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Abstract. In this article we report on our efforts to test and expand
the current state-of-the-art in eigenvalue solvers applied to the field of
nanotechnology. We singled out the nonlinear conjugate gradients (CG)
methods as the backbone of our efforts for their previous success in pre-
dicting the electronic properties of large nanostructures and made a li-
brary of three different solvers (two recent and one new) that we inte-
grated into the PESCAN (Parallel Energy SCAN) code [3] to perform
a comparison. The methods and their implementation are tuned to the
specifics of the physics problem. The main requirements are to be able
to find (1) a few, approximately 4 to 10, of the (2) interior eigenstates,
including (3) repeted eigenvalues, for (4) large Hermitian matrices.
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1 Introduction

Eigenvalue problems result from the simulation of many physical phenomena.
For example, in computational electromagnetics, this may be the problem of
finding electric/magnetic field frequencies that propagate through the medium;
in structural dynamics, to find the frequencies of free vibrations of an elastic
structure, etc. In the field of nanotechnology, and more precisely in predicting
the electronic properties of semiconductor nanostructure architectures, this may
be the problem of finding ”stable” electronic states and their energies (explained
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below). Because of the eigen-solvers’ wide application area they have been inves-
tigated by many branches of mathematical physics, computational mathematics,
and engineering. Our efforts here are to test and expand the current state-of-
the-art in eigenvalue solvers in predicting the electronic properties of quantum
nanostructures.

First-principles electronic structure calculations are typically carried out by
minimizing the quantum-mechanical total energy with respect to its electronic
and atomic degrees of freedom. Subject to various assumptions and simplifica-
tions [5], the electronic part of this minimization problem is equivalent to solving
the single particle Schrödinger-type equations (called Kohn-Sham equations)

Ĥψi(r) = εiψi(r), (1)

Ĥ = −1
2
∇2 + V

where ψi(r) are the single particle wave functions (of electronic state i) that
minimize the total energy, and V is the total potential of the system. The wave
functions are most commonly expanded in plane-waves (Fourier components)
up to some cut-off energy which discretizes equation (1). In this approach the
lowest eigen-pairs are calculated for Ĥ and the Kohn-Sham equations are solved
self-consistently. For a review of this approach see reference [5] and the references
therein. The computational cost of this approach scales as the cube of the number
of atoms and the maximum system size that can be studied is of the order of
hundreds of atoms. In the approach used in PESCAN developed by L-W. Wang
and A. Zunger [9] a semi-empirical potential or a charge patching method [7] is
used to construct V and only the eigenstates of interest around a given energy
are calculated, allowing the study of large nanosystems (up to a million atoms).
The problem then becomes: find ψ and E close to a given Eref such that

Hψ = Eψ, (2)

where H represents the Hamiltonian matrix, which is Hermitian with dimension
equal to the number of Fourier components used to expand ψ. The dimension
of H may be of the order of a million for large nanosystems. The eigenvalues E
(energy of state ψ) are real, and the eigenvectors ψ are orthonormal.

In many cases, like semiconductor quantum dots, the spectrum of H has
energy gaps and of particular interest to physicists is to find a few, approximately
4 to 10, of the interior eigenvalues on either side of the gap which determines
many of the electronic properties of the system. Due to its large size H is never
explicitly computed. We calculate the kinetic energy part in Fourier space, where
it is diagonal, and the potential energy part in real space so that the number of
calculations used to construct the matrix-vector product scales as n log n rather
than n2 where n is the dimension of H. Three dimensional FFTs are used to
move between Fourier and real space. H is therefore available as a procedure
for computing Hx for a given vector x. Thus one more requirement is that the
solver is matrix free. Finally, repeated eigenvalues (degeneracy) of approximately



3 maximum are possible for the problems discussed and we need to be able to
resolve such cases to fully understand the electronic properties of our systems.

