
Parallel Two-Sided Matrix Reduction to Band
Bidiagonal Form on Multicore Architectures

Hatem Ltaief1, Jakub Kurzak1, and Jack Dongarra1,2,3?

1 Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville

2 Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee

3 School of Mathematics & School of Computer Science,
University of Manchester

{ltaief, kurzak, dongarra}@eecs.utk.edu

Abstract. The objective of this paper is to extend, in the context of
multicore architectures, the concepts of tile algorithms [Buttari et al.,
2007] for Cholesky, LU, QR factorizations to the family of two-sided fac-
torizations. In particular, the bidiagonal reduction of a general, dense
matrix is very often used as a pre-processing step for calculating the
Singular Value Decomposition. Furthermore, in the Top500 list of June
2008, 98% of the fastest parallel systems in the world were based on
multicores. This confronts the scientific software community with both a
daunting challenge and a unique opportunity. The challenge arises from
the disturbing mismatch between the design of systems based on this
new chip architecture – hundreds of thousands of nodes, a million or
more cores, reduced bandwidth and memory available to cores – and the
components of the traditional software stack, such as numerical libraries,
on which scientific applications have relied for their accuracy and perfor-
mance. The manycore trend has even more exacerbated the problem, and
it becomes critical to efficiently integrate existing or new numerical linear
algebra algorithms suitable for such hardware. By exploiting the concept
of tile algorithms in the multicore environment (i.e., high level of par-
allelism with fine granularity and high performance data representation
combined with a dynamic data driven execution), the band bidiagonal
reduction presented here achieves 94 Gflop/s on a 12000 × 12000 ma-
trix with 16 Intel Tigerton 2.4 GHz processors. The main drawback of
the tile algorithms approach for the bidiagonal reduction is that the full
reduction can not be obtained in one stage. Other methods have to be
considered to further reduce the band matrix to the required form.

1 Introduction

The objective of this paper is to extend, in the context of multicore architectures,
the concepts of tile algorithms by Buttari et al. [7] for Cholesky, LU , QR fac-
torizations to the family of two-sided factorizations i.e., Hessenberg reduction,
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Tridiagonalization, Bidiagonalization. In particular, the Bidiagonal Reduction
(BRD) of a general, dense matrix is very often used as a pre-processing step for
calculating the Singular Value Decomposition (SVD) [14, 28]:

A = X Σ Y T ,

with A ∈ IRm×n, X ∈ IRm×m , Σ ∈ IRm×n, Y ∈ IRn×n.

The necessity of calculating SVDs emerges from various computational sci-
ence disciplines, e.g., in statistics where it is related to principal component
analysis, in signal processing and pattern recognition, and also in numerical
weather prediction [10]. The basic idea is to transform the dense matrix A to an
upper bidiagonal form B by applying successive distinct transformations from
the left (U) as well as from the right (V ) as follows:

B = UT × A × V,

A ∈ IRn×n , U ∈ IRn×n , V ∈ IRn×n, B ∈ IRn×n.

The most commonly used algorithm to perform this two-sided reduction is
the Golub-Kahan bidiagonalization [15]. Although this algorithm works for any
matrix size, it adds extra floating point operations for rectangular matrices and
thus, faster methods such as the Lawson-Hanson-Chan bidiagonalization are
preferred [8]. Here, only square matrices are considered, and performance result
comparisons of different bidiagonalization algorithms for rectangular matrices
will appear in a companion paper.

Also, we only look at the first stage of BRD, which goes from the origi-
nal dense matrix A to a band bidiagonal matrix Bb, with b being the num-
ber of upper-diagonals. The second stage, which annihilates those additional b
upper-diagonals, has been studied especially by Lang [21] and is not examined
in this paper. This two-stage transformation process is also explained by Grosser
et al. [16]. Although expensive, orthogonal transformations are accepted tech-
niques and commonly used for this reduction because they guarantee stability,
as opposed to Gaussian Elimination [28]. The two common transformations are
based on Householder reflectors and Givens rotations. Previous work by the au-
thors [22] demonstrates the effectiveness of Householder reflectors over Givens
rotations. Therefore, the two-sided band BRD presented in this paper is achieved
by using Householder reflectors.

