
Fast and Small Short Vector SIMD Matrix Multiplication Kernels
for the Synergistic Processing Element of the CELL Processor
– LAPACK Working Note 189

Wesley Alvaro
Department of Electrical Engineering and Computer Science, University of Tennessee

Jakub Kurzak
Department of Electrical Engineering and Computer Science, University of Tennessee

Jack Dongarra
Department of Electrical Engineering and Computer Science, University of Tennessee
Computer Science and Mathematics Division, Oak Ridge National Laboratory
School of Mathematics & School of Computer Science, University of Manchester

ABSTRACT
Matrix multiplication is one of the most common nu-
merical operations, especially in the area of dense
linear algebra, where it forms the core of many im-
portant algorithms, including solvers of linear sys-
tems of equations, least square problems, and sin-
gular and eigenvalue computations. The STI CELL
processor exceeds the capabilities of any other pro-
cessor available today in terms of peak single pre-
cision, floating point performance. In order to fully
exploit the potential of the CELL processor for a
wide range of numerical algorithms, fast implemen-
tation of the matrix multiplication operation is essen-
tial. The crutial component is the matrix multiplica-
tion kernel crafted for the short vector Single Instruc-
tion Multiple Data architecture of the Synergistic Pro-
cessing Element of the CELL processor. In this pa-
per, single precision matrix multiplication kernels are
presented implementing the C = C −A×BT opera-
tion and the C = C −A×B operation for matrices of
size 64×64 elements. For the latter case, the perfor-
mance of 25.50 Gflop/s is reported, or 99.60 percent
of the peak, using as little as 5.9 KB of storage for
code and auxiliary data structures.

KEYWORDS: CELL BE, matrix multiplication,
SGEMM, SPE, short vector SIMD

1 Introduction

The CELL Broadband Engine Architecture (CBEA)
has been developed jointly by the alliance of Sony,
Toshiba and IBM (STI). The CELL processor is
an innovative multi-core architecture consisting of
a standard processor, the Power Processing Ele-
ment (PPE), and eight short-vector Single Instruc-
tion Multiple Data (SIMD) processors, referred to as
the Synergistic Processing Elements (SPEs). The
SPEs are equipped with scratchpad memory re-
ferred to as the Local Store (LS) and a Memory
Flow Controller (MFC) to perform Direct Memory Ac-
cess (DMA) transfers of code and data between the
system memory and the Local Store.

This paper is only concerned with the design of
computational micro-kernels for the SPE in order to
fully exploit Instruction Level Parallelism (ILP) pro-
vided by its SIMD architecture. Issues related to par-
allelization of code for execution on multiple SPEs,
including intra-chip communication and synchroniza-
tion, are not discussed here. SPE architercural de-
tails important to the discussion are presented in
§5.1 and also throughout the text, as needed. Plenti-
ful information about the design of the CELL proces-
sor and CELL programming techniques is in public
the domain [1, 2].

1

2 Motivation

The current trend in processor design is towards
chips with multiple processing units, commonly re-
ferred to as multi-core processors [3–5]. It has been
postulated that building blocks of future architectures
are likely to be simple processing elements with
shallow pipelines, in-order execution, and SIMD ca-
pabilities [6]. It has also been poited out that direct
control over the memory hierarchy may be desired,
and software-managed scratchpad memory may be
superior to traditional caches [6].

It can be observed that the Synergistic Processing
Element of the CELL processor closely matches this
description. There is no doubt that future processors
will differ significantly from the current designs and
will reshape the way of thinking about programming
such systems. By the same token, investigation into
micro-kernel development for the SPE may have a
broader impact by providing an important insight into
programming future multi-core architectures.

2.1 Performance Considerations

State of the art numerical linear algebra software uti-
lizes block algorithms in order to exploit the memory
hierarchy of traditional cache-based systems [7, 8].
Public domain libraries such as LAPACK [9] and
ScaLAPACK [10] are good examples. These imple-
mentations work on square or rectangular submatri-
ces in their inner loops, where operations are encap-
sulated in calls to Basic Linear Algebra Subroutines
(BLAS) [11], with emphasis on expressing the com-
putation as Level 3 BLAS, matrix-matrix type, opera-
tions. Frequently, the call is made directly to the ma-
trix multiplication routine GEMM. At the same time,
all the other Level 3 BLAS can be defined in terms of
GEMM and a small amount of Level 1 and Level 2

BLAS [12].
A lot of effort has been invested in optimized BLAS

by hardware vendors as well as academic institu-
tions thorugh projects such as ATLAS [13] and Go-
toBLAS [14]. At the same time, the inefficiencies
of the BLAS layer have been pointed out [15] as
well as the shortcomings of its fork-join paralleliza-

tion model [16]. Owing to this, the emerging trend in
linear algebra is towards the use of specialized data
structures such as Block Data Layout (BDL) [17, 18]
and the expression of algorithms directly in terms of
specialized inner-kernels [19]. Although application
of these techniques is not always straightforward,
problems can be often remedied by novel algorith-
mic approaches [20, 21].

The innovation in CELL software has been pro-
gressing faster than elsewhere, with direct use of
inner-kernels, out-of-order execution and Block Data
Layout being a common practice [22–24]. As a re-
sult, performance of algorithms comes much closer
to the speed of GEMM for much smaller problem
sizes [24]. Any improvement to the GEMM rou-
tine immediately benefits the entire algorithm, which
makes the optimization of the GEMM routine yet
more important for the CELL processor.

2.2 Code Size Considerations

In the current implementation of the CELL BE archi-
tecture, the SPEs are equipped with a Local Store of
256 KB. It is a common practice to use tiles of 64×64
elements for dense matrix operations in single pre-
cision [22–26]. Such tiles occupy a 16 KB buffer in
the Local Store. Between six and eight buffers are
necessary to efficiently implement even such a sim-
ple operation as matrix multiplication [22, 25, 26].
Also, more complex operations, such as matrix fac-
torizations, commonly allocate eight buffers [23, 24],
which consume 128 KB of Local Store. In general,
it is reasonable to assume that half of the Local
Store is devoted to application data buffers. At the
same, time the program may rely on library frame-
works like ALF [27] or MCF [28], and utilize numer-
ical libraries such as SAL [29], SIMD Math [30] or
MASS [31], which consume extra space for the code.
In the development stage, it may also be desirable to
generate execution traces for analysis with tools like
TATLTM [32] or Paraver [33], which require additional
storage for event buffers. Finally, Local Store also
houses the SPE stack, starting at the highest LS ad-
dress and growing towards lower addresses with no
overflow protection.

2

It should be quite obvious that the Local Store is
a scarse resource and any real-world application is
facing the problem of fitting tightly coupled compo-
nents together in the limited space. SPE code can
be replaced at runtime and the mechanism of over-
lays [34] can be of assistance with dynamic code
management. Nevertheless, the use of kernels of
tens of thousands of kilobytes in size (§3) does not
seem adequate for other purposes than to imple-
ment micro-benchmarks.