Currently, equation (2) is solved by a CG method as coded in the PESCAN

package [9]. While this program works well for 1000 atom systems with a sizable
band gap (e.g., 1 eV), it becomes increasingly difficult to solve for systems with
(1) large number of atoms (e.g, more than 1 million); (2) small band gap, and
where (3) many eigenstates need to be computed (e.g, more than 100), or to solve
eigenstates when there is no band gap (e.g, for Auger or transport calculations).
Thus, new algorithm to solve this problem is greatly needed.

The focus of this paper is on nonlinear CG methods with folded spectrum.
The goal is to solve the interior eigenstates. Alternative for the folded spectrum
transformation are shift-and-invert or fixed-polynomial [6]. Our choice of method
is based on the highly successful current scheme [3] which has been proven to be
efficient and practical for the physical problems we are solving. It will be the sub-
ject of other studies to further investigate the applicability of other alternatives
like the Lanczos and Jacobi-Davidson method.

In Section 2 we describe the three eigensolvers investigated in the paper and
the spectral transformation used. We give our numerical results in Section 3,
and finally, in Section 4, we give some concluding remarks.

2 Nonlinear CG Method for Eigenvalue Problems

The conventional approach for problems of very large matrix size is to use it-
erative projection methods where at every step one extracts eigenvalue approx-
imations from a given subspace S of small dimension (see e.g. [2]). Nonlinear
CG methods belong to this class of methods. Let us assume for now that we are
looking for the smallest eigenvalue of the Hermitian operator A.

This eigenvalue problem can be expressed in terms of function minimization
as: find the variational minimum of F (x) = < x,Ax >, under the constraint
of xTx = I, on which a nonlinear CG method is performed. The orthonormal
constraint xTx = I makes the problem nonlinear.

In this section, we first give a description of the algorithms that we have im-
plemented in our library, namely: the preconditioned conjugate gradient method
(PCG), the PCG with S = span{X,R} method (PCG-XR), and the locally op-
timal PCG method (LOPBCG). Finally, we describe the spectral transformation
that we use to get the interior eigen-values of interest.

2.1 PCG Method

In Table 1, we give a pseudo-code of the PCG algorithm for eigen-problems. This
is the algorithm originally implemented in the PESCAN code (see also [5, 8]).

Here P is a preconditioner for the operator A, X is the block of blockSize
column eigenvectors sought, and λ is the corresponding block of eigenvalues. In
the above procedure, XTX = I is satisfied throughout the process. (I −XXT )
is a projection operator, which when applied to y deflates span{X} from y,



1 do i = 1, niter
2 do m = 1, blockSize
3 orthonormalize X(m) to X(1 : m− 1)
4 ax = A X(m)
5 do j = 1, nline
6 λ(m) = X(m) · ax
7 if (||ax− λ(m) X(m)||2 < tol .or. j == nline) exit
8 rj+1 = (I− X XT) ax

9 β =
(rj+1−rj)·Prj+1

rj·Prj
10 dj+1 = −P rj+1 + β dj
11 dj+1 = (I− XXT)dj+1

12 γ = ||dj+1||−1
2

13 θ = 0.5 |atan 2 γ dj+1·ax
λ(m)−γ2 dj+1·A dj+1

|
14 X(m) = cos(θ) X(m) + sin(θ) γ dj+1

15 ax = cos(θ) ax + sin(θ) γ A dj+1

16 enddo

17 enddo

18 [X, λ] = Rayleigh− Ritz on span{X}
19 enddo

Table 1. PCG algorithm

thus making the resulting vector orthogonal to span{X}. The matrix-vector
multiplication happens at line 15. Thus there is one matrix-vector multiplication
in each j iteration. The above procedure converges each eigen-vector separately
in a sequential way. It is also called state-by-state (or band-by-band in the physics
community) method, in contrast to the Block method to be introduced next.

