
O’Reilly Media, Inc. 4/17/2007

 1

14
How Elegant Code Evolves with
Hardware: The Case of Gaussian

Elimination

Jack Dongarra and Piotr Luszczek

The increasing availability of advanced-architecture computers, at affordable costs, has
had a significant effect on all spheres of scientific computation. In this chapter, we'll
show the need for designers of computing algorithms to make expeditious and substantial
adaptations to algorithms, in reaction to architecture changes, by closely examining one
simple but important algorithm in mathematical software: Gaussian elimination for the
solution of linear systems of equations.

At the application level, science has to be captured in mathematical models, which in turn
are expressed algorithmically and ultimately encoded as software. At the software level,
there is a continuous tension between performance and portability on the one hand, and
understandability of the underlying code. We'll examine these issues and look at trade-
offs that have been made over time. Linear algebra—in particular, the solution of linear
systems of equations—lies at the heart of most calculations in scientific computing. This
chapter focuses on some of the recent developments in linear algebra software designed
to exploit advanced-architecture computers over the decades.

There are two broad classes of algorithms: those for dense matrices and those for sparse
matrices. A matrix is called sparse if it contains a substantial number of zero elements.
For sparse matrices, radical savings in space and execution time can be achieved through
specialized storage and algorithms. To narrow our discussion and keep it simple, we will
look only at the dense matrix problem (a dense matrix is defined as one with few zero
elements).

Much of the work in developing linear algebra software for advanced-architecture
computers is motivated by the need to solve large problems on the fastest computers
available. In this chapter, we'll discuss the development of standards for linear algebra
software, the building blocks for software libraries, and aspects of algorithm design as

O’Reilly Media, Inc. 4/17/2007

 2

influenced by the opportunities for parallel implementation. We'll explain motivations for
this work, and say a bit about future directions.

As representative examples of dense matrix routines, we will consider Gaussian
elimination, or LU factorization. This examination, spanning hardware and software
advances over the past 30 years, will highlight the most important factors that must be
considered in designing linear algebra software for advanced-architecture computers. We
use these factorization routines for illustrative purposes not only because they are
relatively simple, but also because of their importance in several scientific and
engineering applications that make use of boundary element methods. These applications
include electromagnetic scattering and computational fluid dynamics problems.

The past 30 years have seen a great deal of activity in the area of algorithms and software
for solving linear algebra problems. The goal of achieving high performance in code that
is portable across platforms has largely been realized by the identification of linear
algebra kernels, the Basic Linear Algebra Subprograms (BLAS). We will discuss the
LINPACK, LAPACK, and ScaLAPACK libraries, which are expressed in successive
levels of the BLAS. See "Further Reading" at the end of this chapter for discussions of
these libraries.

The Effects of Computer Architectures on
Matrix Algorithms
The key motivation in the design of efficient linear algebra algorithms for advanced-
architecture computers involves the storage and retrieval of data. Designers wish to
minimize the frequency with which data moves between different levels of the memory
hierarchy. Once data is in registers or the fastest cache, all processing required for this
data should be performed before it gets evicted back to the main memory. Thus, the main
algorithmic approach for exploiting both vectorization and parallelism in our
implementations uses block-partitioned algorithms, particularly in conjunction with
highly tuned kernels for performing matrix-vector and matrix-matrix operations (the
Level-2 and Level-3 BLAS). Block partitioning means that the data is divided into
blocks, each of which should fit within a cache memory or a vector register file.

The computer architectures considered in this chapter are:

• Vector machines
• RISC computers with cache hierarchies
• Parallel systems with distributed memory
• Multi-core computers

Vector machines were introduced in the late 1970s and early 1980s. They were able in
one step to perform a single operation on a relatively large number of operands stored in
vector registers. Expressing matrix algorithms as vector-vector operations was a natural
fit for this type of machines. However, some of the vector designs had a limited ability to
load and store the vector registers in main memory. A technique called chaining allowed
this limitation to be circumvented by moving data between the registers before accessing
main memory. Chaining required recasting linear algebra in terms of matrix-vector
operations.

O’Reilly Media, Inc. 4/17/2007

 3

RISC computers were introduced in the late 1980s and early 1990s. While their clock
rates might have been comparable to those of the vector machines, the computing speed
lagged behind due to their lack of vector registers. Another deficiency was their creation
of a deep memory hierarchy with multiple levels of cache memory to alleviate the
scarcity of bandwidth that was, in turn, caused mostly by a limited number of memory
banks. The eventual success of this architecture is commonly attributed to the right price
point and astonishing improvements in performance over time as predicted by Moore’s
Law. With RISC computers, the linear algebra algorithms had to be redone yet again.
This time, the formulations had to expose as many matrix-matrix operations as possible,
which guaranteed good cache reuse.

A natural way of achieving even greater performance levels with both vector and RISC
processors is by connecting them together with a network and letting them cooperate to
solve a problem bigger than would be feasible on just one processor. Many hardware
configurations followed this path, so the matrix algorithms had to follow yet again as
well. It was quickly discovered that good local performance has to be combined with
good global partitioning of the matrices and vectors.

Any trivial divisions of matrix data quickly uncovered scalability problems dictated by
so-called Amdahl’s Law: the observation that the time taken by the sequential portion of a
computation provides the minimum bound for the entire execution time, and therefore
limits the gains achievable from parallel processing. In other words, unless most of
computations can be done independently, the point of diminishing returns is reached, and
adding more processors to the hardware mix will not result in faster processing.

For the sake of simplicity, the class of multi-core architectures includes both symmetric
multiprocessing (SMP) and single-chip multi-core machines. This is probably an unfair
simplification, as the SMP machines usually have better memory systems. But when
applied to matrix algorithms, both yield good performance results with very similar
algorithmic approaches: these combine local cache reuse and independent computation
with explicit control of data dependences.

A Decompositional Approach
At the basis of solutions to dense linear systems lies a decompositional approach. The
general idea is the following: given a problem involving a matrix A, one factors or
decomposes A into a product of simpler matrices from which the problem can easily be
solved. This divides the computational problem into two parts: first determine an
appropriate decomposition, and then use it in solving the problem at hand.