3 Related Work

Little literature exists about implementing matrix op-
erations using short-vector SIMD capabilities. Im-
plementation of matrix multiplication C = C +A×BT

using Intel Streaming SIMD Extensions (SSE) was
reported by Aberdeen and Baxter [35].

Analysis of performance considerations of var-
ious computational kernels for the CELL proces-
sor, including the GEMM kernel, was presented by
Williams et al. [36, 37], with results based mostly on
simulation.

The first implementation of the matrix multiplica-
tion kernel C = A × B for the CELL processor
was reported by Chen et al. [22]. Performance of
25.01 Gflop/s was reported on a single SPE with reg-
ister usage of 69. Presumably, the article describes
the C language implementation publicly distributed
with the IBM CELL SDK.

More recently assembly language implementation
of the matrix multiplication C = C − A × B was
reported by Hackenberg[25, 26]. Performance of
25.40 Gflop/s was reported. Register usage of 71
can be established by inspection of the publicly avail-
able code.

Both codes were developed using very aggres-
sive unrolling, resulting in a single loop with a huge
body of straight-line code. Multiplication of 64 × 64
matrices requires 64 × 64 × 64 = 262144 multipli-
cations and additions (or subtractions). In single
precision, the calculation can be implemented by
262144/4 = 65536 fused multiply-add (FMA) SIMD
operations or fused multiply-subtract (FNMS) SIMD

operations. Both codes place 4096 of these opera-
tions in the body of a loop, which iterates 16 times
and results in the size of the first code of roughly
32 KB and the size of the second one close to 26 KB.
Since the first code is in C, the exact size is compiler
dependent.

CELL BLAS library released as part of the
SDK 3.0 [38] includes an SPE SGEMM kernel for
multiplication of 64× 64 martices. The routine is not
available in source form. The size of the object code
is over 32 KB.

4 Original Contribution

In this publication, an implementation of the GEMM
kernel C = C−A×BT is reported, which, to the best
knowledge of the authors, has not been reported be-
fore. Also, an implementation of the GEMM kernel
C = C − A × B is reported, which achieves better
performance than the kernels reported before, and
at the same time occupies more than four times less
space. It is also shown that the latter kernel is op-
timal, in the sense that neither performance can be
further improved nor code size decreased.

It is also the intention of the authors to demys-
tify the topic by clearly explaining the careful anal-
ysis behind optimized implementation of computa-
tional micro-kernels exploiting SIMD ILP, VLIW-like,
dual-issue and other low-level architectural features
of the computational cores of the CELL processor.

5 Implementation

5.1 SPU Architecture Overview

The core of the SPE is the Synergistic Process-
ing Unit (SPU). The SPU [39–41] is a RISC-style
SIMD processor feturing 128 general purpose reg-
isters and 32-bit fixed length instruction encoding.
SPU includes instructions that perform single preci-
sion floating point, integer arithmetic, logicals, loads,
stores, compares and branches. SPU includes nine
execution units organized into two pipelines, referred

3

to as the odd and even pipeline. Instructions are is-
sued in-order and two independent instructions can
be issued simultaneously if they belong to different
pipelines (Table 1).

Table 1: Selected odd and even pipeline instruction
groups and their latencies.

Instructions Pipeline

Even Odd

Latency
(cycles)

Single precision floating point 6

Immediate loads,
logical operations,
integer add/subtract

 2

Element rotates and shifts 4

Byte shuffles,
quadword rotates and shifts

 4

Loads/stores,
branch hints

 6

Branches 4

SPU executes code form the Local Store and op-
erates on data residing in the Local Store, which is a
fully pipelined, single-ported, 256 KB of Static Ran-
dom Access Memory (SRAM). Load and store in-
structions are performed within local address space,
which is untranslated, unguarded and noncoherent
with respect to the system address space. Loads
and stores transfer 16 bytes of data between the reg-
ister file and the Local Store, and complete with fixed
six-cycle delay and without exception.

SPU does not perform hardware branch predic-
tion and omits branch history tables. Instead, the
SPU includes a Software Managed Branch Target
Buffer (SMBTB), which holds a single branch target
and is loaded by software. A mispredicted branch
flushes the pipelines and costs 18 cycles. A correctly
hinted branch can execute in one cycle. Since both
branch hint and branch instructions belong to the
odd pipeline, proper use of SMBTB can result in zero
overhead from branching for a compute-intensive
loop dominated by even pipeline instructions.

5.2 Loop Construction

The main tool in loop construction is the technique
of loop unrolling [42]. In general, the purpose of
loop unrolling is to avoid pipeline stalls by separat-
ing dependent instructions by a distance in clock cy-
cles equal to the corresponding pipeline latencies.
It also decreases the overhead associated with ad-
vancing the loop index and branching. On the SPE it
serves the additional purpose of balancing the ratio
of instructions in the odd and even pipeline, owing to
register reuse between interations.

In the canonical form, matrix multiplication
Cm×n = Am×k×Bk×n coinsists of three nested loops
iterating over the three dimensions m, n and k. Loop
tiling [43] is applied to improve the locality of refer-
ence and to take advantage of the O(n3)/O(n2) ratio
of arithmetic operations to memory accesses. This
way register reuse is maximized and the number of
loads and stores is minimized.

Conceptually, tiling of the three loops creates
three more inner loops, which calculate a product
of a submatrix of A and a submatrix of B and up-
dates a submatrix of C with the partial result. Practi-
cally, the body of these three inner loops is subject to
complete unrolling to a single block of a straight-line
code. The tile size is picked such that the cross-over
point between arithmetic and memory operations is
reached, which means that there is more FMA or
FNMS operations to fill the even pipeline than there
is load, store and shuffle operations to fill the odd
pipeline.

The resulting structure consists of three outer
loops iterating over tiles of A, B and C. Inevitably,
nested loops induce mispredicted branches, which
can be alleviated by further unrolling. Aggressive
unrolling, however, leads quickly to undesired code
bloat. Instead, the three-dimensional problem can
be linearized by replacing the loops with a single
loop performing the same traversal of the iteration
space. This is accomplished by traversing tiles of A,
B and C in a predefined order derived as a func-
tion of the loop index. A straightforward row/column
ordering can be used and tile pointers for each itera-
tion can be constructed by simple transformations of
the bits of the loop index.

4

At this point, the loop body still contains auxiliary
operations that cannot be overlapped with arithmetic
operations. These include initial loads, stores of final
results, necessary data rearrangement with splats
and shuffles, and pointer advancing operations. This
problem is addressed by double-buffering, on the
register level, between two loop iterations. The exist-
ing loop body is duplicated and two separate blocks
take care of the even and odd iteration, respectively.
Auxiliary operations of the even iteration are hid-
den behind arithmetic instructions of the odd itera-
tion and vice versa, and disjoint sets of registers are
used where necessary. The resulting loop is pre-
ceeded by a small body of prologue code loading
data for the first iteration, and then followed by a
small body of epilogue code, which stores results of
the last iteration. Figure 1 shows the optimization
steps leading to a high performance implementation
of the GEMM inner kernel.