2.2 LOBPCG Method

Briefly, the LOBPCG method can be described with the pseudo-code in Table
2. Note that the difference with the PCG is that the m and j loops are re-

1 do i = 1, niter
2 R = P (A Xi − λ Xi)
3 check convergence criteria

4 [Xi, λ] = Rayleigh− Ritz on span{Xi, Xi−1, R}
5 enddo

Table 2. LOBPCG algorithm



placed with just the blocked computation of the preconditioned residual, and
the Rayleigh-Ritz on span{Xi} with Rayleigh-Ritz on span{Xi−1, Xi, R} (in the
physics community Rayleigh-Ritz is known as the process of diagonalizing A
within the spanned subspace, and taking the ”blocksize” lowest eigen vectors).
The direct implementation of this algorithm becomes unstable as Xi−1 and Xi

become closer and closer, and therefore special care and modifications have to
be taken (see [4]).

2.3 PCG-XR Method

PCG-XR is a new algorithm that we derived from the PCG algorithm by replacing
line 18 in Table 1 with

18 [X, λ] = Rayleigh− Ritz on span{X, R}
The idea, as in the LOBPCG, is to use the vectors R to perform a more efficient
Rayleigh-Ritz step.

2.4 Folded Spectrum

Projection methods are good at finding well separated (non-clustered) extremal
eigenvalues. In our case, we are seeking for interior eigenvalues and thus we have
to use a spectral transformation, the goal being to map the sought eigenvalue of
our operator to extremal eigenvalues of another one.

To do so we use the folded spectrum method. The interior eigenvalue problem
Hx = λx is transformed to find the smallest eigenvalues of (H−ErefI)2x = µx.
The eigenvalues of the original problem are given back by µ = (λ − s)2 (see
Figure 1, Left). A drawback is that (H−ErefI)2 has significantly higher than H
condition number. Alternative is shift and invert where the transformed problem
is (H −ErefI)−1x = µx and the original eigenvalues are given by λ = Eref + 1

µ

(see Figure 1, Right). A drawback is that one has to invert/solve H − ErefI.
The PCG algorithm in its folded form (FS-PCG) is described in [8]. To adapt

the folded spectrum to LOBPCG (FS-LOBPCG), we have added three more block
vectors that store the matrix-vector products of the blocks X, R, and P with
the matrix H. This enables us to control the magnitude of the residuals for an
overhead of a few more axpy operations (otherwise we just have access to the
magnitude of the residuals of the squared operator). Also the deflation strategy
of LOBPCG is adapted in FS-LOBPCG, as the vectors are deflated when the
residual relative to H has converged (not H2).

3 Numerical Results

3.1 Software Package

We implemented the LOBPCG 3, PCG, and PCG-XR methods in a software
library. Currently, it has single/double precision for real/complex arithmetic and
3 http://www-math.cudenver.edu/ aknyazev/software/CG/latest/lobpcg.m

(revision 4.10 written in Matlab, with some slight modifications)



Fig. 1. Spectral transformations: folded spectrum (Left) and shift and invert (Right).
Shown are discrete spectral values of a matrix on the x-axis and the discrete spectrum
of the transformed matrix on the y axis. The y-axes intersects x at the point of interest
Eref .

both parallel (MPI) and sequential versions. The library is written in Fortran
90. The folded spectrum spectral transformation is optional. The implementation
is stand alone and meant to be easily integrated in various physics codes. For
example, we integrated our solvers with ParaGrid, a proprietary testing software
for ICL. Figure 2 issustrates a numerical result on appllying our solvers on an
elasticity problem generated with ParaGrid.

Fig. 2. Our eigen-solver’s library applied within ParaGrid. Left: partitioning of the
computational domain into 256; Right: the 4 lowest eigenmodes for an elasticity prob-
lem (solved in parallel on 256 processors).