Consider the problem of solving the linear system:

Ax = b

where A is a nonsingular matrix of order n. The decompositional approach begins with
the observation that it is possible to factor A in the form:

A = LU

where L is a lower triangular matrix (a matrix that has only zeros above the diagonal)
with ones on the diagonal, and U is upper triangular (with only zeros below the diagonal).
During the decomposition process, diagonal elements of A (called pivots) are used to
divide the elements below the diagonal. If matrix A has a zero pivot, the process will
break with division-by-zero error. Also, small values of the pivots excessively amplify

O’Reilly Media, Inc. 4/17/2007

 4

the numerical errors of the process. So for numerical stability, the method needs to
interchange rows of the matrix or make sure pivots are as large (in absolute value) as
possible. This observation leads to a row permutation matrix P and modifies the factored
form to:

PTA = LU

The solution can then be written in the form:

x = A-1Pb

which then suggests the following algorithm for solving the system of equations:

1. Factor A
2. Solve the system Ly = Pb
3. Solve the system Ux = y

This approach to matrix computations through decomposition has proven very useful for
several reasons. First, the approach separates the computation into two stages: the
computation of a decomposition, followed by the use of the decomposition to solve the
problem at hand. This can be important, for example, if different right hand sides are
present and need to be solved at different points in the process. The matrix needs to be
factored only once and reused for the different right hand sides. This is particularly
important because the factorization of A, step 1, requires O(n3) operations, whereas the
solutions, steps 2 and 3, require only O(n2) operations. Another aspect of the algorithm's
strength is in storage: the L and U factors do not require extra storage, but can take over
the space occupied initially by A.

For the discussion of coding this algorithm, we present only the computationally
intensive part of the process, which is step 1, the factorization of the matrix.

A Simple Version
For the first version, we present a straightforward implementation of LU factorization. It
consists of n–1 steps, where each step introduces more zeros below the diagonal, as
shown in Figure 14-1.

Figure 14-1. LU factorization

A tool often used to teach Gaussian elimination is MATLAB. It features a scripting
language (also called MATLAB) that makes developing matrix algorithms very simple.
The language might seem very unusual to people familiar with other scripting languages
because it is oriented to process multidimensional arrays. The unique features of the
language that we use in the example code are:

• Transposition operator for vectors and matrices: ' (single quote)
• Matrix indexing specified as:

• Simple integer values: A(m, k)

• Ranges: A(k:n, k)

O’Reilly Media, Inc. 4/17/2007

 5

• Other matrices: A([k m], :)

• Built-in matrix functions such as size (returns matrix dimensions), tril (returns
the lower triangular portion of the matrix), triu (returns the upper triangular
portion of the matrix), and eye (returns an identity matrix, which contains only zero
entries, except for the diagonal, which is all ones)

Example 14-1 shows the simple implementation.

Example 14-1. Simple variant (MATLAB coding)
function [L,U,p] = lutx(A)
%LUTX Triangular factorization, textbook version
% [L,U,p] = lutx(A) produces a unit lower triangular matrix L,
% an upper triangular matrix U, and a permutation vector p,
% so that L*U = A(p,:)

[n,n] = size(A);
p = (1:n)';

for k = 1:n-1

 % Find index ‘m’ of largest element ‘r’ below diagonal in k-th column
 [r,m] = max(abs(A(k:n,k)));
 m = m+k-1; % adjust ‘m’ so it becomes a global index

 % Skip elimination if column is zero
 if (A(m,k) ~= 0)

 % Swap pivot row
 if (m ~= k)
 A([k m],:) = A([m k],:); % swap rows ‘k’ and ‘m’ of ‘A’
 p([k m]) = p([m k]); % swap entrix ‘k’ and ‘m’ of ‘p’
 end

 % Compute multipliers
 i = k+1:n;
 A(i,k) = A(i,k)/A(k,k);

 % Update the remainder of the matrix
 j = k+1:n;
 A(i,j) = A(i,j) - A(i,k)*A(k,j);
 end
end

% Separate result
L = tril(A,-1) + eye(n,n);
U = triu(A);

The algorithm presented in Example 14-1 is row-oriented, in the sense that we are taking
a scalar multiple of the “pivot” row and adding it to the rows below to introduce zeros
below the diagonal. The beauty of the algorithm lies in its similarity to the mathematical
notation. Hence, this is the preferred way of teaching the algorithm for the first time so
that students can quickly turn formulas into running code.

This beauty, however, has its price. In the 1970s, Fortran was the language for scientific
computations. Fortran stores two-dimensional arrays by column. Accessing the array in a
row-wise fashion within the matrix could involve successive memory reference to

O’Reilly Media, Inc. 4/17/2007

 6

locations separated from each other by a large increment, depending on the size of the
declared array. The situation was further complicated by the operating system’s use of
memory pages to effectively control memory usage. With a large matrix and a row-
oriented algorithm in a Fortran environment, an excessive number of page swaps might
be generated in the process of running the software. Cleve Moler pointed this out in the
1970s (see "Further Reading").

To avoid this situation, one needed simply to interchange the order of the innermost
nested loops on i and j. This simple change resulted in more than 30 percent savings in
wall-clock time to solve problems of size 200 on an IBM 360/67. Beauty was thus traded
for efficiency by using a less obvious ordering of loops and a much more obscure (by
today’s standard) language.

LINPACK’s DGEFA Subroutine
The performance issues with the MATLAB version of the code continued as, in the mid-
1970s, vector architectures became available for scientific computations. Vector
architectures exploit pipeline processing by running mathematical operations on arrays of
data in a simultaneous or pipelined fashion. Most algorithms in linear algebra can be
easily vectorized. Therefore, in the late 70s there was an effort to standardize vector
operations for use in scientific computations. The idea was to define some simple,
frequently used operations and implement them on various systems to achieve portability
and efficiency. This package came to be known as the Level-1 Basic Linear Algebra
Subprograms (BLAS) or Level-1 BLAS.

The term Level-1 denotes vector-vector operations. As we will see, Level-2 (matrix-
vector operations), and Level-3 (matrix-matrix operations) play important roles as well.

In the 1970s, the algorithms of dense linear algebra were implemented in a systematic
way by the LINPACK project. LINPACK is a collection of Fortran subroutines that
analyze and solve linear equations and linear least-squares problems. The package solves
linear systems whose matrices are general, banded, symmetric indefinite, symmetric
positive definite, triangular, and tridiagonal square. In addition, the package computes the
QR and singular value decompositions of rectangular matrices and applies them to least-
squares problems.

LINPACK uses column-oriented algorithms, which increase efficiency by preserving
locality of reference. By column orientation, we mean that the LINPACK code always
references arrays down columns, not across rows. This is important since Fortran stores
arrays in column-major order. This means that as one proceeds down a column of an
array, the memory references proceed sequentially through memory. Thus, if a program
references an item in a particular block, the next reference is likely to be in the same
block.

The software in LINPACK was kept machine-independent partly through the
introduction of the Level-1 BLAS routines. Almost all of the computation was done by
calling Level-1 BLAS. For each machine, the set of Level-1 BLAS would be
implemented in a machine-specific manner to obtain high performance.

Example 14-2 shows the LINPACK implementation of factorization.

