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Abstract

Empirical software optimization and tuning is an ac-
tive research topic in the high performance com-
puting research community. It is an adaptive sys-
tem to generate optimized software using empirically
searched parameters. Due to the large parameter
search space, an appropriate search heuristic is an es-
sential part of the system. This paper describes an
effective search method that can be generally applied
to empirical optimization. We apply this method to
ATLAS (Automatically Tuned Linear Algebra Soft-
ware), which is a system for empirically optimizing
dense linear algebra kernels. Our experiments on four
different platforms show that the new search scheme
can produce parameters that can lead ATLAS to gen-
erate a library with better performance.

1 Introduction

As CPU speeds double every couple of years follow-
ing Moore’s law[1], memory speed lags behind. Be-
cause of this increasing gap between the speeds of
processors and memory, in order to achieve high per-
formance on modern systems new techniques such as
longer pipeline, deeper memory hierarchy, and hyper
threading have been introduced into the hardware de-
sign. Meanwhile, compiler optimization techniques
have been developed to transform programs written
in high-level languages to run efficiently on modern
architectures[2, 3]. These program transformations
include loop blocking[4, 5], loop unrolling[2], loop
permutation, fusion and distribution[6, 7]. To se-
lect optimal parameters such as block size, unrolling
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factor, and loop order, most compilers would com-
pute these values with analytical models referred to
as model-driven optimization. In contrast, empiri-
cal optimization techniques generate a large number
of code variants with different parameter values for
an algorithm, for example matrix mulplication. All
these candidates run on the target machine, and the
one that gives the best performance is picked. With
this empirical optimization approach ATLAS[8, 9],
PHiPAC[10], and FFTW[11] successfully generate
highly optimized libraries for dense, sparse linear
algebra kernels and FFT respectively. It has been
shown that empirical optimization is more effective
than model-driven optimization[12].

One requirement of empirical optimization
methodologies is an appropriate search heuristic,
which automates the search for the most optimal
available implementation [8, 9]. Theoretically the
search space is infinite, but in practice it can be lim-
ited based on specific information about the hard-
ware for which the software is being tuned. For
example, ATLAS bounds NB (blocking size) such
that 16≤ NB ≤ min(

√
L1,80), where L1 represents

the L1 cache size, detected by a micro-benchmark.
Usually the bounded search space is still very large
and it grows exponentially as the dimension of the
search space increases. In order to find optimal
cases quickly, certain search heuristics need to be
employed. The goal of our research is to provide
a general search method that can apply to any em-
pirical optimization system. The Nelder-Mead sim-
plex method[13] is a well-known and successful non-
derivative direct search method for optimization. The
Genetic Algorithm [14] is another well-known tech-
nique for optimization. We have applied these meth-
ods to ATLAS, replacing the global search of ATLAS
with the simplex method and the GA. This paper will
show experimental results on four different architec-
tures to compare these search techniques with the
original ATLAS search both in terms of the perfor-
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mance of the resulting library and the time required
to perform the search.

This paper is organized as follows. In Sec-
tion 2, we briefly introduce the Nelder-Mead sim-
plex method. Section 3 describes the implementa-
tion of the algorithm including modifications suitable
for empirical optimization applications. Experimen-
tal results are presented in Section 4. In Section 5,
we describe the generic code optimization system and
experimental results. Related work is presented in
Section 6. Finally, conclusions are provided in Sec-
tion 7.

2 Simplex Method

To solve the minimization problem:

min f (x)

Where f : Rn → R, and gradient information
is not computationally available, Spendley, Hext,
and Himsworth[15] introduced the simplex method,
which is a non-derivative based direct search method.
In an n-dimension spaceR, a simplex is a set of n+1
vertices, thus a triangle inR2 and a tetrahedron inR3.
The simplex contracts to the minimum by repeatedly
comparing function values at n+1 vertices and replac-
ing the vertex with the highest value by reflecting it
through the centroid of the rest of the simplex ver-
tices and shrinking. We illustrate the basic idea of the
simplex method in Figure 1.
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Figure 1: Original simplex inR2 where f (x1) ≥
f (x2) ≥ f (x3); Reflectx1 throughxc, the centroid of
x2 andx3, to xr; The new simplex consists ofx2, x3

andxr.

Nelder and Mead improved the method by
adding more moves and making the search more ro-

bust and faster. We give the discription of the Nelder-
Mead simplex algorithm [16]:

• Initialize a non-degenerate simplex of n+1 ver-
tices onRn, compute function value or do a mea-
surement at each vertex, order n+1 vertices by
value f (xi).