A test case is provided with the software. It represents a 5-point operator



where the coefficients a (diagonal) and b (for the connections with the 4 closest
neighbors on a regular 2D mesh) can be changed. In Table 3.1 the output of the
test is presented. It is performed on a Linux Intel Pentium IV with Intel Fortran
compiler and parameters (a = 8, b = −1− i). We are looking for the 10 smallest
eigenstates, the matrix size is 20, 000, and the iterations are stopped when all
the eigencouples (x, λ) satisfy ‖Hx − xλ‖ ≤ tol‖x‖, with tol = 10−8. In gen-

PCG LOBPCG PCG-XR

time (s) 37.1 61.7 20.2

matvecs 3, 555 1, 679 1, 760

dotprds 68, 245 137, 400 37, 248

axpys 66, 340 158, 261 36, 608

copys 6, 190 9, 976 3, 560

Table 3. Comparison of the PCG, PCG-XR and LOBPCG methods in finding 10
eigenstates on a problem of size 20, 000 × 20, 000

eral LOBPCG always performs less iterations (i.e. less matrix-vector products)
than PCG. This advantage comes to the cost of more vector operations (axpys
and dot products) and more memory requirements. In this case, LOBPCG per-
forms approximately 2 times more dot products for 2 times less matrix vector
products than the PCG method, since the 5-point matrix-vector product takes
approximately the time of 7 dot products, PCG gives a better timing.

The CG-XR method represents for this test case an interesting alternative for
those two methods: it inherits the low number of matrix vector products from
the LOBPCG and the low number of dot products from the PCG method.

3.2 Numerical Results on some Quantum Dots

In this section we present numerical results on quantum dots up to thousand of
atoms. The experiments are performed on the IBM-SP seaborg at NERSC.

For all the experiments we are looking for mx = 10 interior eigenvalues
around Eref = −4.8eV, where the band gap is about 1.5 to 3 eV. We have
calculated 4 typical quantum dots: (20Cd,19Se), (83Cd,81Se), (232Cd,235Se),
(534Cd,527Se). These are real physical systems which can be experimentally syn-
thesized and have been studied previously using the PCG method [10]. Nonlocal
pseudopotential is used for the potential term in equation (1), and spin-orbit
interaction is also included. The cutoff energy for the plane-wave basis set is 6.8
Ryd. The stopping criterion for the eigenvector is

‖Hx− xλ‖ ≤ 10−6‖x‖.



All the runs are performed on one node with 16 processors except for the smallest
case (20Cd,19Se) which is run on 8 processors. All the solvers are started with
the same initial guess.

The preconditioner is the one given in [8]: diagonal with diagonal elements

pi =
E2

k

( 1
2q

2
i + V0 − Eref )2 + E2

k)
,

where qi is the diagonal term of the Laplacian, V0 is the average potential and
Ek is the average kinetic energy of the wave function ψ. It is meant to be an
approximation of the inverse of (H − Eref )2.

A notable fact is that all the solvers find the same 10 eigenvalues with the
correct accuracy for all the runs. Therefore they are all robust.

The timing results are given in Table 4. For each test case the number of
atoms of the quantum dot and the order n of the corresponding matrix is given.
The parameter for the number of iterations in the inner loop (nline) for FS-PCG

and FS-PCG-XR is chosen to be the optimal one among the values 20, 50, 100,
200, and 500 and is given in brackets after the solver.

From Table 4, we observe that the three methods behave almost the same.
The best method (in term of time) being either FS-PCG-XR or FS-LOBPCG.

FS-LOBPCG should also benefit in speed over FS-PCG and FS-PCG-XR from
the fact that the matrix-vector products are performed by block. This is not
the case in the version of the code used for this paper where the experiments
are performed on a single node. The blocked implementation of FS-LOBPCG in
PESCAN should run faster and also scale to larger processor counts as latency
is less of an issue in the communications part of the code.

Another feature of FS-LOBPCG that is not stressed in Table 4 is its over-
whelming superiority over FS-PCG when no preconditioner is available. In Ta-
ble 5, we illustrate this later feature. For the quantum dot (83Cd,81Se), FS-

LOBPCG runs 4 times faster than FS-PCG without preconditioner whereas it
runs only 1.4 times faster with.