Example 14-2. LINPACK variant (Fortran 66 coding)
 subroutine dgefa(a,lda,n,ipvt,info)
 integer lda,n,ipvt(1),info

O’Reilly Media, Inc. 4/17/2007

 7

 double precision a(lda,1)
 double precision t
 integer idamax,j,k,kp1,l,nm1
c
c
c gaussian elimination with partial pivoting
c
 info = 0
 nm1 = n - 1
 if (nm1 .lt. 1) go to 70
 do 60 k = 1, nm1
 kp1 = k + 1
c
c find l = pivot index
c
 l = idamax(n-k+1,a(k,k),1) + k - 1
 ipvt(k) = l
c
c zero pivot implies this column already triangularized
c
 if (a(l,k) .eq. 0.0d0) go to 40
c
c interchange if necessary
c
 if (l .eq. k) go to 10
 t = a(l,k)
 a(l,k) = a(k,k)
 a(k,k) = t
 10 continue
c
c compute multipliers
c
 t = -1.0d0/a(k,k)
 call dscal(n-k,t,a(k+1,k),1)
c
c row elimination with column indexing
c
 do 30 j = kp1, n
 t = a(l,j)
 if (l .eq. k) go to 20
 a(l,j) = a(k,j)
 a(k,j) = t
 20 continue
 call daxpy(n-k,t,a(k+1,k),1,a(k+1,j),1)
 30 continue
 go to 50
 40 continue
 info = k
 50 continue
 60 continue
 70 continue
 ipvt(n) = n
 if (a(n,n) .eq. 0.0d0) info = n
 return

 end

O’Reilly Media, Inc. 4/17/2007

 8

The Level-1 BLAS subroutines DAXPY, DSCAL, and IDAMAX are used in the routine
DGEFA. The main difference between Example 14-1 and Example 14-2 (other than the
programming language and the interchange of loop indexes) is the use of routine DAXPY
to encode the inner loop of the method.

It was presumed that the BLAS operations would be implemented in an efficient,
machine-specific way suitable for the computer on which the subroutines were executed.
On a vector computer, this could translate into a simple, single vector operation. This
avoided leaving the optimization up to the compiler and explicitly exposing a
performance-critical operation.

In a sense, then, the beauty of the original code was regained with the use of a new
vocabulary to describe the algorithms: the BLAS. Over time, the BLAS became a widely
adopted standard and were most likely the first to enforce two key aspects of software:
modularity and portability. Again, these are taken for granted today, but at the time they
were not. One could have the cake of compact algorithm representation and eat it too,
because the resulting Fortran code was portable.

Most algorithms in linear algebra can be easily vectorized. However, to gain the most out
of such architectures, simple vectorization is usually not enough. Some vector computers
are limited by having only one path between memory and the vector registers. This
creates a bottleneck if a program loads a vector from memory, performs some arithmetic
operations, and then stores the results. In order to achieve top performance, the scope of
the vectorization must be expanded to facilitate chaining operations together and to
minimize data movement, in addition to using vector operations. Recasting the
algorithms in terms of matrix-vector operations makes it easy for a vectorizing compiler
to achieve these goals.

Thus, as computer architectures became more complex in the design of their memory
hierarchies, it became necessary to increase the scope of the BLAS routines from Level-1
to Level-2 and Level-3.

LAPACK DGETRF
As mentioned before, the introduction in the late 1970s and early 1980s of vector
machines brought about the development of another variant of algorithms for dense linear
algebra. This variant was centered on the multiplication of a matrix by a vector. These
subroutines were meant to give improved performance over the dense linear algebra
subroutines in LINPACK, which were based on Level-1 BLAS. Later on, in the late
1980s and early 1990s, with the introduction of RISC-type microprocessors (the “killer
micros”) and other machines with cache-type memories, we saw the development of
LAPACK Level-3 algorithms for dense linear algebra. A Level-3 code is typified by the
main Level-3 BLAS, which, in this case, is matrix multiplication.

The original goal of the LAPACK project was to make the widely used LINPACK library
run efficiently on vector and shared-memory parallel processors. On these machines,
LINPACK is inefficient because its memory access patterns disregard the multilayered
memory hierarchies of the machines, thereby spending too much time moving data
instead of doing useful floating-point operations. LAPACK addresses this problem by
reorganizing the algorithms to use block matrix operations, such as matrix multiplication,
in the innermost loops (see the paper by E. Anderson and J. Dongarra under "Further
Reading"). These block operations can be optimized for each architecture to account for

O’Reilly Media, Inc. 4/17/2007

 9

its memory hierarchy, and so provide a transportable way to achieve high efficiency on
diverse modern machines.

Here we use the term “transportable” instead of “portable” because, for fastest possible
performance, LAPACK requires that highly optimized block matrix operations be
implemented already on each machine. In other words, the correctness of the code is
portable, but high performance is not—if we limit ourselves to a single Fortran source
code.

LAPACK can be regarded as a successor to LINPACK in terms of functionality, although
it doesn't always use the same function-calling sequences. As such a successor, LAPACK
was a win for the scientific community because it could keep LINPACK’s functionality
while getting improved use out of new hardware.

Example 14-3 shows the LAPACK solution to LU factorization.

Example 14-3. LAPACK solution factorization
SUBROUTINE DGETRF(M, N, A, LDA, IPIV, INFO)
 INTEGER INFO, LDA, M, N
 INTEGER IPIV(*)
 DOUBLE PRECISION A(LDA, *)
 DOUBLE PRECISION ONE
 PARAMETER (ONE = 1.0D+0)
 INTEGER I, IINFO, J, JB, NB
 EXTERNAL DGEMM, DGETF2, DLASWP, DTRSM, XERBLA
 INTEGER ILAENV
 EXTERNAL ILAENV
 INTRINSIC MAX, MIN
 INFO = 0
 IF(M.LT.0) THEN
 INFO = -1
 ELSE IF(N.LT.0) THEN
 INFO = -2
 ELSE IF(LDA.LT.MAX(1, M)) THEN
 INFO = -4
 END IF
 IF(INFO.NE.0) THEN
 CALL XERBLA('DGETRF', -INFO)
 RETURN
 END IF
 IF(M.EQ.0 .OR. N.EQ.0) RETURN
 NB = ILAENV(1, 'DGETRF', ' ', M, N, -1, -1)
 IF(NB.LE.1 .OR. NB.GE.MIN(M, N)) THEN
 CALL DGETF2(M, N, A, LDA, IPIV, INFO)
 ELSE
 DO 20 J = 1, MIN(M, N), NB
 JB = MIN(MIN(M, N)-J+1, NB)
* Factor diagonal and subdiagonal blocks and test for exact
* singularity.
 CALL DGETF2(M-J+1, JB, A(J, J), LDA, IPIV(J), IINFO)
* Adjust INFO and the pivot indices.
 IF(INFO.EQ.0 .AND. IINFO.GT.0) INFO = IINFO + J - 1
 DO 10 I = J, MIN(M, J+JB-1)
 IPIV(I) = J - 1 + IPIV(I)
 10 CONTINUE
* Apply interchanges to columns 1:J-1.
 CALL DLASWP(J-1, A, LDA, J, J+JB-1, IPIV, 1)