5.3 C = C – A × B trans

The BLAS C = C − A × BT GEMM is a very
common linear algebra operation. LAPACK relies
on this operation for implementation of many ma-
trix transformations, including Cholesky factoriza-
tion (POTRF), LDLT factorization (SYTRF), QR
factorization (GEQRF - calling GEMM indirectly
through the LARFB routine), and bidiagonal reduc-
tion (GEBRD). The C = C − A × BT micro-kernel
is also a building block for Level 3 BLAS rou-
tines other than GEMM, e.g., symmetric rank k up-
date (SYRK).

Specifically, implementation of the Cholesky fac-
torization for the CELL processor, based on this
micro-kernel coded in C, has been reported by the
authors of this publication [24].

Before going into details, it should be noted, that
matrix storage follows C-style row-major format. It
is not as much a carefull design decision, as com-
pliance with the common practice on the CELL pro-
cessor. It can be attributed to C compilers being the
only ones allowing to exploit short-vector capabili-
ties of the SPEs through C language SIMD exten-
sions. If compliance with libraries relying on legacy

FOR each element
 FOR each element
 FOR each element

arithmetics
(even iteration)

FOR each tile
 FOR each tile
 FOR each tile
 FOR each element
 FOR each element
 FOR each element

FOR each tile – 1D space
 FOR each tile – 1D space
 FOR each tile – 1D space

FOR each tile – 3D space

FOR each pair of tiles

memory
(odd iteration)

arithmetics
(odd iteration)

memory
(even iteration)

arithmetics & memory

arithmetics & memory

til
in

g
un

ro
lli

ng
lin

ea
riz

at
io

n
pi

ep
lin

in
g

(d
ou

bl
e

bu
ffe

rin
g)

ca
no

ni
ca

l
fo

rm

Figure 1: Basic steps of GEMM loop optimization.

FORTRAN API is required, a translation operation is
necessary. However, translation is required anyway,
since implementations of dense linear algebra rou-
tines on the CELL processor rely on Block Data Lay-

5

out. Typically, the two conversions are combined in
one operation, which introduces an acceptable over-
head [23].

An easy way to picture the C = C −A×BT oper-
ation is to represent it as the standard matrix vector
product C = C − A × B, where A is stored using
row-major order and B is stored using column-major
order. It can be observed that in this case a row of
A can readily be multiplied with a column of B to
yield a vector containing four partial results, which
need to be summed up to produce one element of
C. The vector reduction step introduces superfluous
multiply-add operations. In order to minimize their
number, four row-column products are computed, re-
sulting in four vectors, which need to be internally
reduced. The reduction is performed by first trans-
posing the 4 × 4 element matrix represented by the
four vectors and then applying four vector multiply-
add operations to produce a result vector containing
four elements of C. The basic scheme is depicted in
Figure 2.

A

B

C

transpose

reduce

Figure 2: Basic operation of the C = C − A × BT

matrix multiplication micro-kernel.

The crucial design choice to be made is the right
amount of unrolling, which is equivalent to deciding
the right tile size in terms of the triplet {m, n, k} (Here
sizes express numbers of individual floating-point
values, not vectors). Unrolling is mainly used to min-

imize the overhead of jumping and advancing the in-
dex variable and associated pointer arithmetic. It has
been pointed out in §5.1 that both jump and jump
hint instructions belong to the odd pipeline and, for
compute intensive loops, can be completely hidden
behind even pipeline instructions and thus introduce
no overhead. In terms of the overhead of advanc-
ing the index variable and related pointer arithmetic,
it will be shown in §5.5 that all of these operations
can be placed in the odd pipeline as well. In this sit-
uation, the only concern is balancing even pipeline,
arithmetic instructions with odd pipeline, data manip-
ulation instructions.

Simple analysis can be done by looking at the
number of floating-point operations versus the num-
ber of loads, stores and shuffles, under the assump-
tion that the size of the register file is not a con-
straint. The search space for the {m, n, k} triplet is
further truncated by the following criteria: only pow-
ers of two are considered in order to simplify the loop
construction; the maximum possible number of 64
is chosen for k in order to minimize the number of
extraneous floating-point instructions performing the
reduction of partial results; only multiplies of four are
selected for n to allow for efficient reduction of partial
results with eight shuffles per one output vector of C.
Under these constraints, the entire search space can
be easily analyzed.

Table 2 shows how the number of each type of
operation is calculated. Table 3 shows the number
of even pipeline, floating-point instructions includ-
ing the reductions of partial results. Table 4 shows
the number of even pipeline instructions minus the
number of odd pipeline instructions including loads,
stores and shuffles (not including jumps and pointer
arithmetic). In other words, Table 4 shows the num-
ber of spare odd pipeline slots before jumps and
pointer arithmetic are implemented. Finally, Table 5
shows the size of code involved in calculations for
a single tile. It is important to note here that the
double-buffered loop is twice the size.

It can be seen that the smallest unrolling with a
positive number of spare odd pipeline slots is repre-
sented by the triplet {2, 4, 64} and produces a loop
with 136 floating-point operations. However, this un-
rolling results in only 20 spare slots, which would

6

Table 2: Numbers of different types of operations in
the computation of one tile of the C = C − A × BT

micro-kernel as a function of tile size ({m, n, 64}
triplet).

Type of
Operation

Pipeline

Even Odd

Number of
Operations

Floating point (m n 64) 4 + m n

Load A m 64 4

Load B 64 n 4

Load C m n 4

Store C m n 4

Shuffle m n 4 8

barely fit pointer arithmetic and jump operations. An-
other aspect is that the odd pipeline is also used
for instruction fetch and near complete filling of the
odd pipeline may cause instruction depletion, which
in rare situations can even result in an indefinite
stall [44].

The next larger candidates are triplets {4, 4, 64}
and {2, 8, 64}, which produce loops with 272
floating-point operations, and 104 or 72 spare odd
pipeline slots, respectively. The first one is an ob-
vious choice, giving more room in the odd pipeline
and smaller code. It turns out that the {4, 4, 64} un-
rolling is actually the most optimal of all, in terms
of the overall routine footprint, when the implemen-
tation of pointer arithmetic is taken into account, as
further explained in §5.5.

It can be observed that the maximum perfor-
mance of the routine is ultimately limited by the
extra floating-point operations, which introduce an
overhead not accounted for in the formula for op-
eration count in matrix multiplication: 2 × m ×
n × k. For matrices of size 64 × 64, every 64
multiply-add operations require four more opera-
tions to perform the intra-vector reduction. This
sets a hard limit on the maximum achievable per-

Table 3: Number of even pipeline, floating-point
operations in the computation of one tile of the
micro-kernel C = C − A × BT as a function of tile
size ({m, n, 64} triplet).

