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Abstract. In this article we report on our e�orts to test and expand the
current state-of-the-art in eigenvalue solvers applied to the �eld of nan-
otechnology. We singled out the nonlinear conjugate gradients method
as the blackbone of our e�orts for their previous success in predicting
the electronic properties of large nanostructures and made a library of
three di�erent solvers (two recent and one new) that we integrated into
the parallel PESCAN (Parallel Energy SCAN) code [3] to perform a
comparison.

1 Introduction

First-principles electronic structure calculations are typically carried out by min-
imizing the quantum-mechanical total energy with respect to its electronic and
atomic degrees of freedom. Subject to various assumptions and simpli�cations
[5], the electronic part of this minimization problem is equivalent to solving the
single particle Schr�odinger-type equations (called Kohn-Sham equations) of the
form

Ĥψi(r) = εiψi(r), (1)

Ĥ = −1
2
∇2 + V

where ψi(r) are the single particle wave functions (of electronic state i) that
minimize the total energy, and V is the total potential of the system. The wave
functions are most commonly expanded in plane-waves (Fourier components)
up to some cut-o� energy which discretizes the Equation (1). In this approach
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the lowest eigen-pairs are calculated for Ĥ and the Kohn-Sham equations are
solved self-consistently. For a review of this approach see reference [5] and the
references therein. The computational cost of this approach scales as the cube of
the number of atoms and the the maximum size of system that can be studied is
of the order of hundreds of atoms. In the approach used in PESCAN developed
by L-W. Wang and A. Zunger [8] a semi-empirical potential is used such that
V (r) and only the eigenstates of interest around a given energy are calculated,
allowing the study of large nanosystems (up to a million atoms). The problem
then becomes: �nd ψ and E close to a given Eref such that

Hψ = Eψ, (2)

where H represents the Hamiltonian matrix, which is Hermitian with dimension
equal to the number of Fourier components used to expand ψ. The dimension
of H may be of the order of a million for large nanosystems. The eigenvalues E
(energy of state ψ) are real, and the eigenvectors ψ are orthonormal and typically
complex.

The spectrum of H has energy gaps and of particular interest to physicists is
to �nd a few, approximately 4 to 10, of the interior eigenvalues on either side of
the gap which determines many of the electronic properties of the system. Due
to its large size the matrix H in the eigenvalue problem of Equation 2 is never
explicitly computed. We calculate the kinetic energy part in Fourier space, where
it is diagonal, and the potential energy part in real space so that the number of
calculations used to construct the matrix-vector product scales as n log n rather
than n2 where n is the dimension of H. Three dimensional FFTs are used to
move between Fourier and real space. H is therefore available as a procedure
for computing Hx for a given vector x. Thus one more requirement is that the
solver is matrix free. Finally, repeated eigenvalues (degeneracy) of approximately
4 maximum are possible for the problems discussed and we need to be able to
resolve such cases to fully understand the electronic properties of our systems.

In this paper, three di�erent eigensolvers, based on the nonlinear Conjugate-
Gradient algorithm, are compared on this particular problem. In Section 2 we
describe the three eigensolvers investigated in the paper. Section 3 presents our
numerical results. Implementation details, testing issues and optimizations per-
formed are given in Subsection 3.1. Subsection 3.2 is for the numerical results
on our real problem. Finally, in Section 4, we give some concluding remarks.

The focus of this paper is on nonlinear conjugate gradient methods with
folded spectrum. Alternative for the spectral transformation are shift-and-invert
or �xed-polynomial [6]. Alternative for the iterative solver are Lanczos or Jacobi
Davidson. Our choice of method is not arbitary, these methods has proven to be
more e�ective for the computation around the energy gap of quantum dots than
others.



2 Nonlinear Conjugate Gradient Method for Eigenvalue

Problem

The conventional approach for problems of very large matrix size is to use it-
erative projection methods where at every step one extracts eigenvalue approx-
imations from a given subspace S of small dimension (see e.g. [2]). Nonlinear
conjugate gradient methods belong to this class of method. Let us assume for
now that we are looking for the smallest eigenvalue of the Hermitian operator
A.