For the four experiments presented in Table 4, the number of inner iteration
that gives the minimum total time is always attained for a small number of outer
iteration, this is illustrated in Table 6 for (232Cd, 235Se) where the minimum
time is obtained for 6 outer iterations. Another and more practical way of stop-
ping the inner iteration is in fixing the requested tolerance reached at the end of
the inner loop. We call FS-PCG(k) FS-PCG where the inner loop is stopped when
the accuracy is less than knouter , where nouter is number of the corresponding
outer iteration.

In Table 6, we give the results for FS-PCG(10−1) and (223Cd,235Se). It comes
without a surprise that this solver converge in 6 outer steps as the first inner loop
guarantees an accuracy of 10−1, the second inner loop guarantees an accuracy
of 10−2, and so on until 10−6. This scheme looks promising. It also allows a
synchronized convergence of the block vectors.



(20Cd, 19Se) n = 11,331
# matvec # outer it Time

FS-PCG(50) 4898 (8) 50.4s
FS-PCG-XR(50) 4740 (6) 49.1s
FS-LOBPCG 4576 52.0s

(83Cd, 81Se) n = 34,143
# matvec # outer it Time

FS-PCG(200) 15096 (11) 264 s
FS-PCG-XR(200) 12174 (5) 209 s
FS-LOBPCG 10688 210 s

(232Cd, 235Se) n = 75,645
# matvec # outer it Time

FS-PCG(200) 15754 (8) 513 s
FS-PCG-XR(200) 15716 (6) 508 s
FS-LOBPCG 11864 458 s

(534Cd, 527Se) n = 141,625
# matvec # outer it Time

FS-PCG(500) 22400 (6) 1406 s
FS-PCG-RX(500) 21928 (4) 1374 s
FS-LOBPCG 17554 1399 s

Table 4. Comparison of FS-PCG, FS-PCG-XR and FS-LOBPCG methods in finding
10 eigenstates around the gap of quantum dots of increasing size.

(83Cd, 81Se) n = 34,143
# matvec Time

FS-PCG(200) precond 15096 264 s
FS-LOBPCG precond 10688 210 s

FS-PCG(200) no precond 71768 1274 s
FS-LOBPCG no precond 17810 341 s

Table 5. Comparison of FS-PCG and FS-LOBPCG with and without preconditioner
to find mx = 10 eigenvalues of the quantum dots (83Cd,81Se)



(232Cd, 235Se) n = 75,645
# matvec # outer it Time

FS-PCG(100) 17062 (15) 577s
FS-PCG(200) 15716 (6) 508s
FS-PCG(300) 15990 (4) 517s

FS-PCG(10−1) 15076 (6) 497s

Table 6. The problem of finding the best inner length for FS-PCG can be avoided by
fixing a tolerance as stopping criterion in the inner loop

4 Conclusions

In this paper, we described and compared 3 nonlinear CG methods with folded
spectrum to find a small amount of interior eigenvalues around a given point. The
application is to make a computational prediction of the electronic properties
of quantum nanostructures. The methods were specifically selected and tuned
for computing the electronic properties of large nanostructures. There is need
for such methods in the community and the success of doing large numerical
simulations in the field depend on them. All three methods are similar and thus
often the results are close; a general ranking being: FS-LOBPCG is the fastest,
next FS-PCG-XR and finally FS-PCG. In terms of memory requirement the three
methods are ranked in the same way: FS-LOBPCG/FS-PCG-XR requires four/two
times as much memory as FS-PCG. As our problem scales up the memory has
not shown up as a bottleneck yet, i.e. using FS-LOBPCG is affordable.

The main drawback of FS-PCG and FS-PCG-XR is their sensitivity to the
parameter nline (the number of iterations in the inner loop). In order to get rid
of this parameter one can instead have a fixed residual reduction to be achieved
on each step of the outer loop.

On other applications, the performance of FS-LOBPCG would be still bet-
ter than FS-PCG if a fast block matrix-vector product and an accommodating
preconditioner are available.

Finally, based on our results, if memory is not a problem and block version of
the matrix-vector multiplication can be efficiently implemented, the FS-LOBPCG

will be the method of choice for the type of problems discussed.
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