O’Reilly Media, Inc. 4/17/2007

 10

*
 IF(J+JB.LE.N) THEN
* Apply interchanges to columns J+JB:N.
 CALL DLASWP(N-J-JB+1, A(1, J+JB), LDA, J, J+JB-1, IPIV, 1)
* Compute block row of U.
 CALL DTRSM('Left', 'Lower', 'No transpose', 'Unit', JB,
 $ N-J-JB+1, ONE, A(J, J), LDA, A(J, J+JB), LDA)
 IF(J+JB.LE.M) THEN
* Update trailing submatrix.
 CALL DGEMM('No transpose', 'No transpose', M-J-JB+1,
 $ N-J-JB+1, JB, -ONE, A(J+JB, J), LDA,
 $ A(J, J+JB), LDA, ONE, A(J+JB, J+JB), LDA)
 END IF
 END IF
 20 CONTINUE
 END IF
 RETURN
 end

Most of the computational work in the algorithm from Example 14-3 is contained in three
routines:

DGEMM

Matrix-matrix multiplication

DTRSM

Triangular solve with multiple right hand sides

DGETF2

Unblocked LU factorization for operations within a block column

One of the key parameters in the algorithm is the block size, called NB here. If NB is too
small or too large, poor performance can result—hence the importance of the ILAENV
function, whose standard implementation was meant to be replaced by a vendor
implementation encapsulating machine-specific parameters upon installation of the
LAPACK library. At any given point of the algorithm, NB columns or rows are exposed
to a well-optimized Level-3 BLAS. If NB is 1, the algorithm is equivalent in performance
and memory access patterns to the LINPACK’s version.

Matrix-matrix operations offer the proper level of modularity for performance and
transportability across a wide range of computer architectures, including parallel systems
with memory hierarchy. This enhanced performance is primarily due to a greater
opportunity for reusing data. There are numerous ways to accomplish this reuse of data to
reduce memory traffic and to increase the ratio of floating-point operations to data
movement through the memory hierarchy. This improvement can bring a three- to ten-
fold improvement in performance on modern computer architectures.

The jury is still out concerning the productivity of writing and reading the LAPACK
code: how hard is it to generate the code from its mathematical description? The use of
vector notation in LINPACK is arguably more natural than LAPACK’s matrix
formulation. The mathematical formulas that describe algorithms are usually more
complex if only matrices are used, as opposed to mixed vector-matrix notation.

O’Reilly Media, Inc. 4/17/2007

 11

Recursive LU
Setting the block size parameter for the LAPACK’s LU might seem like a trivial matter
at first. But in practice, it requires a lot of tuning for various precisions and matrix sizes.
Many users end up leaving the setting unchanged, even if the tuning has to be done only
once at installation. This problem is exacerbated by the fact that not just one but many
LAPACK routines use a blocking parameter.

Another issue with LAPACK’s formulation of LU is the factorization of tall and narrow
panels of columns performed by the DGETF2 routine. It uses Level-1 BLAS and was
found to become a bottleneck as the processors became faster throughout the 90s without
corresponding increases in memory bandwidth.

A solution came from a rather unlikely direction: divide-and-conquer recursion. In place
of LAPACK’s looping constructs, the newer recursive LU algorithm splits the work in
half, factorizes the left part of the matrix, updates the rest of the matrix, and factorizes the
right part. The use of Level-1 BLAS is reduced to an acceptable minimum, and most of
the calls to Level-3 BLAS operate on larger portions of the matrix than LAPACK’s
algorithm. And, of course, the block size does not have to be tuned anymore.

Recursive LU required the use of Fortran 90, which was the first Fortran standard to
allow recursive subroutines. A side effect of using Fortran 90 was the increased
importance of the LDA parameter, the leading dimension of A. It allows more flexible
use of the subroutine, as well as performance tuning for cases when matrix dimension m
would cause memory bank conflicts that could significantly reduce available memory
bandwidth.

The Fortran 90 compilers use the LDA parameter to avoid copying the data into a
contiguous buffer when calling external routines, such as one of the BLAS. Without
LDA, the compiler has to assume the worst-case scenario when input matrix a is not
contiguous and needs to be copied to a temporary contiguous buffer so the call to BLAS
does not end up with an out-of-bands memory access. With LDA, the compiler passes
array pointers to BLAS without any copies.

Example 14-4 shows recursive LU factorization.

Example 14-4. Recursive variant (Fortran 90 coding)
 recursive subroutine rdgetrf(m, n, a, lda, ipiv, info)
 implicit none

 integer, intent(in) :: m, n, lda
 double precision, intent(inout) :: a(lda,*)
 integer, intent(out) :: ipiv(*)
 integer, intent(out) :: info

 integer :: mn, nleft, nright, i
 double precision :: tmp

 double precision :: pone, negone, zero
 parameter (pone=1.0d0)
 parameter (negone=-1.0d0)
 parameter (zero=0.0d0)

 intrinsic min

O’Reilly Media, Inc. 4/17/2007

 12

 integer idamax
 external dgemm, dtrsm, dlaswp, idamax, dscal

 mn = min(m, n)

 if (mn .gt. 1) then
 nleft = mn / 2
 nright = n - nleft

 call rdgetrf(m, nleft, a, lda, ipiv, info)

 if (info .ne. 0) return
 call dlaswp(nright, a(1, nleft+1), lda, 1, nleft, ipiv, 1)

 call dtrsm('L', 'L', 'N', 'U', nleft, nright, pone, a, lda,
 $ a(1, nleft+1), lda)

 call dgemm('N', 'N', m-nleft, nright, nleft, negone,
 $ a(nleft+1,1) , lda, a(1, nleft+1), lda, pone,
 $ a(nleft+1, nleft+1), lda)

 call rdgetrf(m - nleft, nright, a(nleft+1, nleft+1), lda,
 $ ipiv(nleft+1), info)
 if (info .ne. 0) then
 info = info + nleft
 return
 end if

 do i = nleft+1, m
 ipiv(i) = ipiv(i) + nleft
 end do

 call dlaswp(nleft, a, lda, nleft+1, mn, ipiv, 1)

 else if (mn .eq. 1) then
 i = idamax(m, a, 1)
 ipiv(1) = i
 tmp = a(i, 1)

 if (tmp .ne. zero .and. tmp .ne. -zero) then
 call dscal(m, pone/tmp, a, 1)

 a(i,1) = a(1,1)
 a(1,1) = tmp
 else
 info = 1
 end if

 end if

 return
 end

There is a certain degree of elegance in the recursive variant. No loops are exposed in the
routine. Instead, the algorithm is driven by the recursive nature of the method (see the
paper by F. G. Gustavson under "Further Reading").