This eigenvalue problem can be expressed in terms of function minimization
as: �nd the variational minimum of F (µ) =< µ,Aµ >, on which a nonlinear
conjugate gradient method is performed to �nd the minima.

In this section, we give a description of the algorithm we have implemented
in our library, namely: PCG, PCG-XR and LOBPCG plus the folded spectrum
spectral transformation.

2.1 PCG Method

In Table 1, we give is a pseudo-code of the PCG algorithm for eigen-problems.
This is the algorithm originally implemented in the PESCAN code (see also
[5, 7]).

1 do i = 1, niter
2 do m = 1, blockSize
3 orthonormalize X(m) to X(1 : m− 1)
4 ax = A X(m)
5 do j = 1, nline
6 λ(m) = X(m) · ax
7 if (||ax− λ(m) X(m)||2 < tol .or. j == nline) exit
8 rj+1 = (I− X XT) ax
9 β = (rj+1−rj)·Prj+1

rj·Prj
10 dj+1 = −P rj+1 + β dj
11 dj+1 = (I− XXT)dj+1
12 γ = ||dj+1||−1

2
13 θ = 0.5 |atan 2 γ dj+1·ax

λ(m)−γ2 dj+1·A dj+1 |
14 X(m) = cos(θ) X(m) + sin(θ) γ dj+1
15 ax = cos(θ) ax+ sin(θ) γ A dj+1
16 enddo

17 enddo

18 [X, λ] = Rayleigh− Ritz on span{X}
19 enddo

Table 1. PCG algorithm



Here P is a preconditioner for the operatorA,X is the block (of size blockSize)
of column eigenvectors sought, λ is the corresponding block of eigenvalues.

2.2 LOBPCG Method

Brie
y, the LOBPCG method can be described with the following pseudo-code

1 do i = 1, niter
2 R = P (A Xi − λ Xi)
3 check convergence criteria

4 [Xi, λ] = Rayleigh− Ritz on span{Xi, Xi−1, R}
5 enddo

Table 2. LOBPCG algorithm

i.e. the m and j loops from Table 1 are replaced with just the blocked computation
of the preconditioned residual, and the Rayleigh-Ritz on span{Xi} with Rayleigh-
Ritz on span{Xi−1, Xi, R}. The direct implementation of this algorithm becomes
unstable as Xi−1 and Xi become closer and closer, and therefore special care
and modi�cations have to be taken (see [4]).

2.3 PCG-XR Method

PCG-XR is PCG algorithm except that line 18 in Table 1 is replaced by

18 [X, λ] = Rayleigh− Ritz on span{X, R}.

The idea is to store the vectors R to perform a more e�cient Rayleigh-Ritz step.

2.4 Folded Spectrum

Projection methods are good at �nding well separated (non-clustered) extremal
eigenvalues. In our case, we are seeking for interior eigenvalues and thus we have
to use a spectral transformation, the goal being to map the sought eigenvalue of
our operator to extremal eigenvalues of another one.

To do so we use the folded spectrum method. The interior eigenvalue problem
Hx = λx is transformed to �nd the smallest eigenvalues of (H−ErefI)2x = µx.
The eigenvalues of the original problem are given back by µ = (λ− s)2.

The PCG algorithm in its folded form (FS-PCG) is described in [7]. To adapt
the folded spectrum to LOBPCG (FS-LOBPCG), we have added three others
block vectors that stores the matrix-vector product of the blocks X, R and P
with the matrix H. This enables us to control the magnitude of the residuals
for a few axpys more (otherwise we just have access to the magnitude of the



residuals of the squared operator). Also the de
ation strategy of LOBPCG is
adapted in FS-LOBPCG, the vectors are de
ated when the residual relative to
H have converged (not H2).

3 Numerical Results

3.1 Software Package

We implemented LOBPCG algorithm 3, PCG and PCG-XR in a software library.
Currently, our library has single and double, real and complex arithmetic

with both parallel (using MPI) and sequential versions, it is written in Fortran
90. The folded spectrum spectral transformation is optional. The implementation
is stand alone and meant to be easily integrated in various physics codes (like
PESCAN).