• At iteration k, we have:
f (xk

0) ≤ f (xk
1) ≤ ·· · ≤ f (xk

n)

• Step 1, Calculate centroid:

xk
c = 1

n

n

∑
i=1

xk
i

• Step 2, Reflection:
xk

r = xk
c + ρ(xk

c − xk
n), whereρ > 0

– If f (xk
0) ≤ f (xk

r ) < f (xk
n−1), replace xk

n

with xk
r and go to next iteration;

– Else if f (xk
r ) < f (xk

0), go to step 3;

– Else if f (xk
r ) ≥ f (xk

n−1), go to step 4.

• Step 3, Expansion:
xk

e = xk
c + χ(xk

r − xk
c), whereχ > 1

– If f (xk
e) < f (xk

r ), replacexk
n with xk

e and go
to next iteration;

– Else replacexk
n with xk

r and go to next iter-
ation.

• Step 4, Contraction:

– If f (xk
r ) < f (xk

n),
xk

t = xk
c + γ(xk

r − xk
c), where 0< γ < 1

∗ If f (xk
t ) ≤ f (xk

r ), replacexk
n with xk

t
and go to next iteration;

∗ Else go to step 5.

– Else
xk

t = xk
c + γ(xk

n − xk
c), where 0< γ < 1

∗ If f (xk
t ) < f (xk

n), replacexk
n with xk

t
and go to next iteration;

∗ Else go to step 5.

• Step 5, Shrink:
xk

i = xk
0 + σ(xk

i − xk
0), where 0< σ < 1

3 Modified Simplex Search Algo-
rithm

Empirical optimization requires a search heuristic
for selecting the most highly optimized code from
the large number of code variants generated during
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the search. Because there are a number of differ-
ent tuning parameters, such as blocking size, un-
rolling factor and computational latency, the resulting
search space is multi-dimensional. The direct search
method, namely Nelder-Mead simplex method [13],
fits in the role perfectly.

The Nelder-Mead simplex method is a direct
search method for minimizing a real-valued function
f (x) for x ∈ Rn. It assumes the functionf (x) is
continuously differentiable. We modify the search
method according to the nature of the empirical opti-
mization technique:

• In a multi-dimensional discrete space, the value
of each vertex coordinate is cast from double
precision to integer.

• The search space is bounded by settingf (x) = ∞
wherex < l, x > u and l, u, andx ∈ Rn. The
lower and upper bounds are determined based
on hardware information.

• The simplex is initialized along the diagonal of
the search space. The size of the simplex is cho-
sen randomly.

• User defined restriction conditions: If a point vi-
olates the condition, we can simply setf (x) =
∞, which saves search time by skipping code
generation and execution of this code variant.

• Create a searchable record of previous execution
timing at each eligible point. Since execution
times would not be identical at the same search
point on a real machine, it is very important to
be able to retrieve the same function value at the
same point. It also saves search time by not hav-
ing to re-run the code variant for this point.

• As the search can only find the local optimal
performance, multiple runs are conducted. In
search space ofRn, we start n+1 searches. The
initial simplexes are uniformly distributed along
the diagonal of the search space. With the ini-
tial simplex of the n+1 result vertices of previ-
ous searches, we conduct the final search with
the simplex method.

• After every search with the simplex method, we
apply a local search by comparing performance
with neighbor vertices, and if a better one is
found the local search continues recursively.

4 Experiments with ATLAS

In this section, we briefly describe the structure of
ATLAS and then compare the effectiveness of its
search technique to the simplex and GA methods.

Detection

Optimal
Parameters

Execution
and
Timing

ATLAS Code
Generator

Matrix Multiply
Source Code

ATLAS SearchHardware Info
L1 Size
Latency
Nreg
FMA

NB, MU, NU, KU
LS, FF, IF, NF
FMA

Figure 2: ATLAS with global search

4.1 Structure of ATLAS

Figure 2 depicts the structure of ATLAS [8, 9]. By
running a set of benchmarks, ATLAS detects hard-
ware information such as L1 cache size, latency for
computation scheduling, number of registers and ex-
istence of fused floating-point multiply add instruc-
tion. The search heuristics of ATLAS bound the
global search of optimal parameters with detected
hardware information. For example, NB (blocking
size) is one of ATLAS’s optimization parameters.
ATLAS sets NB’s upper bound to be the minimum
of 80 and square root of L1 cache size, and lower
bound as 16, and NB is a composite of 4. The op-
timization parameters are generated and fed into the
ATLAS code generator, which generates matrix mul-
tiply source code. The code is then compiled and ex-
ecuted on the target machine. Performance data is
returned to the search manager and compared with
previous executions.