M/N 4 8 16 32 64
1 68 136 272 544 1088
2 136 272 544 1088 2176
4 272 544 1088 2176 4352
8 544 1088 2176 4352 8704

16 1088 2176 4352 8704 17408
32 2176 4352 8704 17408 34816
64 4352 8704 17408 34816 69632

Table 4: Number of spare odd pipeline slots in the
computation of one tile of the C = C − A × BT

micro-kernel as a function of tile size ({m, n, 64}
triplet).

M/N 4 8 16 32 64
1 22 28 40 64 112
2 20 72 176 384 800
4 104 272 608 1280 2624
8 272 672 1472 3072 6272

16 608 1472 3200 6656 13568
32 1280 3072 6656 13824 28160
64 2624 6272 13568 28160 57344

Table 5: The size of code for the computation of one
tile of the C = C−A×BT micro-kernel as a function
of tile size ({m, n, 64} triplet).

M/N 4 8 16 32 64
1 1.2 1.2 2.3 4.5 8.9
2 1.0 1.8 3.6 7.0 13.9
4 1.7 3.2 6.1 12.0 23.8
8 3.2 5.9 11.3 22.0 43.5

16 6.1 11.3 21.5 42.0 83.0
32 12.0 22.0 42.0 82.0 162.0
64 23.8 43.5 83.0 162.0 320.0

formance to 64/(64 + 4)× 25.6 = 24.09 [Gflop/s],
which is roughly 94 % of the peak.

7

5.4 C = C – A × B

Perhaps the most important usage of the BLAS
C = C −A×B GEMM operation is in Gaus-
sian elimination. This operation is employed
by LAPACK’s implementation of LU factoriza-
tion (GETRF), which is also a basis for the Linpack
benchmark [45] used to rank supercomputers on the
Top500 list [46]. The C = C − A× B micro-kernel is
also a building block for Level 3 BLAS routines other
than GEMM, e.g., triangular solve (TRSM).

Specifically, implementation of LU factorization for
the CELL processor, based on this micro-kernel
coded in C has been reported by Chen et al. [22].

Here, same as before, row major storage is as-
sumed. The key observation is that multiplication of
one element of A with one row of B contributes to
one row of C. Owing to that, the elementary opera-
tion splats an element of A over a vector, multiplies
this vector with a vector of B and accumulates the
result in a vector of C (Figure 3). Unlike for the other
kernel, in this case no extra floating-point operations
are involved.

B

C

splat

A

Figure 3: Basic operation of the C = C−A×B matrix
multiplication micro-kernel.

Same as before, the size of unrolling has to be de-
cided in terms of the triplet {m, n, k}. This time, how-
ever, there is no reason to fix any dimension. Never-
theless, similar constraints to the search space ap-
ply: all dimensions have to be powers of two, and
additionally only multiplies of four are allowed for n
and k to facilitate efficient vectorization and simple
loop construction. Table 6 shows how the number of

each type of operation is calculated. Table 7 shows
the number of even pipeline, floating-point instruc-
tions. Table 8 shows the number of even pipeline in-
structions minus the number of odd pipeline instruc-
tions including loads, stores and splats (not including
jumps and pointer arithmetic). In other words, Table
8 shows the number of spare odd pipeline slots be-
fore jumps and pointer arithmetic are implemented.
Finally, Table 9 shows the size of code involved in
calculations for a single tile. It is should be noted
again that the double-buffered loop is twice the size.

It can be seen that the smallest unrolling with
a positive number of spare odd pipeline slots pro-
duces a loop with 128 floating-point operations. Five
possibilities exist, with the triplet {4, 16, 8} providing
the highest number of 24 spare odd pipeline slots.
Again, such unrolling would both barely fit pointer
arithmetic and jump operations and be a likely cause
of instruction depletion.

The next larger candidates are unrollings produc-
ing loops with 256 floating-point operations. There
are 10 such cases, with the triplet {4, 32, 8} be-
ing the obvious choice for the highest number of 88
spare odd pipeline slots and the smallest code size.
It also turns out that this unrolling is actually the most
optimal in terms of the overall routine footprint, when
the implementation of pointer arithmetic is taken into
account, as further explained in §5.5.

Unlike for the other routine, the maximum per-
formance is not limited by any extra floating-point
operations, and performance close to the peak of
25.6 Gflop/s should be expected.

5.5 Advancing Tile Pointers

The remaining issue is the one of implementing the
arithmetic calculating the tile pointers for each loop
iteration. Due to the size of the input matrices and
the tile sizes being powers of two, this is a straightfor-
ward task. The tile offsets can be calculated from the
tile index and the base addresses of the input ma-
trices using integer arithmetic and bit manipulation
instructions (bitwise logical instructions and shifts).
Figure 4 shows a sample implementation of pointer
arithmetic for the kernel C = C − A × BT with un-

8

Table 6: Numbers of different types of operations in
the computation of one tile of the C = C − A × B
micro-kernel as a function of tile size ({m, n, k}).

Type of
Operation

Pipeline

Even Odd

Number of
Operations

Floating point (m n k) 4

Load A m k 4

Load B k n 4

Load C m n 4

Store C m n 4

Splat m k

Table 7: Number of even pipeline operations in the
computation of one tile of the micro-kernel C = C −
A×B as a function of tile size ({m, n, k}).

K M/N 4 8 16 32 64
4 1 4 8 16 32 64
4 2 8 16 32 64 128
4 4 16 32 64 128 256
4 8 32 64 128 256 512
4 16 64 128 256 512 1024
4 32 128 256 512 1024 2048
4 64 256 512 1024 2048 4096
8 1 8 16 32 64 128
8 2 16 32 64 128 256
8 4 32 64 128 256 512
8 8 64 128 256 512 1024
8 16 128 256 512 1024 2048
8 32 256 512 1024 2048 4096
8 64 512 1024 2048 4096 8192

16 1 16 32 64 128 256
16 2 32 64 128 256 512
16 4 64 128 256 512 1024
16 8 128 256 512 1024 2048
16 16 256 512 1024 2048 4096
16 32 512 1024 2048 4096 8192
16 64 1024 2048 4096 8192 16384

Table 8: Number of spare odd pipeline slots in the
computation of one tile of the C = C − A × B
micro-kernel as a function of tile size ({m, n, k}).

K M/N 4 8 16 32 64
4 1 7 9 13 21 37
4 2 10 10 10 10 10
4 4 16 12 4 12 44
4 8 28 16 8 56 152
4 16 52 24 32 144 368
4 32 100 40 80 320 800
4 64 196 72 176 672 1664
8 1 12 14 18 26 42
8 2 16 12 4 12 44
8 4 24 8 24 88 216
8 8 40 0 80 240 560
8 16 72 16 192 544 1248
4 32 136 48 416 1152 2624
4 64 264 112 864 2368 5376

16 1 22 24 28 36 52
16 2 28 16 8 56 152
16 4 40 0 80 240 560
16 8 64 32 224 608 1376
16 16 112 96 512 1344 3008
16 32 208 224 1088 2816 6272
16 64 400 480 2240 5760 12800

Table 9: The size of code for the computation of one
tile of the C = C − A× B micro-kernel as a function
of tile size ({m, n, k}).