A test case is provided with the software. It represents a 5-point operator
where the coe�cents a (diagonal) and b (for the connections with the 4 closest
neighbors on a regular 2D mesh) can be changed. In Table 3.1 the output of the
test is presented, it is performed on a Linux Intel Pentium IV with Intel Fortran
compiler and parameters (a = 8, b = 1 − i), we are looking for the 10 smallest
eigenstates, the matrix size is 20, 000, the iterations are stopped when all the
eigencouples (x, λ) satis�es ‖Hx− xλ‖ ≤ tol‖x‖, with tol = 10−8.

Method
PCG LOBPCG PCG-XR

time (s) 37.1 61.7 20.2
matvecs 3, 555 1, 679 1, 760
dotprds 68, 245 137, 400 37, 248
axpys 66, 340 158, 261 36, 608
copys 6, 190 9, 976 3, 560

Table 3. Comparison of the PCG, PCG-XR and LOBPCG methods in �nding 10
eigenstates on a problem of size 20, 000× 20, 000.

In a general manner, LOBPCG always performs less iterations (i.e. less
matrix-vector products) than PCG. This advantage comes to the cost of more
vector operations (axpys and dot products) and more memory requirements.
In this case, LOBPCG performs approximately 2 times more dot products for
2 times less matrix vector products than the PCG method, since the 5-point
matrix-vector product takes approximately the time of 7 dot products, PCG
gives the best time.
3 http://www-math.cudenver.edu/ aknyazev/software/CG/latest/lobpcg.m
(revision 4.10 written in Matlab, with some slight modi�cations)



The CG-XR method represents for this test case an interesting alternative
for thos two methods: it inherits the low number of matrix vector products from
the LOBPCG and the low number of dot products from the PCG method.

3.2 Numerical Results on some Quantum Dots

In this section we present numerical results on quantum dots up to thousand of
atoms. The experiments are performed on the IBM-SP seaborg at NERSC in
Lawrence Berkeley National Laboratory.

For all the experiments we are looking for mx = 10 interior eigenvalues around
Eref = −4.8eV. The stopping criterion is ‖Hx − xλ‖ ≤ tol‖x‖ where tol =
10−6. All the runs are performed on one node with 16 processors except for
the smallest case (20Cd,19Se) which is run on 8 processors. All the solvers are
started with the same initial guess.

The preconditioner is the one given in [7], it is diagonal with diagonal ele-
ments pi

pi =
E2

k

( 12q
2
i + V0 − Eref )2 + E2

k)
,

where qi is the diagonal term of the Laplacian, V0 is the average potential and
Ek is the average kinetic energy of the wavefunction ψ. It is meant to be an
approximation of the inverse of (H − Eref )2.

A notable fact is that all the solvers �nd the same 10 eigenvalues with the
correct accuracy for all the runs in less than 30 minutes. Therefore they are all
robust.

The timing results are given in Table 4. For each test case the number of
atoms of the quantum dot and the order n of the corresponding matrix is given
The parameter for the number of iterations in the inner loop (nline) for FS-PCG
and FS-PCG-XR is chosen to be the optimal one among the values 20, 50, 100,
200, and 500 and is given in bracket after the solver.

From Table 4, we observe that the three methods FS-PCG, FS-PCG-XR and
FS-LOBPCG behaves almost the same. The best method (in term of time) being
either FS-PCG-XR or FS-LOBPCG.

FS-LOBPCG should also bene�t in speed over FS-PCG and FS-PCG-XR
from the fact that the matrix-vector products are performed by block. This is
not the case in the version of the code used for this paper where the experiments
are performed on a single node. The blocked implementation of FS-LOBPCG in
PESCAN should run faster and also scale to larger processor counts as latency
is less of an issue in the communications part of the code.

Another feature of FS-LOBPCG that is not stressed in Table 4 is its over-
whelming superiority over FS-PCG when no preconditioner is available. In Ta-
ble 5, we illustrate this later feature. For the quantum dot (83Cd,81Se), FS-
LOBPCG runs 4 times faster than FS-PCG without preconditioner whereas it
runs only 1.4 times faster with.