O’Reilly Media, Inc. 4/17/2007

 13

 The Recursive LU Algorithm consists of four basic steps, illustrated in Figure 14-2:

1. Split the matrix into two rectangles (m * n/2); if the left part ends up being only a
single column, scale it by the reciprocal of the pivot and return.

2. Apply the LU algorithm to the left part. Apply transformations to the right part
(perform the triangular solve A12 = L-1A12 and matrix multiplication A22=A22 -A21*A12
).

3. Apply the LU algorithm to the right part.

Figure 14-2. Recursive LU factorization

Most of the work is performed in the matrix multiplications, which operate on successive
matrices of size n/2, n/4, n/8, etc. The implementation in Example 14-4 can show about a
10 percent improvement in performance over the LAPACK implementation given in
Example 14-3.

In a sense, any of the previous renditions of the LU algorithm could be considered a step
backwards in terms of code elegance. But divide-and-conquer recursion was a
tremendous leap forward (even dismissing the modest performance gains). The recursive
algorithm for matrix factorization can now be taught to students alongside other recursive
algorithms, such as various kinds of sorting methods.

By changing just the size of matrix parts, it is possible to achieve the same memory
access pattern as in LINPACK or LAPACK. Setting nleft to 1 makes the code operate
on vectors, just as in LINPACK, whereas setting nleft to NB>1 makes it behave like
LAPACK’s blocked code. In both cases, the original recursion deteriorates from divide-
and-conquer to the tail kind. The behavior of such variations of the recursive algorithm
can be studied alongside a quicksort algorithm with various partitioning schemes of the
sorted array.

Finally, we leave as an exercise to the reader to try to mimic the recursive code without
using recursion and without explicitly handling the recursive call stack—an important
problem to solve if the Fortran compiler cannot handle recursive functions or subroutines.

ScaLAPACK PDGETRF
LAPACK is designed to be highly efficient on vector processors, high-performance
“superscalar” workstations, and shared-memory multiprocessors. LAPACK can also be
used satisfactorily on all types of scalar machines (PCs, workstations, and mainframes).
However, LAPACK in its present form is less likely to give good performance on other
types of parallel architectures—for example, massively parallel Single Instruction
Multiple Data (SIMD) machines, or Multiple Instruction Multiple Data (MIMD)
distributed-memory machines. The ScaLAPACK effort was intended to adapt LAPACK
to these new architectures.

By creating the ScaLAPACK software library, we extended the LAPACK library to
scalable MIMD, distributed-memory, concurrent computers. For such machines, the
memory hierarchy includes the off-processor memory of other processors, in addition to
the hierarchy of registers, cache, and local memory on each processor.

L A

A A

O’Reilly Media, Inc. 4/17/2007

 14

Like LAPACK, the ScaLAPACK routines are based on block-partitioned algorithms in
order to minimize the frequency of data movement between different levels of the
memory hierarchy. The fundamental building blocks of the ScaLAPACK library are
distributed-memory versions of the Level-2 and Level-3 BLAS, and a set of Basic Linear
Algebra Communication Subprograms (BLACS) for communication tasks that arise
frequently in parallel linear algebra computations. In the ScaLAPACK routines, all
interprocessor communication occurs within the distributed BLAS and the BLACS, so
the source code of the top software layer of ScaLAPACK looks very similar to that of
LAPACK.

The ScaLAPACK solution to LU factorization is shown in Example 14-5.

Example 14-5. ScaLAPACK variant (Fortran 90 coding)
 SUBROUTINE PDGETRF(M, N, A, IA, JA, DESCA, IPIV, INFO)
 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
 $ LLD_, MB_, M_, NB_, N_, RSRC_
 PARAMETER (BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
 $ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
 $ RSRC_ = 7, CSRC_ = 8, LLD_ = 9)
 DOUBLE PRECISION ONE
 PARAMETER (ONE = 1.0D+0)
 CHARACTER COLBTOP, COLCTOP, ROWBTOP
 INTEGER I, ICOFF, ICTXT, IINFO, IN, IROFF, J, JB, JN,
 $ MN, MYCOL, MYROW, NPCOL, NPROW
 INTEGER IDUM1(1), IDUM2(1)
 EXTERNAL BLACS_GRIDINFO, CHK1MAT, IGAMN2D, PCHK1MAT, PB_TOPGET,
 $ PB_TOPSET, PDGEMM, PDGETF2, PDLASWP, PDTRSM, PXERBLA
 INTEGER ICEIL
 EXTERNAL ICEIL
 INTRINSIC MIN, MOD
* Get grid parameters
 ICTXT = DESCA(CTXT_)
 CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)
* Test the input parameters
 INFO = 0
 IF(NPROW.EQ.-1) THEN
 INFO = -(600+CTXT_)
 ELSE
 CALL CHK1MAT(M, 1, N, 2, IA, JA, DESCA, 6, INFO)
 IF(INFO.EQ.0) THEN
 IROFF = MOD(IA-1, DESCA(MB_))
 ICOFF = MOD(JA-1, DESCA(NB_))
 IF(IROFF.NE.0) THEN
 INFO = -4
 ELSE IF(ICOFF.NE.0) THEN
 INFO = -5
 ELSE IF(DESCA(MB_).NE.DESCA(NB_)) THEN
 INFO = -(600+NB_)
 END IF
 END IF
 CALL PCHK1MAT(M, 1, N, 2, IA, JA, DESCA, 6, 0, IDUM1, IDUM2, INFO)
 END IF
 IF(INFO.NE.0) THEN
 CALL PXERBLA(ICTXT, 'PDGETRF', -INFO)
 RETURN
 END IF