K M/N 4 8 16 32 64
4 1 0.1 0.1 0.2 0.3 0.6
4 2 0.1 0.2 0.3 0.5 1.0
4 4 0.2 0.3 0.5 1.0 1.8
4 8 0.4 0.6 1.0 1.8 3.4
4 16 0.7 1.1 1.9 3.4 6.6
4 32 1.4 2.2 3.7 6.8 12.9
4 64 2.8 4.3 7.3 13.4 25.5
8 1 0.1 0.2 0.3 0.6 1.2
8 2 0.2 0.3 0.5 1.0 1.8
8 4 0.3 0.5 0.9 1.7 3.2
8 8 0.7 1.0 1.7 3.1 5.8
8 16 1.3 1.9 3.3 5.9 11.1
4 32 2.5 3.8 6.4 11.5 21.8
4 64 5.0 7.6 12.6 22.8 43.0

16 1 0.2 0.3 0.6 1.1 2.2
16 2 0.4 0.6 1.0 1.8 3.4
16 4 0.7 1.0 1.7 3.1 5.8
16 8 1.3 1.9 3.1 5.6 10.6
16 16 2.4 3.6 6.0 10.8 20.3
16 32 4.8 7.1 11.8 21.0 39.5
16 64 9.6 14.1 23.3 41.5 78.0

9

rolling corresponding to the triplet {4, 4, 64}. Abase,
Bbase and Cbase, are base addresses of the input
matrices and the variable tile is the tile index running
from 0 to 255; Aoffs, Boffs and Coffs are the calcu-
lated tile offsets.

 int tile;

 vector float *Abase;
 vector float *Bbase;
 vector float *Cbase;

 vector float *Aoffs;
 vector float *Boffs;
 vector float *Coffs;

 Aoffs = Abase + ((tile & ~0x0F) << 2);
 Boffs = Bbase + ((tile & 0x0F) << 6);
 Coffs = Cbase + (tile & 0x0F)
 + ((tile & ~0x0F) << 2);

Figure 4: Sample C language implementation of
pointer arithmetic for the kernel C = C − A × BT

with unrolling corresponding to the triplet {4, 4, 64}.

Figure 5 shows the result of compiling the sample
C code from Figure 4 to assembly code. Although
a few variations are possible, the resulting assem-
bly code will always involve a similar combined num-
ber of integer and bit manipulation operations. Un-
fortunately, all these instructions belong to the even
pipeline and will introduce an overhead, which can-
not be hidden behind floating point operations, like it
is done with loads, stores, splats and shuffles.

One way of minimizing this overhead is extensive
unrolling, which creates a loop big enough to make
the pointer arithmetic negligible. An alternative is to
eliminate the pointer arithmetic operations from the
even pipeline and replace them with odd pipeline op-
erations. With the unrolling chosen in §5.3 and §5.4,
the odd pipeline offers empty slots in abundance.
It can be observed that, since the loop boundaries
are fixed, all tile offsets can be calculated in ad-
vance. At the same time, the operations available
in the odd pipeline include loads, which makes it a
logical solution to precalculate and tabulate tile off-
sets for all iterations. It still remains necessary to
combine the offsets with the base addresses, which
are not known beforehand. However, under addi-

tional alignment constraints, offsets can be com-
bined with bases using shuffle instructions, which
are also available in the odd pipeline. As will be fur-
ther shown, all instructions that are not floating point
arithmetic can be removed from the even pipeline.

lqa $2,tile
lqa $3,Abase
andi $4,$2,-16
andi $2,$2,15
shli $6,$4,2
shli $4,$4,6
shli $5,$2,10
a $2,$2,$6
a $4,$4,$3
shli $2,$2,4
lqa $3,Bbase
stqa $4,Aoffs
a $5,$5,$3
lqa $3,Cbase
stqa $5,Boffs
a $2,$2,$3
stqa $2,Coffs

Figure 5: The result of compiling the code from Fig-
ure 4 to assembly language, with even pipeline in-
structions in bold.

The precalculated offsets have to be compactly
packed in order to preserve space consumed by
the lookup table. Since tiles are 16 KB in size, off-
sets consume 14 bits and can be stored in a 16-bit
halfword. Three offsets are required for each loop
iteration. With eight halfwords in a quadword, each
quadword can store offsets for two loop iterations or
a single interation of the pipelined, double-buffered
loop. Figure 6 shows the organization of the offset
lookup table.

The last arithmetic operation remaining is the ad-
vancement of the itaration variable. It is typical to
decrement the iteration variable instead of incre-
menting it, and branch on non-zero, in order to elim-
inate the comparison operation, which is also the
case here. This still leaves the decrement opera-
tion, which would have to occupy the even pipeline.
In order to annihilate the decrement, each quad-
word containing six offsets for one itaration of the
double-buffered loop also contains a seventh en-
try, which stores the index of the quadword to be

10

processed next (preceeding in memory). In other
words, the iteration variable, which also serves as
the index to the lookup table, is tabulated along
with the offsets and loaded instead of being decre-
mented.

AN BN CN AN-1 BN-1 CN-1 0x0 N-2

AN-2 BN-2 CN-2 AN-3 BN-3 CN-3 0x0 N-4

A0 B0 C0 A1 B1 C1 xxx xxx

Figure 6: Organization of the tile offset lookup table.
N is the number of tiles.

Normally, the tile pointers would have to be cal-
culated as a sum of an 18-bit base address and a
14-bit offset, which would require the use of integer
addition residing in the even pipeline. With the addi-
tional constraint of 16 KB alignment of the base ad-
dresses, 14 less significant bits of the base are zero
and can be simply replaced with the bits of the offset.
The replacement could be implemented with the log-
ical AND operation. This would however, again, in-
volve an even pipeline instruction. Instead, both the
base addresses and the offsets are initially shifted
left by two bits, which puts the borderline between
offsets and bases on a byte boundary. At this point
the odd pipeline shuffle instruction operating at byte
granularity can be used to combine the base with
the offset. Finally, the result has to be shifted right
by two bits, which can be accomplished by a com-
bination of bit and byte quadword rotations, which
also belong to the odd pipeline. Overall, all the op-
erations involved in advancing the double-buffered
loop consume 29 extra odd pipeline slots, which is
small, given that 208 is available in the case of the
first kernel and 176 in the case of the second.

This way, all operations involved in advancing from
tile to tile are implemented in the odd pipeline. At
the same time, both the branch instruction and the
branch hint belong to the odd pipeline. Also, a cor-

rectly hinted branch does not cause any stall. As a
result, such an implementation produces a continu-
ous stream of floating-point operations in the even
pipeline, without a single cycle devoted to any other
activity.

The last issue to be discussed is the storage over-
head of the lookup table. This size is proportional
to the number of iterations of the unrolled loop and
reciprocal to the size of the loop body. Using the
presented scheme (Figure 6), the size of the lookup
table in bytes equals N3/(m × n × k) × 8. Table 10
presents the overall footprint of the C = C −A×BT

micro-kernel as a function of the tile size. Table 11
presents the overall footprint of the C = C − A × B
micro-kernel as a function of the tile size. As can be
clearly seen, the chosen tile sizes result in the lowest
possible storage requirements for the routines.