For the four experiments presented in Table 4, the number of inner iteration
that gives the mimimum total time is always attained for a small number of outer



(20Cd, 19Se) n = 11,331
# matvec # outer it Time

FS-PCG(50) 4898 (8) 50.4s
FS-PCG-XR(50) 4740 (6) 49.1s
FS-LOBPCG 4576 52.0s

(83Cd, 81Se) n = 34,143
# matvec # outer it Time

FS-PCG(200) 15096 (11) 264 s
FS-PCG-XR(200) 12174 (5) 209 s
FS-LOBPCG 10688 210 s

(232Cd, 235Se) n = 75,645
# matvec # outer it Time

FS-PCG(200) 15754 (8) 513 s
FS-PCG-XR(200) 15716 (6) 508 s
FS-LOBPCG 11864 458 s

(534Cd, 527Se) n = 141,625
# matvec # outer it Time

FS-PCG(500) 22400 (6) 1406 s
FS-PCG-RX(500) 21928 (4) 1374 s
FS-LOBPCG 17554 1399 s

Table 4. Comparison of FS-PCG, FS-PCG-XR and FS-LOBPCG methods in �nding
10 eigenstates around the gap of quantum dots of increasing size.

(83Cd, 81Se) n = 34,143
# matvec Time

FS-PCG(200) precond 15096 264 s
FS-LOBPCG precond 10688 210 s

FS-PCG(200) no precond 71768 1274 s
FS-LOBPCG no precond 17810 341 s

Table 5. Comparison of FS-PCG and FS-LOBCG with and without preconditioner to
�nd mx = 10 eigenvalues of the quantum dots (83Cd,81Se)



iteration, this is illustrated in Table 6 for (232Cd, 235Se) where the minimum
time is obtained for 6 outer iterations. Another and more practical way of stop-
ping the inner iteration is in �xing the requested tolerance reached at the end
of the inner loop. We call FS-PCG(k) FS-PCG where the inner loop is stopped
when the accuracy is less than knouter , where nouter is number of the corre-
sponding outer iteration. In Table 6, we give the results for FS-PCG(10−1) and
(223Cd,235Se). It comes without a surprise that this solver converge in 6 outer
steps: �rst inner loop guarantees an accuracy of 10−1, second inner loop guar-
antees an accuracy of 10−2, and so on until 10−6. This schemes looks promising.
It also allows a synchronized convergence of the block vectors.

(232Cd, 235Se) n = 75,645
# matvec # outer it Time

FS-PCG(100) 17062 (15) 577s
FS-PCG(200) 15716 (6) 508s
FS-PCG(300) 15990 (4) 517s

FS-PCG(10−1) 15076 (6) 497s

Table 6. The problem of �nding the best inner length for FSM-PCG can be avoided
by �xing a tolerance as stopping criterion in the inner loop

4 Conclusions

In this paper, we have compared three nonlinear conjugate gradient methods
with folded spectrum to �nd a small amount of interior eigenvalues around a
given point: FS-PCG, FS-PCG-XR, and FS-LOBPCG; the application being
the computation the prediction of the electronic properties of quantum nanos-
tructures.

All three methods are similar and thus often the results are close; a general
ranking being: FS-LOBPCG is the fastest, then come FS-PCG-XR and �nally
FS-PCG. In term of memory requirement the three methods are ranked in the
same way: FS-LOBPCG/FS-PCG-XR requires four/two times as much mem-
ory as FS-PCG. As our problem scales up the memory has not shown up as a
bottleneck yet, i.e. using FS-LOBPCG is a�ordable.

The main drawback of FS-PCG and FS-PCG-XR is their sensitivity to the
parameter nline (the number of iterations in the inner loop). In order to get rid
of this parameter one can rather have a �xed residual tolerance to be achieved
on each step of the outer loop.

On other applications, the performance of FS-LOBPCG shall be better pro-
vided a fast block matrix-vector product and an accomodating preconditioner.
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