matrix size of 14000, and the same amount of load, 10 instances of the loading
program. In Figure 4, the x-axis denotes the iteration number in the application
when the load was introduced and the y-axis denotes the difference in time in
seconds between when the load was introduced and when the rescheduler decided
to migrate the application.



Figure 4. Effect of load introduction time on migration
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From Figure 4, we observe that the scheduling system takes more time for
deciding to migrate as the time for load introduction into the system increases.
This is due to the effect of history of application’s behavior on migration. When
the load is introduced at iteration 70, the first 70 iterations have been executed
according to expected behavior and a sustained loading effect of lengthy duration
is needed to convince the scheduling system to migrate the application. For
iterations greater than 70, the rescheduler refused to migrate the application
since very little rescheduling gain can be obtained. For these cases, the contract
monitor dynamically adjusted its tolerance limits.

For the third set of experiments, we demonstrate that the same amount of
load can have different effects on the migration decision when different prob-
lems of different sizes were used. For these experiments, we introduce the same
amount of load, 10 loading programs, into the systems 3 minutes after the start
of the application execution. In Figure 5, the time taken for deciding to migrate
the application since the load introduction is plotted against the different ma-
trix sizes of the problem. At the time of introduction of the load, the smaller
applications would have progressed more than the larger applications. Hence
migration decision is immediate in the case of larger applications. Also, for ap-
plications of matrix sizes less than 8000, the rescheduler decided not to migrate
since significant performance benefits will not be obtained due to migration.

4.2 Opportunistic Migration

In this set of experiments, we illustrate opportunistic migration in which the
rescheduler tries to migrate an executing application when some other applica-
tion completes. An application, app;, was introduced into the system such that
it consumed most of the memory of 8 msc machines. During the execution of
app1, an appo, that intended to use 11 machines, 3 torcs and 8 mscs was intro-
duced into the system. Since the 8 msc machines were occupied by appi, apps
was able to utilize only the 3 torc machines. When app; completed, the 8 msc
machines were freed and apps was able to utilize the extra resources to reduce its



Figure 5. Effect of the same load amount on different problem sizes
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remaining execution time. The rescheduler evaluated the performance benefits
of allowing app- to utilize the extra 8 processors.

ScalLAPACK problems of sizes 20000 and 21000, depending on the available
memory on mscs when the experiments were run, were used for app;. ScalLA-
PACK problem of size 11000 was used for apps.

We define

1. Total execution time of apps on 3 torcs without rescheduling, execy,ithout_re
2. Total execution time of apps with rescheduling, exec,ith_re
3. Percentage rescheduling gain for apps, percentagegain

ETECyithout_re — ELECwith_re

percentage_gain =
ETECwithout_re

apps was introduced at various points of time after the starting of app;. Hence
additional resources will be available for apps at various points of time into its
execution. The total number of iterations needed by the ScaLAPACK problem
of size 11000 was 275. Figure 6 illustrates the utility of rescheduling as a function
of the remaining number of iterations left for app, when apps was rescheduled.
We observe that the percentage rescheduling gain for apps increases when the

remaining execution time left for apps at the time of rescheduling increases.

5 Related Work

Different systems have been implemented to migrate executing applications onto
different sets of resources. The work by Mirchandaney et. al. [17] deals with mi-
gration of executing applications to efficiently use under-utilized resources. The
Dome system [1] performs data redistribution for load balancing and migrates
executing applications to provide fault resilience. Sprite operating system [10]
and Condor [16] perform checkpointing and migration of executing applications
when the owner of a workstation wants to reclaim his system. Thus the mi-
gration policy is intended to reduce the obtrusiveness to the workstation owner
and not to increase the performance of individual applications as implemented



Figure 6. Rescheduling gain for app2
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in our migration framework. Khaled Al-Saqabi et. al [21] discusses migration of
applications in the context of gang scheduling. MPVM/MIST (8], [7] projects
and the work by Zhang et. al. [25] have built migration systems that uses the
concept of gang scheduling to utilize system resources. MIST also deals with
migration under increasing loads but the scheduling policy has not been defined
clearly. The Dynamite system [23] based on Dynamic PVM [9] migrates appli-
cations when the loads of certain machines gets under-utilized or over-utilized
as defined by application-specified thresholds. Although this method takes into
account application-specific characteristics it does not necessarily evaluate the
remaining execution time of the application and the resulting performance bene-
fits due to migration. The migration system in LSF[26] migrates jobs under load
changes if a migration threshold is defined for the hosts. Thus jobs are migrated
to maintain load balance rather than to improve performance. MARS [14] mi-
grates applications taking into account both the system loads and application
characteristics. But the migration decisions are made only at different phases
of the applications. In our migration framework, the applications are continu-
ously monitored and migration decisions are made whenever the applications
are not making sufficient progress. The HMF system [4] uses a graph model to
define migration policies. The efficiency of this model in grid systems is still
to be proven. Of the grid computing systems [13], [15], [16], [6], [5], [22],
only Condor [16] seems to migrate applications under workload changes. But as
mentioned above, the goal in Condor is to utilize idle resources rather than to
improve performance.

6 Conclusions

Many existing migrating systems that migrate applications under loading condi-
tions implement simple policies that cannot be applied to grid systems. We have
implemented a migration framework that takes into account both the system
load and application characteristics. The migrating decisions are made with-
out adding too much overhead to the scheduling system in the grid. Migration



decisions are based on factors like the amount of load, the time of the appli-
cation when the load is introduced and the size of the applications. We have
also implemented a framework that migrates executing applications to make
use of additional free resources. Experiments were conducted and results were
presented to demonstrate the capabilities of the migration framework.

7 Future Work

Work is in progress to develop interfaces for the application library writer to
to easily integrate his application with migration capability into the GrADS
system. The present rescheduler uses the worst case rescheduling time to make its
scheduling decisions. Our plan is to make the rescheduler learn the rescheduling
cost based on previous runs. We are also investigating providing support for fault
tolerance in the GrADS framework.
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