Table 10: The overall footprint of the micro-kernel
C = C − A × BT , including the code and the offset
lookup table, as a function of tile size ({m, n, 64}
triplet).

M/N 4 8 16 32 64
1 9.2 6.3 6.6 10.0 18.4
2 6.0 5.7 8.1 14.5 28.0
4 5.4 7.4 12.8 24.3 47.6
8 7.4 12.3 22.8 44.1 87.1

16 12.8 22.8 43.1 84.1 166.0
32 24.3 44.1 84.1 164.0 324.0
64 47.6 87.1 166.0 324.0 640.0

5.6 Results

Both presented SGEMM kernel implementations
produce a continuous stream of floating-point in-
structions for the duration of the pipelined loop. In
both cases, the loop iterates 128 times, processing
two tiles in each iteration. The C = C − A × BT

kernel contains 544 floating-point operations in the
loop body and, on a 3.2 GHz processor, delivers
25.54 Gflop/s (99.79 % of peak) if actual operations
are counted, and 24.04 Gflop/s (93.79 % of peak)
if the standard formula, 2N3, is used for operation

11

Table 11: The overall footprint of the micro-kernel
C = C − A × B, including the code and the offset
lookup table, as a function of tile size ({m, n, 64}
triplet).

K M/N 4 8 16 32 64
4 1 128.1 64.2 32.4 16.7 9.3
4 2 64.2 32.3 16.6 9.1 6.1
4 4 32.4 16.6 9.0 5.9 5.7
4 8 16.7 9.1 5.9 5.6 7.8
4 16 9.4 6.2 5.8 7.9 13.6
4 32 6.8 6.3 8.4 14.0 26.0
4 64 7.5 9.6 15.1 27.0 51.1
8 1 64.2 32.4 16.6 9.2 6.3
8 2 32.4 16.6 9.0 5.9 5.7
8 4 16.7 9.1 5.8 5.3 7.3
8 8 9.3 6.0 5.4 7.1 12.1
8 16 6.6 5.9 7.5 12.3 22.5
4 32 9.1 9.6 13.8 23.5 43.8
4 64 12.1 16.1 25.8 45.8 86.1

16 1 32.4 16.7 9.2 6.3 6.4
16 2 16.7 9.1 5.9 5.6 7.8
16 4 9.3 6.0 5.4 7.1 12.1
16 8 6.5 5.8 7.3 11.8 21.5
16 16 6.9 8.3 12.5 21.8 40.6
16 32 10.6 14.8 23.8 42.1 79.1
16 64 19.6 28.5 46.6 83.1 156.0

count. The C = C − A × B kernel contains 512
floating-point operations in the loop body and deliv-
ers 25.50 Gflop/s (99.60 % of peak). Here, the actual
operation count equals 2N3. At the same time, nei-
ther implementation overfills the odd pipeline, which
is 31 % empty for the first case and 17 % empty for
the second case. This guarantees no contention be-
tween loads and stores and DMA operations, and
no danger of instruction fetch starvation. Table 12
shows the summary of the kernels’ properties.

5.7 Conclusions

Computational micro-kernels are architecture spe-
cific codes, where no portability is sought. It has
been shown that systematic analysis of the prob-
lem combined with exploitation of low-level features
of the Synergistic Processing Unit of the CELL pro-
cessor leads to dense matrix multiplication kernels
achieving peak performance without code bloat.

Table 12: Summary of the properties of the SPE
SIMD SGEMM mikro-kernels.

CharacteristicT C=CABT C=CABT

Performance 24.04
Gflop/s

25.50
Gflop/s

Execution time 21.80 s 20.56 s

Fraction of peak
USING THE 2MNK FORMULA

93.92 % 99.60 %

Fraction of peak
USING ACTUAL NUMBER
OF FLOATING–POINT INSTRUCTIONS

99.79 % 99.60 %

Dual issue rate
ODD PIPELINE WORKLOAD

68.75 % 82.81 %

Register usage 69 69

Code segment size 4008 3992

Data segment size 2192 2048

Total memory footprint 6200 6040

5.8 Code

The code is freely available, under the BSD license
and can be downloaded from the author’s web site
http://icl.cs.utk.edu/∼alvaro/. A few comments can
be useful here. In absence of better tools, the code
has been developed with a help of a spreadsheet,
mainly for easy manipulation of two columns of in-
structions for the two pipelines of the SPE. Other
useful features were taken advantage of as well.
Specifically, color coding of blocks of instructions
greatly improves the readability of the code. It is
the hope of the authors that such visual represen-
tation of code considerably helps the reader’s un-
derstanding of the techniques involved in construc-
tion of optimized SIMD assembly code. Also, the
authors put considerable effort in making the soft-
ware self-contained, in the sense that all tools in-
volved in construction of the code are distributed
alongside. That includes the lookup table genera-
tion code and the sripts facilitating translation from
spreadsheet format to SPE assembly language.

12

http://icl.cs.utk.edu/~alvaro/

References

[1] IBM Corporation. Cell BE Programming Tuto-
rial, November 2007.

[2] IBM Corporation. Cell Broadband Engine Pro-
gramming Handbook, Version 1.1, April 2007.

[3] S. Borkar. Design Challenges of Technology
Scaling. IEEE Micro, 19(4):23–29, 1999.

[4] D. Geer. Industry Trends: Chip Makers Turn to
Multicore Processors. Computer, 38(5):11–13,
2005.

[5] H. Sutter. The Free Lunch Is Over: A Funda-
mental Turn Toward Concurrency in Software.
Dr. Dobb’s Journal, 30(3), 2005.

[6] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J.
Gebis, P. Husbands, K. Keutzer, D. A. Patter-
son, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick. The Landscape of Parallel Comput-
ing Research: A View from Berkeley. Technical
Report UCB/EECS-2006-183, Electrical Engi-
neering and Computer Sciences Department,
University of California at Berkeley, 2006.

[7] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and
H. A. van der Vorst. Numerical Linear Algebra
for High-Performance Computers. SIAM, 1998.

[8] J. W. Demmel. Applied Numerical Linear Alge-
bra. SIAM, 1997.

[9] E. Anderson, Z. Bai, C. Bischof, L. S. Black-
ford, J. W. Demmel, J. J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKen-
ney, and D. Sorensen. LAPACK Users’ Guide.
SIAM, 1992.

[10] L. S. Blackford, J. Choi, A. Cleary,
E. D’Azevedo, J. Demmel, I. Dhillon, J. J.
Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley.
ScaLAPACK Users’ Guide. SIAM, 1997.

[11] Basic Linear Algebra Technical Forum. Basic
Linear Algebra Technical Forum Standard, Au-
gust 2001.