Furthermore, in the Top500 list of June 2008 [1], 98% of the fastest paral-
lel systems in the world were based on multicores. This confronts the scientific
software community with both a daunting challenge and a unique opportunity.
The challenge arises from the disturbing mismatch between the design of sys-
tems based on this new chip architecture – hundreds of thousands of nodes, a
million or more cores, reduced bandwidth and memory available to cores – and
the components of the traditional software stack, such as numerical libraries, on
which scientific applications have relied for their accuracy and performance. The
manycore trend has even more exacerbated the problem, and it becomes critical
to efficiently integrate existing or new numerical linear algebra algorithms suit-
able for such hardware. As discussed in [7], a combination of several parameters
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is essential to match the architecture associated with the cores: (1) fine granu-
larity to reach a high level of parallelism and to fit the cores’ small caches; (2)
asynchronicity to prevent any global barriers; (3) Block Data Layout (BDL), a
high performance data representation to perform efficient memory access; and
(4) dynamic data driven scheduler to ensure any enqueued tasks can immedi-
ately be processed as soon as all their data dependencies are resolved. While
(1) and (3) represent important items for one-sided and two-sided transforma-
tions, (2) and (4) are even more critical for two-sided transformations because
of the tremendous amount of tasks generated by the right transformation. This
imposes on the scheduler even more severe constraints due to the overlapping
regions produced by the left and the right transformations. Indeed, as a com-
parison, the algorithmic complexity for the QR factorization is 4/3 n3, while
it is 8/3 n3 for the BRD algorithm. Besides, previous work done by Kurzak
et al. [19, 20] show how the characteristics of tiled algorithms perfectly match
even the architectural features of modern multicore processors such as the Cell
Broadband Engine processor.

However, the main drawback of the tile algorithms approach for the bidiago-
nal reduction is that the full reduction can not be obtained in one stage. Other
methods have to be considered to further reduce the band matrix to the required
form. A section in this paper will address the origin of this issue.

The remainder of this document is organized as follows: Section 2 recalls the
standard BRD algorithm. Section 3 gives a detailed overview of previous projects
in this area. Section 4 describes the implementation of the parallel tiled BRD
algorithm. Section 5 outlines the pros and cons of static and dynamic scheduling.
Section 6 presents performance results. Comparison tests are run on shared-
memory architectures against the state of the art, high performance dense linear
algebra software libraries, LAPACK [3] and ScaLAPACK [9]. Finally, section 7
summarizes the results of this paper and presents the ongoing work.

2 The Standard Bidiagonal Reduction

In this section, we review the original BRD algorithm of a general, dense matrix.

2.1 The Sequential Algorithm

The standard BRD algorithm of A ∈ IRn×n based on Householder reflectors
combines two factorization methods, i.e. QR (left reduction) and LQ (right re-
duction) decompositions. The two phases are written as follows:
Algorithm 1 takes as input a dense matrix A and gives as output the upper bidi-
agonal decomposition. The reflectors uj and vj can be stored in the lower and
upper parts of A, respectively, to save memory space and used later if necessary.
The bulk of the computation is located in line 5 and in line 10 in which the
reflectors are applied to A from the left and then from the right, respectively.
Four flops are needed to annihilate one element of the matrix, which makes the
total number of operations for such algorithm 8/3 n3 (the lower order terms

3



Algorithm 1 Bidiagonal Reduction with Householder reflectors
1: for j = 1 to n do
2: x = Aj:n,j

3: uj = sign(x1) ||x||2 e1 + x
4: uj = uj / ||uj ||2
5: Aj:n,j:n = Aj:n,j:n − 2 uj (u∗j Aj:n,j:n)
6: if j < n then
7: x = Aj,j+1:n

8: vj = sign(x1) ||x||2 e1 + x
9: vj = vj / ||vj ||2

10: Aj:n,j+1:n = Aj:n,j+1:n − 2 (Aj:n,j+1:n vj) v∗j
11: end if
12: end for

are neglected). It is obvious that Algorithm 1 is not efficient as is, especially
because it is based on matrix-vector Level-2 BLAS operations. Also, a single
entire column/row is reduced at a time, which engenders a large stride access to
memory. The main contribution described in this paper is to transform this al-
gorithm to work on tiles instead to generate, as many as possible, matrix-matrix
Level-3 BLAS operations. First introduced by Berry et al. in [5] for the reduction
of a nonsymmetric matrix to block upper-Hessenberg form and then revisited
by Buttari et al. in [7], this idea considerably improves data locality and cache
reuse.