ATLAS uses an orthogonal search [12]. For an
optimization problem:

min f (x1,x2, · · · ,xn)

Parametersxi (where 1≤ i ≤ n) are initialized with
reference values. Fromx1 to xn, orthogonal search
does a linear one-dimensional search for the optimal
value ofxi and it uses previously found optimal val-
ues forx1,x2, · · · ,xn−1.
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Feature Intel Pentium 4 Intel Itanium 2 IBM Power 4 Sun UltraSparc
Processor Speed 2.4GHz 900MHz 1.3GHz 900MHz
L1 Instruction 12KB 16KB 64KB 32KB
L1 Data 8KB 16KB 32KB 64KB
L2 512KB 256KB 1440KB 8MB
L3 N/A 1.5MB 128MB N/A
FMA no yes yes no
OS Linux Linux AIX 5.1 SunOS 5.9
Compiler gcc 3.3.3 icc 8 xlc 6 gcc 3.2

Table 1: Processor Specifications

4.2 Applying Simplex Search to ATLAS

We have replaced the ATLAS global search with the
modified Nelder-Mead simplex search and conducted
experiments on four different architectures: Pentium
4, Itanium 2, Power 4 and Sparc Ultra. The speci-
fications of these four platforms are shown in Table
1.

Given values for a set of parameters, the AT-
LAS code generator generates a code variant of ma-
trix multiply. The code gets executed with randomly
generated 1000x1000 dense matrices as input. After
executing the search heuristic, the output is a set of
parameters that gives the best performance for that
platform. Figure 3 shows the performance of the best
matrix multiply code variant selected by each of the
two search methods on four different platforms. This
shows that the simplex method can find parameters
with better performance. Figure 4 compares the to-
tal time spent by each of the search methods on the
search itself. The Itanium2 search time (for all search
techniques) is much longer than the other platforms
because we are using the Intel compiler, which in our
experience takes longer to compile the same piece of
code than the compiler used on the other platforms
(gcc). Figures 6 through 9 show the comparision of
the performance of matrix multiply on different sizes
of matrices using the ATLAS libraries generated by
the Simplex search and the original ATLAS search.

4.3 Applying GA to ATLAS

GA (Genetic Algorithm)[14] is a heuristic search
method based on the evolutionary process of survival
of the fittest. It starts with a population of individu-
als each of which is represented by a gene. The gene
can be represented as the implementor chooses, but
it is typically a set of numbers or a string of char-
acters. It produces the next generation by means of
crossover, mutation, and selection of offspring based

on fitness. In our case, each member of the popu-
lation is a set of parameters and the fitness of that
member is evaluated by measuring the performance
of the code generated using those parameters. There
is a wide variety of techniques for performing these
GA operations. For example, [17] lists fifteen alter-
native crossover and eight different mutation opera-
tions. For an application, the Genetic Algorithm may
perform very differently with different choices of op-
erators and values for the crossover rate, mutation
rate, initial population, and selection rate.

Similar to the integration of the simplex search
described in section 4.2, we replaced the ATLAS
search with the GA search. With the same exper-
imental setup, we gathered performance data and
search time on the four platforms. We can see in Fig-
ure 4 and 5 that the GA search took more time on
all platforms. Furthermore, the performance of the
library generated using the GA search was worse for
most platforms, as shown in Figure 3 and Figures 6
through 9. As we conducted the GA search experi-
ments, we observed that a simple random search was
as effective as the GA search. In our experimentation,
we were not able to derive a GA strategy that worked
better than simplex or the original ATLAS search, but
we cannot say no such strategy exists.

5 Generic Code Optimization

Current empirical optimization techniques such as
ATLAS and FFTW can achieve good performance
because the algorithms to be optimized are known
ahead of time. We are addressing this limitation by
extending the techniques used in ATLAS to the op-
timization of arbitrary code. Since the algorithm to
be optimized is not known in advance, it will require
compiler technology to analyze the source code and
generate the candidate implementations. The ROSE
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Figure 3: Best performance with input 1000x1000
matrices

Figure 4: Search time

project[18, 19] from Lawrence Livermore National
Laboratory provides, among other things, a source-
to-source code transformation tool that can produce
blocked and unrolled versions of the input code.
Combined with our search heuristic and hardware in-
formation, we can use ROSE to perform empirical
code optimization. For example, based on an auto-
matic characterization of the hardware, we will direct
their compiler to perform automatic loop blocking at
varying sizes, which we can then evaluate to find the
best block size for that loop. To perform the evau-
lations, we have developed a test infrastructure that
automatically generates a timing driver for the opti-
mized routine based on a simple description of the
arguments.