O’Reilly Media, Inc. 4/17/2007

 15

 IF(DESCA(M_).EQ.1) THEN
 IPIV(1) = 1
 RETURN
 ELSE IF(M.EQ.0 .OR. N.EQ.0) THEN
 RETURN
 END IF
* Split-ring topology for the communication along process rows
 CALL PB_TOPGET(ICTXT, 'Broadcast', 'Rowwise', ROWBTOP)
 CALL PB_TOPGET(ICTXT, 'Broadcast', 'Columnwise', COLBTOP)
 CALL PB_TOPGET(ICTXT, 'Combine', 'Columnwise', COLCTOP)
 CALL PB_TOPSET(ICTXT, 'Broadcast', 'Rowwise', 'S-ring')
 CALL PB_TOPSET(ICTXT, 'Broadcast', 'Columnwise', ' ')
 CALL PB_TOPSET(ICTXT, 'Combine', 'Columnwise', ' ')
* Handle the first block of columns separately
 MN = MIN(M, N)
 IN = MIN(ICEIL(IA, DESCA(MB_))*DESCA(MB_), IA+M-1)
 JN = MIN(ICEIL(JA, DESCA(NB_))*DESCA(NB_), JA+MN-1)
 JB = JN - JA + 1
* Factor diagonal and subdiagonal blocks and test for exact
* singularity.
 CALL PDGETF2(M, JB, A, IA, JA, DESCA, IPIV, INFO)
 IF(JB+1.LE.N) THEN
* Apply interchanges to columns JN+1:JA+N-1.
 CALL PDLASWP('Forward', 'Rows', N-JB, A, IA, JN+1, DESCA, IA, IN, IPIV)
* Compute block row of U.
 CALL PDTRSM('Left', 'Lower', 'No transpose', 'Unit', JB,
 $ N-JB, ONE, A, IA, JA, DESCA, A, IA, JN+1, DESCA)
*
 IF(JB+1.LE.M) THEN
* Update trailing submatrix.
 CALL PDGEMM('No transpose', 'No transpose', M-JB, N-JB, JB,
 $ -ONE, A, IN+1, JA, DESCA, A, IA, JN+1, DESCA,
 $ ONE, A, IN+1, JN+1, DESCA)
 END IF
 END IF
* Loop over the remaining blocks of columns.
 DO 10 J = JN+1, JA+MN-1, DESCA(NB_)
 JB = MIN(MN-J+JA, DESCA(NB_))
 I = IA + J - JA
*
* Factor diagonal and subdiagonal blocks and test for exact
* singularity.
*
 CALL PDGETF2(M-J+JA, JB, A, I, J, DESCA, IPIV, IINFO)
*
 IF(INFO.EQ.0 .AND. IINFO.GT.0) INFO = IINFO + J - JA
*
* Apply interchanges to columns JA:J-JA.
*
 CALL PDLASWP('Forward', 'Rowwise', J-JA, A, IA, JA, DESCA, I,I+JB-1, IPIV)
 IF(J-JA+JB+1.LE.N) THEN
* Apply interchanges to columns J+JB:JA+N-1.
 CALL PDLASWP('Forward', 'Rowwise', N-J-JB+JA, A, IA, J+JB,
 $ DESCA, I, I+JB-1, IPIV)
* Compute block row of U.
 CALL PDTRSM('Left', 'Lower', 'No transpose', 'Unit', JB,
 $ N-J-JB+JA, ONE, A, I, J, DESCA, A, I, J+JB,

O’Reilly Media, Inc. 4/17/2007

 16

 $ DESCA)
 IF(J-JA+JB+1.LE.M) THEN
* Update trailing submatrix.
 CALL PDGEMM('No transpose', 'No transpose', M-J-JB+JA,
 $ N-J-JB+JA, JB, -ONE, A, I+JB, J, DESCA, A,
 $ I, J+JB, DESCA, ONE, A, I+JB, J+JB, DESCA)
 END IF
 END IF
 10 CONTINUE
 IF(INFO.EQ.0) INFO = MN + 1
 CALL IGAMN2D(ICTXT, 'Rowwise', ' ', 1, 1, INFO, 1, IDUM1,IDUM2, -1,-1, MYCOL)
 IF(INFO.EQ.MN+1) INFO = 0
 CALL PB_TOPSET(ICTXT, 'Broadcast', 'Rowwise', ROWBTOP)
 CALL PB_TOPSET(ICTXT, 'Broadcast', 'Columnwise', COLBTOP)
 CALL PB_TOPSET(ICTXT, 'Combine', 'Columnwise', COLCTOP)
 RETURN
 END

In order to simplify the design of ScaLAPACK, and because the BLAS have proven to be
very useful tools outside LAPACK, we chose to build a Parallel BLAS, or PBLAS
(described in the paper by Choi et al; see "Further Reading"), whose interface is as
similar to the BLAS as possible. This decision has permitted the ScaLAPACK code to be
quite similar, and sometimes nearly identical, to the analogous LAPACK code.

It was our aim that the PBLAS would provide a distributed memory standard, just as the
BLAS provided a shared memory standard. This would simplify and encourage the
development of high-performance and portable parallel numerical software, as well as
providing manufacturers with just a small set of routines to be optimized. The acceptance
of the PBLAS requires reasonable compromises between competing goals of
functionality and simplicity.

The PBLAS operate on matrices distributed in a two-dimensional block cyclic layout.
Because such a data layout requires many parameters to fully describe the distributed
matrix, we have chosen a more object-oriented approach and encapsulated these
parameters in an integer array called an array descriptor. An array descriptor includes:

• The descriptor type
• The BLACS context (a virtual space for messages that is created to avoid collisions

between logically distinct messages)
• The number of rows in the distributed matrix
• The number of columns in the distributed matrix
• The row block size
• The column block size
• The process row over which the first row of the matrix is distributed
• The process column over which the first column of the matrix is distributed
• The leading dimension of the local array storing the local blocks

By using this descriptor, a call to a PBLAS routine is very similar to a call to the
corresponding BLAS routine:

 CALL DGEMM (TRANSA, TRANSB, M, N, K, ALPHA,
 A(IA, JA), LDA,
 B(IB, JB), LDB, BETA,

O’Reilly Media, Inc. 4/17/2007

 17

 C(IC, JC), LDC)

 CALL PDGEMM(TRANSA, TRANSB, M, N, K, ALPHA,
 A, IA, JA, DESC_A,
 B, JB, DESC_B, BETA,
 C, IC, JC, DESC_C)

DGEMM computes C = BETA * C + ALPHA * op(A) * op(B), where op(A) is either A
or its transpose depending on TRANSA, op(B) is similar, op(A) is M-by-K, and op(B) is K-
by-N. PDGEMM is the same, with the exception of the way submatrices are specified. To
pass the submatrix starting at A(IA,JA) to DGEMM, for example, the actual argument
corresponding to the formal argument A is simply A(IA,JA). PDGEMM, on the other
hand, needs to understand the global storage scheme of A to extract the correct submatrix,
so IA and JA must be passed in separately.

DESC_A is the array descriptor for A. The parameters describing the matrix operands B
and C are analogous to those describing A. In a truly object-oriented environment,
matrices and DESC_A would be synonymous. However, this would require language
support and detract from portability.

Using message passing and scalable algorithms from the ScaLAPACK library makes it
possible to factor matrices of arbitrarily increasing size, given machines with more
processors. By design, the library computes more than it communicates, so for the most
part, data stays locally for processing and travels only occasionally across the
interconnect network.

But the number and types of messages exchanged between processors can sometimes be
hard to manage. The context associated with every distributed matrix lets
implementations use separate “universes” for message passing. The use of separate
communication contexts by distinct libraries (or distinct library invocations) such as the
PBLAS insulates communication internal to the library from external communication.
When more than one descriptor array is present in the argument list of a routine in the
PBLAS, the individual BLACS context entries must be equal. In other words, the PBLAS
do not perform “inter-context” operations.