3 Related Work

Yotov et al. [30] describes Cache-oblivious algorithms which allow applications
to take advantage of the memory hierarchy of modern microprocessors. These
algorithms are based on the divide-and-conquer paradigm each division step
creates sub-problems of smaller size, and when the working set of a sub-problem
fits in some level of the memory hierarchy, the computations in that sub-problem
can be executed without suffering capacity misses at that level. In this way,
divide-and-conquer algorithms adapt automatically to all levels of the memory
hierarchy; in fact, for problems like matrix multiplication, matrix transpose, and
FFT, these recursive algorithms are optimal to within constant factors for some
theoretical models of the memory hierarchy.

Grosser and Lang [16] describe an efficient parallel reduction to bidiagonal
form by splitting the standard algorithm in two stages, i.e., dense to banded and
banded to bidiagonal, in the context of distributed memory systems. The QR and
LQ factorizations are done using a tree approach, where multiple column/row
blocks can be reduced to triangular forms at the same time, which can amelio-
rate the overall parallel performance. However, those triangular blocks are then
reduced without taking into account their sparsity, which add some extra flops.

Ralha [25] proposed a new approach for the bidiagonal reduction called one-
sided bidiagonalization. The main concept is to implicitly tridiagonalize the ma-
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trix ATA by a one-sided orthogonal transformation of A, i.e., F = A V . As
a first step, the right orthogonal transformation V is computed as a product
of Householder reflectors. Then, the left orthogonal transformation U and the
bidiagonal matrix B are computed using a Gram-Schmidt QR factorization of
the matrix F . This procedure has numerical stability issues and the matrix U
might loose its orthogonality properties.

Barlow et al. [4] and later, Bosner et al. [6], further improved the stability of
the one-sided bidiagonalization technique by merging the two distinct steps to
compute the bidiagonal matrix B. The computation process of the left and right
orthogonal transformations is now interlaced. Within a single reduction step,
their algorithms simultaneously perform a block Gram-Schmidt QR factorization
(using a recurrence relation) and a postmultiplication of a block of Householder
reflectors chosen under a special criteria.

4 The Parallel Reduction to Band Bidiagonal Form

In this section, we present the parallel implementation of the band BRD algo-
rithm based on Householder reflectors.

4.1 Descriptions of the Fast Elementary Operations

There are eight overall kernels implemented for the two phases, four for each
phase.

For phase 1 (left reduction), the first four kernels are identical to the ones used
by Buttari et al. [7] for the QR factorization, in which the reflectors are stored
in column major form. DGEQRT is used to do a QR blocked factorization using
the WY technique for efficiently accumulating the Householder reflectors [26].
The DLARFB kernel comes from the LAPACK distribution and is used to apply
a block of Householder reflectors. DTSQRT performs a block QR factorization
of a matrix composed of two tiles, a triangular tile on top of a dense square tile.
DSSRFB updates the matrix formed by coupling two square tiles and applying
the resulting DTSQRT transformations. Buttari et al. gives a detailed description
of the different kernels [7].

For phase 2 (right reduction), the reflectors are now stored in rows. DGELQT
is used to do a LQ blocked factorization using the WY technique as well. DT-
SLQT performs a block LQ factorization of a matrix composed of two tiles,
a triangular tile beside a dense square tile. However, minor modifications are
needed for the DLARFB and DSSRFB kernels. These kernels now take into
account the row storage of the reflectors.

Moreover, since the right orthogonal transformations do not destroy the zero
structure and do not introduce fill-in elements, the computed left and right re-
flectors can be stored in the lower and upper annihilated parts of the original
matrix, for later use. Although the algorithm works for rectangular matrices,
for ease of presentation, only square matrices are considered. Let NBT be the
number of tiles in each direction. Then, the tiled band BRD algorithm with
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Householder reflectors appears as in Algorithm 2. It basically performs a se-
quence of interleaved QR and LQ factorizations at each step of the reduction.