Figure 10 shows the overall structure of the
Generic Code Optimization system. The code is fed
into the loop processor for optimization and sepa-

Figure 5: Search time on Itanium2
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Figure 6: DGEMM on Power 4

rately fed into the timing driver generator which gen-
erates the code that actually runs the optimized code
variant to determine its execution time. The results of
the timing are fed back into the search engine. Based
on these results, the search engine may adjust the pa-
rameters used to generate the next code variant. The
initial set of parameters can be estimated based on the
characteristics of the hardware (e.g. cache size).

Figure 11 shows the results of running an ex-
haustive search over both dimensions of our search
space (block sizes up to 128 and unrolling up to 128).
The code being optimized is a naı̈ve implementation
of matrix-vector multiply. In general, we see the best
results along the diagonal, but there are also peaks
along areas where the block size is evenly divisi-
ble by the unrolling amount. The triangular area on
the right is typically low because when the unrolling
amount is larger than the block size, the unrolled por-
tion will not be used. After running for over 30 hours
on a 1.7 GHz Pentium M, the best performance was
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Figure 8: DGEMM on Pentium 4

found with block size 11 and unrolling amount 11.
This code variant ran at 338 Mflop/s compared to 231
Mflop/s for the version compiled with gcc.

Of course, due to the large amount of time re-
quired, this kind of exhaustive search is not feasible
especially as new dimensions are added to the search
space. Consequently we are investigating the simplex
method as a way to find an optimal set of parameters
without performing an exhaustive search. The sim-
plex search technique works the same in this appli-
cation as it does when applied to ATLAS except in
this case we only have two parameters. To evaluate
the effectiveness of the simplex search technique, we
performed 10,000 runs and compared the results with
the true optimum found during the exhaustive search.
On average, the simplex technique found code vari-
ants that performed at 294 Mflop/s, or 87% of the
true optimal performance (338 Mflop/s). At best, the
simplex technique can find the true optimum, but that
only occurs on 8% of the runs. The worst case was
273 Mflop/s, or 81% of the true optimum. From a
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statistical point of view, the probability of randomly
finding better performance than the simplex average
case (294 Mflop/s) is 0.079% and the probability of
randomly finding better performance than the sim-
plex worst case (273 Mflop/s) is 2.84%. While the
simplex technique generally results in a code variant
with less than optimal performance, the total search
time is only 10 minutes compared to over 30 hours
for the exhaustive search.

6 Related Work

There are several projects that adopt an automatic
performance tuning strategy to produce highly opti-
mized libraries, but with different approaches to the
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Figure 11: Exhaustive Search of Matrix-Vector Mul-
tiply Code

heuristic search. PHiPAC[10] is a methodology for
developing High-Performance linear algebra libraries
in ANSI C. It searches for the optimal block sizes
starting from register level (L0 cache), then L1 cache,
L2 cache, and so on. A random search strategy is
used for searching the L0 search space and a sim-
ple heuristic-based search is used for the other levels.
ATLAS[8, 9] is an empirical tuning system, which
generates an optimized BLAS library. ATLAS first
bounds the search space based on hardware informa-
tion detected by microbenchmarks. It then uses an
orthogonal search, which starts with an initial set of
parameters and searches for the optimal value for one
parameter at a time and keeps the rest unchanged. Af-
ter each one-dimensional linear search, the selected
parameter value will be preserved. FFTW[11] gen-
erates a highly optimized library for computing the
discrete Fourier transform (DFT). Its search strategy
is called dynamic programming, which takes advan-
tage of the recursive nature of the problem and so-
lutions of smaller problems can be used to construct
solutions of larger problems. SPIRAL[20] generates
highly optimized code for a broad set of digital sig-
nal processing transforms. It uses dynamic program-
ming primarily, but when that fails, it has several
other methods to fall back on (e.g. genetic algorithms
and random search). However, our goal is to develop
a generic search strategy that is effective for a vari-
ety of different applications. From our initial experi-
ments with ATLAS and the Generic Code Optimiza-

tion system, we have found that the simplex method
converges relatively fast and produces good results
for both.

7 Conclusion

Empirical optimization has been shown to be an ef-
fective technique for optimizing code for a particular
platform. Since the search heuristic plays such an im-
portant role in the system, existing empirical tuning
software such as ATLAS [8, 9], PHiPAC [10], and
FFTW [11] each have their own search strategy. Our
research provides a generic way to search for the op-
timal parameters and it could be extended to Direct
Search Methods such as pattern search methods and
methods with adaptive sets of search directions [21].

This paper has demonstrated the effectiveness
of the simplex search strategy with ATLAS and the
Generic Code Optimization system, but in the future,
we would like to evaluate its effectiveness with other
tuning systems. Also, while the GA approach did not
turn out to be as effective, it has the advantage of be-
ing naturally parallellizable. We are planning to im-
plement a parallel version of the GA to be run on a
cluster of identical machines.
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