In the performance sense, ScaLAPACK did to LAPACK what LAPACK did to
LINPACK: it broadened the range of hardware where LU factorization (and other codes)
could run efficiently. In terms of code elegance, the ScaLAPACK’s changes were much
more drastic: the same mathematical operation now required large amounts of tedious
work. Both the users and the library writers were now forced into explicitly controlling
data storage intricacies, because data locality became paramount for performance. The
victim was the readability of the code, despite efforts to modularize the code according to
the best software engineering practices of the day.

Multithreading for Multi-core Systems
The advent of multi-core chips brought about a fundamental shift in the way software is
produced. Dense linear algebra is no exception. The good news is that LAPACK’s LU
factorization runs on a multi-core system and can even deliver a modest increase of
performance if multithreaded BLAS are used. In technical terms, this is the fork-join
model of computation: each call to BLAS (from a single main thread) forks a suitable
number of threads, which perform the work on each core and then join the main thread of
computation. The fork-join model implies a synchronization point at each join operation.

O’Reilly Media, Inc. 4/17/2007

 18

The bad news is that the LAPACK’s fork-join algorithm gravely impairs scalability even
on small multi-core computers that do not have the memory systems available in SMP
systems. The inherent scalability flaw is the heavy synchronization in the fork-join model
(only a single thread is allowed to perform the significant computation that occupies the
critical section of the code, leaving other threads idle) that results in lock-step execution
and prevents hiding of inherently sequential portions of the code behind parallel ones. In
other words, the threads are forced to perform the same operation on different data. If
there is not enough data for some threads, they will have to stay idle and wait for the rest
of the threads that perform useful work on their data. Clearly, another version of the LU
algorithm is needed such that would allow threads to stay busy all the time by possibly
making them perform different operations during some portion of the execution.

The multithreaded version of the algorithm recognizes the existence of a so-called critical
path in the algorithm: a portion of the code whose execution depends on previous
calculations and can block the progress of the algorithm. The LAPACK’s LU does not
treat this critical portion of the code in any special way: the DGETF2 subroutine is called
by a single thread and doesn’t allow much parallelization even at the BLAS level. While
one thread calls this routine, the other ones wait idly. And since the performance of
DGETF2 is bound by memory bandwidth (rather than processor speed), this bottleneck
will exacerbate scalability problems as systems with more cores are introduced.

The multithreaded version of the algorithm attacks this problem head-on by introducing
the notion of look-ahead: calculating things ahead of time to avoid potential stagnation in
the progress of the computations. This of course requires additional synchronization and
bookkeeping not present in the previous versions—a trade-off between code complexity
and performance. Another aspect of the multithreaded code is the use of recursion in the
panel factorization. It turns out that the use of recursion can give even greater
performance benefits for tall panel matrices than it does for the square ones

Example 14-6 shows a factorization suitable for multithreaded execution.

Example 14-6. Factorization for multithreaded execution (C code)
void SMP_dgetrf(int n, double *a, int lda, int *ipiv, int pw,
 int tid, int tsize, int *pready,ptm *mtx, ptc *cnd) {
 int pcnt, pfctr, ufrom, uto, ifrom, p;
 double *pa = a, *pl, *pf, *lp;

 pcnt = n / pw; /* number of panels */

 pfctr = tid + (tid ? 0 : tsize); /* first panel that should be factored by this
 thread after the very first panel (number 0) gets factored
*/

 /* this is a pointer to the last panel */
 lp = a + (size_t)(n - pw) * (size_t)lda;

 /* for each panel (that is used as source of updates) */
 for (ufrom = 0; ufrom < pcnt; ufrom++, pa += (size_t)pw * (size_t)(lda + 1)){
 p = ufrom * pw; /* column number */

 /* if the panel to be used for updates has not been factored yet; 'ipiv'
 does not be consulted, but it is to possibly avoid accesses to 'pready'*/
 if (! ipiv[p + pw - 1] || ! pready[ufrom]) {

 if (ufrom % tsize == tid) { /* if this is this thread's panel */

O’Reilly Media, Inc. 4/17/2007

 19

 pfactor(n - p, pw, pa, lda, ipiv + p, pready, ufrom, mtx, cnd);
 } else if (ufrom < pcnt - 1) { /* if this is not the last panel */
 LOCK(mtx);
 while (! pready[ufrom]) { WAIT(cnd, mtx); }
 UNLOCK(mtx);
 }
 }
 /* for each panel to be updated */
 for (uto = first_panel_to_update(ufrom, tid, tsize); uto < pcnt;
 uto += tsize) {
 /* if there are still panels to factor by this thread and preceding panel
 has been factored; test to 'ipiv' could be skipped but is in there to
 decrease number of accesses to 'pready' */
 if (pfctr < pcnt && ipiv[pfctr * pw - 1] && pready[pfctr - 1]) {
 /* for each panel that has to (still) update panel 'pfctr' */
 for (ifrom = ufrom + (uto > pfctr ? 1 : 0); ifrom < pfctr; ifrom++) {
 p = ifrom * pw;
 pl = a + (size_t)p * (size_t)(lda + 1);
 pf = pl + (size_t)(pfctr - ifrom) * (size_t)pw * (size_t)lda;
 pupdate(n - p, pw, pl, pf, lda, p, ipiv, lp);
 }
 p = pfctr * pw;
 pl = a + (size_t)p * (size_t)(lda + 1);
 pfactor(n - p, pw, pl, lda, ipiv + p, pready, pfctr, mtx, cnd);
 pfctr += tsize; /* move to this thread's next panel */
 }

 /* if panel 'uto' hasn't been factored (if it was, it certainly has been
 updated, so no update is necessary) */
 if (uto > pfctr || ! ipiv[uto * pw]) {
 p = ufrom * pw;
 pf = pa + (size_t)(uto - ufrom) * (size_t)pw * (size_t)lda;
 pupdate(n - p, pw, pa, pf, lda, p, ipiv, lp);
 }
 }
}

The algorithm is the same for each thread (the SIMD paradigm), and the matrix data is
partitioned among threads in a cyclic manner using panels with pw columns in each panel
(except maybe the last). The pw parameter corresponds to the blocking parameter NB of
LAPACK. The difference is the logical assignment of panels (blocks of columns) to
threads. (Physically, all panels are equally accessible, because the code operates in a
shared memory regimen.) The benefits of blocking in a thread are the same as they were
in LAPACK: better cache reuse and less stress on the memory bus. Assigning a portion
of the matrix to a thread seems an artificial requirement at first, but it simplifies the code
and the bookkeeping data structures; most importantly, it provides better memory
affinity. It turns out that multi-core chips are not symmetric in terms of memory access
bandwidth, so minimizing the number of reassignments of memory pages to cores
directly benefits performance.

The standard components of LU factorization are represented by the pfactor() and
pupdate() functions. As one might expect, the former factors a panel, whereas the
latter updates a panel using one of the previously factored panels.

O’Reilly Media, Inc. 4/17/2007

 20

The main loop makes each thread iterate over each panel in turn. If necessary, the panel is
factored by the owner thread while other threads wait (if they happen to need this panel
for their updates).