[12] B. Kågström, P. Ling, and C. van Loan. GEMM-
Based Level 3 BLAS: High-Performance Model
Implementations and Performance Evalua-
tion Benchmark. ACM Trans. Math. Soft.,
24(3):268–302, 1998.

[13] ATLAS. http://math-atlas.sourceforge.net/.

[14] GotoBLAS. http://www.tacc.utexas.edu/
resources/software/.

[15] E. Chan, E. S. Quintana-Orti, G. Grego-
rio Quintana-Orti, and R. van de Geijn. Su-
permatrix Out-of-Order Scheduling of Matrix
Operations for SMP and Multi-Core Architec-
tures. In Nineteenth Annual ACM Sympo-
sium on Parallel Algorithms and Architectures
SPAA’07, pages 116–125, June 2007.

[16] J. Kurzak and J. J. Dongarra. LAPACK Work-
ing Note 178: Implementing Linear Algebra
Routines on Multi-Core Processors. Technical
Report CS-07-581, Electrical Engineering and
Computer Science Department, University of
Tennessee, 2006.

[17] N. Park, B. Hong, and V. K. Prasanna. Analy-
sis of Memory Hierarchy Performance of Block
Data Layout. In International Conference on
Parallel Processing, August 2002.

[18] N. Park, B. Hong, and V. K. Prasanna. Tiling,
Block Data Layout, and Memory Hierarchy Per-
formance. IEEE Trans. Parallel Distrib. Syst.,
14(7):640–654, 2003.

[19] J. R. Herrero and J. J. Navarro. Using Nonlinear
Array Layouts in Dense Matrix Operations. In
Workshop on State-of-the-Art in Scientific and
Parallel Computing PARA’06, June 2006.

[20] A. Buttari, J. Langou, J. Kurzak, and J. J. Don-
garra. LAPACK Working Note 190: Parallel
Tiled QR Factorization for Multicore Architec-
tures. Technical Report CS-07-598, Electri-
cal Engineering and Computer Science Depart-
ment, University of Tennessee, 2007.

13

http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/FC857AE550F7EB83872571A80061F788
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/FC857AE550F7EB83872571A80061F788
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/9F820A5FFA3ECE8C8725716A0062585F
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/9F820A5FFA3ECE8C8725716A0062585F
http://dx.doi.org/10.1109/40.782564
http://dx.doi.org/10.1109/40.782564
http://csdl.computer.org/comp/mags/co/2005/05/r5011.pdf
http://csdl.computer.org/comp/mags/co/2005/05/r5011.pdf
http://www.ddj.com/184405990
http://www.ddj.com/184405990
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.amazon.com/exec/obidos/ASIN/0898714281/
http://www.amazon.com/exec/obidos/ASIN/0898714281/
http://www.amazon.com/exec/obidos/ASIN/0898713897/
http://www.amazon.com/exec/obidos/ASIN/0898713897/
http://www.netlib.org/lapack/lug/
http://www.netlib.org/scalapack/slug/
http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://dx.doi.org/10.1145/292395.292412
http://dx.doi.org/10.1145/292395.292412
http://dx.doi.org/10.1145/292395.292412
http://dx.doi.org/10.1145/292395.292412
http://math-atlas.sourceforge.net/
http://www.tacc.utexas.edu/resources/software/
http://www.tacc.utexas.edu/resources/software/
http://doi.acm.org/10.1145/1248377.1248397
http://doi.acm.org/10.1145/1248377.1248397
http://doi.acm.org/10.1145/1248377.1248397
http://doi.acm.org/10.1145/1248377.1248397
http://www.netlib.org/lapack/lawnspdf/lawn178.pdf
http://www.netlib.org/lapack/lawnspdf/lawn178.pdf
http://www.netlib.org/lapack/lawnspdf/lawn178.pdf
http://dx.doi.org/10.1109/ICPP.2002.1040857
http://dx.doi.org/10.1109/ICPP.2002.1040857
http://dx.doi.org/10.1109/ICPP.2002.1040857
http://dx.doi.org/10.1109/TPDS.2003.1214317
http://dx.doi.org/10.1109/TPDS.2003.1214317
http://dx.doi.org/10.1109/TPDS.2003.1214317
http://www.hpc2n.umu.se/para06/papers/paper_251.pdf
http://www.hpc2n.umu.se/para06/papers/paper_251.pdf
http://www.netlib.org/lapack/lawnspdf/lawn190.pdf
http://www.netlib.org/lapack/lawnspdf/lawn190.pdf
http://www.netlib.org/lapack/lawnspdf/lawn190.pdf

[21] A. Buttari, J. Langou, J. Kurzak, and J. J. Don-
garra. LAPACK Working Note 191: A Class
of Parallel Tiled Linear Algebra Algorithms for
Multicore Architectures. Technical Report CS-
07-600, Electrical Engineering and Computer
Science Department, University of Tennessee,
2007.

[22] T. Chen, R. Raghavan, J. Dale, and E. Iwata.
Cell Broadband Engine architecture and its
first implementation, A performance view.
http://www-128.ibm.com/developerworks/
power/library/pa-cellperf/, November 2005.

[23] J Kurzak and J. J. Dongarra. Implementation
of Mixed Precision in Solving Systems of Lin-
ear Equations on the CELL Processor. Concur-
rency Computat.: Pract. Exper., 19(10):1371–
1385, 2007.

[24] J. Kurzak, A. Buttari, and J. J. Dongarra. Solv-
ing Systems of Linear Equation on the CELL
Processor Using Cholesky Factorization. Trans.
Parallel Distrib. Syst., 2008.

[25] D. Hackenberg. Einsatz und Leistungsanalyse
der Cell Broadband Engine. Institut für Technis-
che Informatik, Fakultät Informatik, Technische
Universität Dresden, February 2007. Großer
Beleg.

[26] D. Hackenberg. Fast matrix multiplication
on CELL systems. http://tu-dresden.de/
die tu dresden/zentrale einrichtungen/zih/
forschung/architektur und leistungsanalyse
von hochleistungsrechnern/cell/, July 2007.

[27] IBM Corporation. ALF for Cell BE Program-
mer’s Guide and API Reference, November
2007.

[28] M. Pepe. Multi-Core Framework (MCF), Ver-
sion 0.4.4. Mercury Computer Systems, Octo-
ber 2006.

[29] Mercury Computer Systems, Inc. Scientific Al-
gorithm Library (SAL) Data Sheet, 2006. http:
//www.mc.com/uploadedfiles/SAL-ds.pdf.

[30] IBM Corporation. SIMD Math Library API Ref-
erence Manual, November 2007.

[31] IBM Corporation. Mathematical Accelera-
tion Subsystem - product overview. http:
//www-306.ibm.com/software/awdtools/mass/,
March 2007.

[32] Mercury Computer Systems, Inc. Trace Analy-
sis Tool and Library (TATLTM) Data Sheet, 2006.
http://www.mc.com/uploadedfiles/tatl-ds.pdf.

[33] European Center for Parallelism of Barcelona,
Technical University of Catalonia. Paraver, Par-
allel Program Visualization and Analysis Tool
Reference Manual, Version 3.1, October 2001.