Algorithm 2 Tiled Band BRD Algorithm with Householder reflectors.
1: for i = 1, 2 to NBT do
2: // QR Factorization
3: DGEQRT(i, i, i)
4: for j = i + 1 to NBT do
5: DLARFB(”L”, i, i , j)
6: end for
7: for k = i + 1 to NBT do
8: DTSQRT(i, k, i)
9: for j = i + 1 to NBT do

10: DSSRFB(”L”, i, k, j)
11: end for
12: end for
13: if i < NBT then
14: // LQ Factorization
15: DGELQT(i, i, i + 1)
16: for j = i + 1 to NBT do
17: DLARFB(”R”, i, j, i + 1)
18: end for
19: for k = i + 2 to NBT do
20: DTSLQT(i, i, k)
21: for j = i + 1 to NBT do
22: DSSRFB(”R”, i, j, k)
23: end for
24: end for
25: end if
26: end for

The characters ”L” and ”R” stand for Left and Right updates. In each ker-
nel call, the triplets (i, ii, iii) specify the tile location in the original matrix,
as in figure 1: (i) corresponds to the reduction step in the general algorithm,
(ii) gives the row index and (iii) represents the column index. For example,
in figure 1(a), the black tile is the input dependency at the current step, the
white tiles are the zeroed tiles, the bright gray tiles are those which need to
be processed and finally, the dark gray tile corresponds to DTSQRT(1,4,1). In
figure 1(a), the striped tiles represent the final data tiles and the dark gray
tile is DLARFB(”R”,1,1,4). In figure 1(b), the reduction is at step 3 where the
dark gray tiles represent DSSRFB(”L”,3,4,4). In figure 1(c), the dark gray tiles
represent DSSRFB(”R”,3,4,5).

These kernels are very rich in matrix-matrix operations. By working on small
tiles with BDL, the elements are stored contiguous in memory and thus the access
pattern to memory is more regular, which makes these kernels high performing. It
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appears necessary then to efficiently schedule the kernels to get high performance
in parallel.

(a) BRD: Left Reduction Step 1.
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(b) BRD: Right Reduction Step 1.
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(c) BRD: Left Reduction Step 3.
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(d) BRD: Right Reduction Step 3.

Fig. 1. BRD algorithm applied on a tiled Matrix with NBT= 5.

The next section describes the number of operations needed to apply this
reduction.

4.2 Algorithmic Complexity

The algorithmic complexity for the band BRD is split into two phases: QR
factorization and a band LQ factorization. The total number of flops is then
8/3n3 + 2n2− 4n2b (the lower order terms are ignored) with b being the tile size
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(equivalent to the bandwidth of the matrix). Compared to the full BRD reduc-
tion complexity, i.e., 8/3n3 + 2n2, the band BRD algorithm is doing O(n2b) less
flops, which is a negligible expense of the overall BRD algorithm cost provided
n >> b.

Furthermore, by using updating factorization techniques as suggested in [14,
27], the kernels for both implementations can be applied to tiles of the orig-
inal matrix. Using updating techniques to tile the algorithms was first pro-
posed by Yip [29] for LU to improve the efficiency of out-of-core solvers, and
were recently reintroduced in [17, 23] for LU and QR, once more in the out-
of-core context. The cost of these updating techniques is an increase in the
operation count for the whole BRD reduction. However, as suggested in [11–13],
by setting up inner-blocking within the tiles during the panel factorizations and
the trailing submatrix update, DGEQRT-DGELQT-DTSQRT-DTSLQT kernels
and DLARFB-DSSRFB kernels respectively, those extra flops become negligible
provided s << b, with s being the inner-blocking size (see Buttari et al. [7] for
further information). This blocking approach has been also described in [17, 24].

However, it is noteworthy to mention the high cost of reducing the band
bidiagonal matrix to the full bidiagonal matrix. Indeed, using technics such as
bulge chasing to reduce the band matrix is very expensive and may dramati-
cally slow down the overall algorithms. Another approach would be to apply the
Divide-and-Conquer (SVD) on the band matrix but this strategy is sill under
investigations.

The next section explains the limitation origins of the tile algorithms concept
for two-sided transformations, i.e. the reduction achieved only to band form.

4.3 Limitations of Tile Algorithms Approach for Two-Sided
Transformations

The concept of tile algorithms is very suitable for one-sided methods (i.e. Cholesky,
LU, QR, LQ). Indeed, the transformations are only applied to the matrix from
one side. With the two-sided methods, the right transformation needs to pre-
serve the reduction achieved by the left transformation. In other words, the
right transformation should not destroy the zeroed structure by creating fill-in
elements. That is why, the only way to keep intact the obtained structure is to
perform a shift of a tile in the adequate direction. For the BRD, we decided to
shift one tile right from the top-left corner of the matrix. We could have also
performed the shift one tile bottom from the top-left corner of the matrix.