The look-ahead logic is inside the nested loop (prefaced by the comment for each
panel to be updated) that replaces DGEMM or PDGEMM from previous
algorithms. Before each thread updates one of its panels, it checks whether it’s already
feasible to factor its first unfactored panel. This minimizes the number of times the
threads have to wait because each thread constantly attempts to eliminate the potential
bottleneck.

As was the case for ScaLAPACK, the multithreaded version detracts from the inherent
elegance of the LAPACK’s version. Also in the same spirit, performance is the main
culprit: LAPACK’s code will not run efficiently on machines with ever-increasing
numbers of cores. Explicit control of execution threads at the LAPACK level rather than
the BLAS level is critical: parallelism cannot be encapsulated in a library call. The only
good news is that the code is not as complicated as ScaLAPACK’s, and efficient BLAS
can still be put to a good use.

A Word About the Error Analysis and
Operation Count
The key aspect of all of the implementations presented in this chapter is their numerical
properties.

It is acceptable to forgo elegance in order to gain performance. But numerical stability is
of vital importance and cannot be sacrificed, because it is an inherent part of the
algorithm’s correctness. While these are serious considerations, there is some consolation
to follow. It may be surprising to some readers that all of the algorithms presented are the
same, even though it’s virtually impossible to make each excerpt of code produce exactly
the same output for exactly the same inputs.

When it comes to repeatability of results, the vagaries of floating-point representation
may be captured in a rigorous way by error bounds. One way of expressing the numerical
robustness of the previous algorithms is with the following formula:

 ||r||/||A|| ≤ ||e|| ≤ ||A-1|| ||r||

where error e = x - y is the difference between the computed solution y and the correct
solution x, and r = Ay - b is a so-called "residual." The previous formula basically says
that the size of the error (the parallel bars surrounding a value indicate a norm—a
measure of absolute size) is as small as warranted by the quality of the matrix A.
Therefore, if the matrix is close to being singular in numerical sense (some entries are so
small that they might as well be considered to be zero) the algorithms will not give an
accurate answer. But otherwise, a relatively good quality of result can be expected.

Another feature that is common to all the versions presented is the operation count: they
all perform 2/3n3 floating-point multiplications and/or additions. The order of these
operations is what differentiates them. There exist algorithms that increase the amount of
floating-point work to save on memory traffic or network transfers (especially for
distribute-memory parallel algorithms.) But because the algorithms shown in this chapter
have the same operation count, it is valid to compare them for performance. The
computational rate (number of floating-point operations per second) may be used instead

O’Reilly Media, Inc. 4/17/2007

 21

of the time taken to solve the problem, provided that the matrix size is the same. But
comparing computational rates is sometimes better because it allows a comparison of
algorithms when the matrix sizes differ. For example, a sequential algorithm on a single
processor can be directly compared with a parallel one working on a large cluster on a
much bigger matrix.

Future Directions for Research
In this chapter we have looked at the evolution of the design of a simple but important
algorithm in computational science. The changes over the past 30 years have been
necessary to follow the lead of the advances in computer architectures. In some cases
these changes have been simple, such as interchanging loops. In other cases, they have
been as complex as the introduction of recursion and look-ahead computations. In each
case, however, the code's ability to efficiently utilize the memory hierarchy is the key to
high performance on a single processor as well as on shared and distributed memory
systems.

The essence of the problem is the dramatic increase in complexity that software
developers have had to confront, and still do. Dual-core machines are already common,
and the number of cores is expected to roughly double with each processor generation.
But contrary to the assumptions of the old model, programmers will not be able to
consider these cores independently (i.e., multi-core is not “the new SMP”) because they
share on-chip resources in ways that separate processors do not. This situation is made
even more complicated by the other nonstandard components that future architectures are
expected to deploy, including the mixing of different types of cores, hardware
accelerators, and memory systems.

Finally, the proliferation of widely divergent design ideas shows that the question of how
to best combine all these new resources and components is largely unsettled. When
combined, these changes produce a picture of a future in which programmers will have to
overcome software design problems vastly more complex and challenging than those in
the past in order to take advantage of the much higher degrees of concurrency and greater
computing power that new architectures will offer.

So the bad news is that none of the presented code will work efficiently someday. The
good news is that we have learned various ways to mold the original simple rendition of
the algorithm to meet the ever-increasing challenges of hardware designs.

Further Reading
• LINPACK User's Guide, J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.

Stewart, SIAM: Philadelphia, 1979, ISBN 0-89871-172-X.
• LAPACK Users’ Guide, 3rd Edition, E. Anderson, Z. Bai, C. Bischof, S. Blackford,

J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammaring, A. McKenney,
and D. Sorensen, SIAM: Philadelphia, 1999, ISBN 0-89871-447-8.

• ScaLAPACK Users' Guide, L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J.
Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley, SIAM Publications, Philadelphia, 1997, ISBN 0-
89871-397-8.

O’Reilly Media, Inc. 4/17/2007

 22

• "Basic Linear Algebra Subprograms for FORTRAN usage," C. L. Lawson, R. J.
Hanson, D. Kincaid, and F. T. Krogh, ACM Trans. Math. Soft., Vol. 5, pp. 308—
323, 1979.

• “An extended set of FORTRAN Basic Linear Algebra Subprograms,” J. J. Dongarra,
J. Du Croz, S. Hammarling, and R. J. Hanson, ACM Trans. Math. Soft., Vol. 14,, pp.
1-17, 1988.

• "A set of Level 3 Basic Linear Algebra Subprograms," J. J. Dongarra, J. Du Croz, I.
S. Duff, and S. Hammarling, ACM Trans. Math. Soft., Vol. 16, pp. 1—17, 1990.

• Implementation Guide for LAPACK, E. Anderson and J. Dongarra, UT-CS-90-101,
April 1990.

• A Proposal for a Set of Parallel Basic Linear Algebra Subprograms, J. Choi, J.
Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C. Whaley, UT-CS-95-292,
May 1995.

• LAPACK Working Note 37: Two Dimensional Basic Linear Algebra Communication
Subprograms, J. Dongarra and R. A. van de Geijn, University of Tennessee
Computer Science Technical Report, UT-CS-91-138, October 1991.

• "Matrix computations with Fortran and paging," Cleve B. Moler, Communications of
the ACM, 15(4), 1972, pp. 268-270.

• LAPACK Working Note 19: Evaluating Block Algorithm Variants in LAPACK, E.
Anderson and J. Dongarra, University of Tennessee Computer Science Technical
Report, UT-CS-90-103, April 1990.

• "Recursion leads to automatic variable blocking for dense linear-algebra algorithms,"
Gustavson, F. G. IBM J. Res. Dev. Vol. 41, No. 6 (Nov. 1997), pp. 737-756.