[34] IBM Corporation. Software Development Kit 2.1
Programmer’s Guide, Version 2.1, March 2007.

[35] D. Aberdeen and J. Baxter. Emmerald: A Fast
Matrix-Matrix Multiply Using Intel’s SSE Instruc-
tions. Concurrency Computat.: Pract. Exper.,
13(2):103–119, 2001.

[36] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Hus-
bands, and K. Yelick. The Potential of the Cell
Processor for Scientific Computing. In ACM
International Conference on Computing Fron-
tiers, 2006.

[37] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Hus-
bands, and K. Yelick. Scientific Computing Ker-
nels on the Cell Processor. Int. J. Parallel Prog.,
35(3):263–298, 2007.

[38] IBM Corporation. Basic Linear Algebra Sub-
programs Programmer’s Guide and API Refer-
ence, November 2007.

[39] B. Flachs, S. Asano, S. H. Dhong, P. Hofstee,
G. Gervais, R. Kim, T. Le, P. Liu, J. Leenstra,
J. Liberty, B. Michael, H. Oh, S. M. Mueller,
O. Takahashi, A. Hatakeyama, Y. Watanabe,
and N. Yano. A Streaming Processing Unit
for a CELL Processor. In IEEE International
Solid-State Circuits Conference, pages 134–
135, 2005.

14

http://www.netlib.org/lapack/lawnspdf/lawn191.pdf
http://www.netlib.org/lapack/lawnspdf/lawn191.pdf
http://www.netlib.org/lapack/lawnspdf/lawn191.pdf
http://www-128.ibm.com/developerworks/power/library/pa-cellperf/
http://www-128.ibm.com/developerworks/power/library/pa-cellperf/
http://dx.doi.org/10.1002/cpe.1164
http://dx.doi.org/10.1002/cpe.1164
http://dx.doi.org/10.1002/cpe.1164
http://dx.doi.org/10.1109/TPDS.2007.70813
http://dx.doi.org/10.1109/TPDS.2007.70813
http://dx.doi.org/10.1109/TPDS.2007.70813
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/architektur_und_leistungsanalyse_von_hochleistungsrechnern/cell/
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/architektur_und_leistungsanalyse_von_hochleistungsrechnern/cell/
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/architektur_und_leistungsanalyse_von_hochleistungsrechnern/cell/
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/architektur_und_leistungsanalyse_von_hochleistungsrechnern/cell/
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/41838EDB5A15CCCD002573530063D465
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/41838EDB5A15CCCD002573530063D465
http://www.mc.com/uploadedfiles/SAL-ds.pdf
http://www.mc.com/uploadedfiles/SAL-ds.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/6DFAEFEDE179041E8725724200782367
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/6DFAEFEDE179041E8725724200782367
http://www-306.ibm.com/software/awdtools/mass/
http://www-306.ibm.com/software/awdtools/mass/
http://www.mc.com/uploadedfiles/tatl-ds.pdf
http://www.cepba.upc.es/paraver/docs/Paraver_MANUAL.pdf
http://www.cepba.upc.es/paraver/docs/Paraver_MANUAL.pdf
http://www.cepba.upc.es/paraver/docs/Paraver_MANUAL.pdf
ftp://ftp.software.ibm.com/systems/support/bladecenter/cpbprg00.pdf
ftp://ftp.software.ibm.com/systems/support/bladecenter/cpbprg00.pdf
http://dx.doi.org/10.1002/cpe.549
http://dx.doi.org/10.1002/cpe.549
http://dx.doi.org/10.1002/cpe.549
http://dx.doi.org/10.1145/1128022.1128027
http://dx.doi.org/10.1145/1128022.1128027
http://dx.doi.org/10.1007/s10766-007-0034-5
http://dx.doi.org/10.1007/s10766-007-0034-5
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/F6DF42E93A55E57400257353006480B2
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/F6DF42E93A55E57400257353006480B2
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/F6DF42E93A55E57400257353006480B2
http://dx.doi.org/10.1109/isscc.2005.1493905
http://dx.doi.org/10.1109/isscc.2005.1493905

[40] B. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee,
G. Gervais, K. Roy, T. Le, L. Peichun, J. Leen-
stra, J. Liberty, B. Michael, O. Hwa-Joon,
S. M. Mueller, O. Takahashi, A. Hatakeyama,
Y. Watanabe, N. Yano, D. A. Brokenshire,
M. Peyravian, T. Vandung, and E. Iwata. The
Microarchitecture of the Synergistic Processor
for a Cell Processor. IEEE J. Solid-State Cir-
cuits, 41(1):63–70, 2006.

[41] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hop-
kins, Y. Watanabe, and T. Yamazaki. Synergis-
tic Processing in Cell’s Multicore Architecture.
IEEE Micro, 26(2):10–24, 2006.

[42] J. L. Hennessy and D. A. Patterson. Computer
Architecture, Fourth Edition: A Quantitative Ap-
proach. Morgan Kaufmann, 2006.

[43] S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[44] IBM Corporation. Preventing Synergistic Pro-
cessor Element Indefinite Stalls Resulting from
Instruction Depletion in the Cell Broadband En-
gine Processor for CMOS SOI 90 nm, Applica-
tions Note, Version 1.0, November 2007.

[45] J. J. Dongarra, P. Luszczek, and A. Petitet. The
LINPACK Benchmark: Past, Present and Fu-
ture. Concurrency Computat.: Pract. Exper.,
15(9):803–820, 2003.

[46] TOP500 Supercomputing Sites. http://www.
top500.org/.

15

http://dx.doi.org/10.1109/jssc.2005.859332
http://dx.doi.org/10.1109/jssc.2005.859332
http://dx.doi.org/10.1109/jssc.2005.859332
http://dx.doi.org/10.1109/MM.2006.41
http://dx.doi.org/10.1109/MM.2006.41
http://www.amazon.com/exec/obidos/ASIN/0123704901/
http://www.amazon.com/exec/obidos/ASIN/0123704901/
http://www.amazon.com/exec/obidos/ASIN/0123704901/
http://www.amazon.com/exec/obidos/ASIN/1558603204/
http://www.amazon.com/exec/obidos/ASIN/1558603204/
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/C5996EDB722D3A478725728E0074B465
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/C5996EDB722D3A478725728E0074B465
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/C5996EDB722D3A478725728E0074B465
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/C5996EDB722D3A478725728E0074B465
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/C5996EDB722D3A478725728E0074B465
http://dx.doi.org/10.1002/cpe.728
http://dx.doi.org/10.1002/cpe.728
http://dx.doi.org/10.1002/cpe.728
http://www.top500.org/
http://www.top500.org/

	Introduction
	Motivation
	Performance Considerations
	Code Size Considerations

	Related Work
	Original Contribution
	Implementation
	SPU Architecture Overview
	Loop Construction
	C = C -- A B trans
	C = C -- A B
	Advancing Tile Pointers
	Results
	Conclusions
	Code