In the following part, we present a comparison of two approaches for tile
scheduling, i.e., a static and a dynamic data driven execution scheduler that
ensures the small kernels (or tasks) generated by Algorithm 2 are processed as
soon as their respective dependencies are satisfied.

5 Static Scheduling vs Dynamic Scheduling

Two types of schedulers were used, a dynamic one, where scheduling decisions
are made at runtime, and a static one, where the schedule is predetermined.
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The dynamic scheduling scheme similar to [7] has been extended for the two-
sided orthogonal transformations. A Directed Acyclic Graph (DAG) is used to
represent the data flow between the nodes/kernels. While the DAG is quite easy
to draw for a small number of tiles, it becomes very complex when the number of
tiles increases and it is even more difficult to process than the one created by the
one-sided orthogonal transformations. Indeed, the right updates impose severe
constraints on the scheduler by filling up the DAG with multiple additional edges.
The dynamic scheduler maintains a central progress table, which is accessed in
the critical section of the code and protected with mutual exclusion primitives
(POSIX mutexes in this case). Each thread scans the table to fetch one task at a
time for execution. As long as there are tasks with all dependencies satisfied, the
scheduler will provide them to the requesting threads and will allow an out-of-
order execution. The scheduler does not attempt to exploit data reuse between
tasks. The centralized nature of the scheduler is inherently non-scalable with the
number of threads. Also, the need for scanning potentially large table window, in
order to find work, is inherently non-scalable with the problem size. However, this
organization does not cause performance problems for the numbers of threads,
problem sizes and task granularities investigated in this paper.

The static scheduler used here is a derivative of the scheduler used suc-
cessfully in the past to schedule Cholesky and QR factorizations on the Cell
processor [18, 20]. The static scheduler imposes a linear order on all the tasks in
the factorization. Each thread traverses the tasks space in this order picking a
predetermined subset of tasks for execution. In the phase of applying transfor-
mations from the right each thread processes one block-column of the matrix;
In the phase of applying transformations from the left each thread processes one
block-row of the matrix (figure 2). A dependency check is performed before exe-
cuting each task. If dependencies are not satisfied the thread stalls until they are
(implemented by busy waiting). Dependencies are tracked by a progress table,
which contains global progress information and is replicated on all threads. Each
thread calculates the task traversal locally and checks dependencies by polling
the local copy of the progress table. Due to its decentralized nature, the mecha-
nism is much more scalable and of virtually no overhead. Also, processing of tiles
along columns and rows provides for greater data reuse between tasks, to which
the authors attribute the main performance advantage of the static scheduler.
Since the dynamic scheduler is more aggressive in fetching of tasks, it completes
each step of the factorization faster. The static scheduler, on the other hand,
takes longer to complete a given step of the factorization, but successfully over-
laps consecutive steps achieving the pipelining effect, what leads to very good
overall performance (figure 3).

In the next section, we present the experimental results comparing our band
BRD implementations with the two schedulers against the state of the art li-
braries, i.e., LAPACK [3], ScaLAPACK [9] and MKL version 10 [2].
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Fig. 2. Task Partitioning with eight cores on a 5× 5 tile matrix.

6 Experimental Results

The experiments have been achieved on two different platforms: a quad-socket
dual-core Intel Itanium 2 1.6 GHz (eight total cores) with 16GB of memory,
and a quad-socket quad-core Intel Tigerton 2.4 GHz (16 total cores) with 32GB
of memory. Hand tuning based on empirical data has been performed for large
problems to determine the optimal tile size b = 200 and inner-blocking size
s = 40 for the tiled band BRD algorithm. The block sizes for LAPACK and
ScaLAPACK have also been hand tuned to get a fair comparison, b = 32
and b = 64 respectively. The authors understand that it may not be a fair
comparison to do against those latter libraries, since the reduction is completely
achieved in that case. The purpose of showing such performance curves is only
to give a rough idea in term of elapsed time and performance, of the whole
reduction process.

10



  DGEQRT       DTSQRT      DLARFB       DSSRFB

  DGELQT       DTSLQT      DLARFB       DSSRFB

CORE 0
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CORE 3
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CORE 5

CORE 0
CORE 1
CORE 2
CORE 3
CORE 4
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Time

Fig. 3. Scheduler Tracing with six Intel Tigerton 2.4 GHz cores: Top dynamic – Bottom
static.

Figure 4 shows the elapsed time in seconds for small and large matrix sizes
on the Itanium system with eight cores. The band BRD algorithms based on
Householder reflectors with static scheduling is slightly better than with dy-
namic scheduling. However, both implementations by far outperform the others.
Figure 5(a) presents the parallel performance in Gflop/s of the band BRD algo-
rithm on the Itanium system. The algorithm with dynamic scheduling runs at
82% of the machine theoretical peak of the system and at 92% of the DGEMM
peak. Figure 5(b) zooms in on the three other implementations, and the parallel
performance of the full BRD with ScaLAPACK is significantly higher than the
full BRD of LAPACK and MKL for small matrix sizes. Also, the performances
are almost the same for larger matrix sizes.

The same experiments have been conducted on the Xeon system with 16
cores. Figure 6 shows the execution time in seconds for small and large matrix
sizes. Again, both band BRD algorithms almost behave in the same manner and
outperform the other librairies. Figure 7(a) presents the parallel performance in
Gflop/s of the band BRD algorithm. It scales quite well while the matrix size
increases, reaching 94 Gflop/s. It runs at 61% of the system theoretical peak
and 72% of the DGEMM peak. The zoom-in seen in figure 7(b) highlights the
weakness of the full BRD algorithm of MKL, LAPACK and ScaLAPACK. Note:
the full BRD of ScaLAPACK is twice as fast as than the full BRD of MKL and
LAPACK most likely thanks to the Two-dimensional Block Cyclic Distribution.

The following section briefly comments on the previous work done in BRD
algorithms.

7 Conclusion and Future Work

By exploiting the concepts of tile algorithms in the multicore environment, i.e.,
high level of parallelism with fine granularity and high performance data repre-
sentation combined with a dynamic data driven execution, the BRD algorithm
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(a) Small Data Size.
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Fig. 4. Elapsed time in seconds for the band bidiagonal reduction on a dual-socket
quad-core Intel Itanium2 1.6 GHz with MKL BLAS V10.0.1.
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Fig. 5. Parallel Performance of the band bidiagonal reduction on a dual-socket quad-
core Intel Itanium2 1.6 GHz processors with MKL BLAS V10.0.1.

with Householder reflectors achieves 94 Gflop/s on a 12000× 12000 matrix size
with 16 Intel Tigerton 2.4 GHz processors. This algorithm performs most of the
operations in Level-3 BLAS. Although the algorithm considerably surpasses in
performance of the BRD algorithm of MKL, LAPACK and ScaLAPACK, its
main inefficiency comes from the implementation of the kernel operations. The
most performance critical, DSSRFB, kernel only achieves roughly 61% of peak
for the tile size used (b = 200) in the experiments. For comparison a simple call
to the DGEMM routine easily crosses 85% of peak. Unlike DGEMM, however,
DSSRFB is not a single call to BLAS, but is composed of multiple calls to BLAS
in a loop (due to inner blocking), since the inefficiency. DSSRFB could easily
achieve similar performance if implemented as a monolithic code and heavily
optimized. Finally, this work can be extended to the BRD of any matrix sizes
(m,n) by using the appropriate method depending on the ratio between both
dimensions.
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(a) Small Data Size.
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(b) Large Data Size.

Fig. 6. Elapsed time in seconds for the band bidiagonal reduction on a quad-socket
quad-core Intel Xeon 2.4 GHz processors with MKL BLAS V10.0.1.

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100

120

140

160

Matrix Size

G
flo

ps

 

 

Theoritical Peak
DGEMM Peak
Static HH Band Bidiag
Dynamic HH Band Bidiag
MKL Full Bidiag
LAPACK Full Bidiag
Scalapack Full Bidiag

(a) Performance comparisons.

0 2000 4000 6000 8000 10000 12000
0

5

10

15

20

25

30

Matrix Size

G
flo

ps

 

 

MKL Full Bidiag
LAPACK Full Bidiag
Scalapack Full Bidiag

(b) Zoom-in.

Fig. 7. Parallel Performance of the band bidiagonal reduction on a quad-socket quad-
core Intel Xeon 2.4 GHz processors with MKL BLAS V10.0.1.
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