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Abstract. In this paper, we focus on MPI collective algorithm selection process and explore the ap-
plicability of the quadtree encoding method to this problem. During the algorithm selection process, a
particular MPI collective algorithm is selected based on the collective operation parameters. We con-
struct quadtrees with different properties from the measured algorithm performance data and analyze
the quality and performance of decision functions generated from these trees.

The experimental data indicates that in some cases, the decision function based on quadtree struc-
ture with a mean depth of 3 can incur as little as a 5% performance penalty on average. The exact,
experimentally measured, decision function for all tested collectives could be fully represented using
quadtrees with a maximum of 6 levels. These results indicate that quadtrees may be a feasible choice
for both processing of the performance data and automatic decision function generation.

1 Introduction

The performance of MPI collective operations is crucial for good performance of MPI application which
use them [1]. For this reason, significant efforts have been put on design and implementation of efficient
collective algorithms both for homogeneous and heterogeneous cluster environments [2–10]. Performance of
these algorithms varies with the total number of nodes involved in communication, system and network
characteristics, size of data being transferred, current load, and if applicable, the operation that is being
performed as well as the segment size which is used for operation pipelining. Thus, selecting the best possible
algorithm and segment size combination (method) for every instance of collective operation is important.

In order to achieve the best possible performance, one can tune the collective operations for a particular
system. The process of tuning MPI collective operations often involves detailed profiling of the system possibly
combined with communication modeling, analyzing the collected data, and generating a decision function.
During run-time, the decision function selects close-to-optimal method for a particular collective instance.
This approach relies on the ability of the decision function to accurately predict algorithm and segment size
to be used for the particular collective instance. Alternatively, one could construct an in-memory decision
system which could be queried/searched at the run-time to provide the optimal method information. In order
for either of these approaches to be feasible, the memory footprint and the time it takes to make decisions
need to be minimal.

This paper studies the applicability of the quadtree encoding method as a storage and optimization
technique within the MPI collective method selection process. We assume that the system of interest has been
benchmarked and that detailed performance information exists for each of available collective communication
algorithm. With this information, we focus our efforts on investigating whether the quadtree encoding is a
feasible way to generate static decision functions as well as, to represent the decision function in memory.

We implemented a prototype quadtree implementation and programs to analyze the experimental perfor-
mance data, construct the quadtree decision functions, and analyze their performance penalty in comparison
to the exact decision function. We collected detailed profiles for broadcast and reduce MPI collective algo-
rithms on two different clusters, and analyzed the quality of decisions from quadtrees built using this data
but under different constraints.



The paper proceeds as follows: Section 2 discusses existing approaches to the decision making/algorithm
selection problem; Section 3 describes the quadtree construction and analysis of quadtree decision function
in more detail; Section 4 presents experimental results; Section 5 concludes the paper with discussion of the
results and future work.

2 Related work

The algorithm selection problem can be solved using various techniques.
Currently, in the FT-MPI [11], the decision function is generated manually using visual inspection method

augmented with Matlab scripts used for analysis of the experimentally collected performance data. This
approach results in a precise albeit complex decision functions. The advantage of this approach is the potential
to recognize any possible problems in measured data and the ability to make decision to exclude peculiar
data points.

In the MPICH-2 MPI implementation [12], the algorithm selection process is done statically based pri-
marily on the message size of the collective (which can be either short or long vector) and whether the number
of processors is a power of two or not [6]. In this library, the algorithm selection is based on bandwidth and
latency requirements of an algorithm, and the switching points are predetermined by the implementers.

In the tuned collective module of the Open MPI [13], the algorithm selection can be done in either of
the following three ways: via compiled decision function, via user-specified command line flags, or using
rule-based run-length encoding scheme which can be tuned for particular system.

Another possibility is to view this problem as a data mining task in which the algorithm selection problem
is replaced by an equivalent classification problem. The new problem is to classify collective parameters,
(collective operation, communicator size, message size), into a correct category, a method in our case, to be
used at run time. The major benefit of this approach is that the decision making process is a well studied
topic in engineering and machine learning fields. Decision trees are extensively used in pattern recognitions,
CAD design, signal processing, medicine, biology, and search engines [14].

Alternatively, one can interpret the optimal collective implementation on a system, i.e. a decision map,
as an image and apply a standard compression algorithms to it. Figure 1 illustrates a couple of decision
maps for the broadcast operation on Grig cluster. In this work, we build quadtrees by interpreting the
experimentally measured optimal decision map as a bit pattern and then encode it using a similar technique
to an image encoding process. To the best of our knowledge, we are the only group which has approached
the MPI collective tuning process in this way.

3 Quadtrees and MPI collective operations

3.1 Building a quadtree decision structure

We assume that detailed system profiling (either by extensive experimental measurements or via modeling)
has been previously performed, and that the performance information for different collective algorithms for
a range of communicator and message sizes and predetermined set of segment sizes is available.

We use this performance information to extract the information about the optimal methods and construct
a decision map. An example of a decision map is displayed in Table 1. The decision map which will be used

Communicator size Message size Algorithm Segment Method
(y-axis) (x-axis) size index

3 1 Linear none 1
3 2 Linear none 1
... ... ... ... ...
128 64KB BinaryTree 8KB 13

Table 1. Decision map example. The axis information relates to the decision maps in Figure 1.
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to initialize the quadtree must be a complete and square matrix with a dimension size that is a power of
two, 2k × 2k. Complete decision map means that tests must cover all message and communicator sizes of
interest. Neither of these requirements are real limitations, as the missing data can be interpolated and the
size of the map can be adjusted by replicating some of the entries. The replication process does not affect
the quadtree decisions, but may affect efficiency of the encoding (both in positive and negative manner).

Once a decision map is available, we initialize the quadtree from it using user specified constraints such
as accuracy threshold and maximum allowed depth of the tree. The accuracy threshold is the minimum
percentage of points in a block with the same “color”, such that the whole block is “colored” in that “color”.
The quadtree with no maximum depth set and threshold of 100% is an exact tree. The exact tree truthfully
represents the measured data. A quadtree with either threshold or maximum depth limit set allows us to
reduce the size of the tree at the cost of prediction accuracy, as it is no longer an exact copy of the original
data. Limiting the absolute tree depth limits the maximum number of tests we may need to execute to
determine the method index for specified communicator and message size. Setting the accuracy threshold
helps smooth the experimental data, thus possibly making the decision function more resistant to inaccuracies
in measurements. Applying the maximum depth and/or the accuracy thresholds is equivalent to applying
low-pass filters to the original data set.

3.2 Generating decision function source code

A property of any decision tree is that an internal node of the tree corresponds to an attribute test, and the
links to children nodes correspond to the particular attribute values. In our encoding scheme, every non-leaf
node in the quadtree corresponds to a test which matches both communicator and message size values. The
leaf nodes contain information about the optimal method for the particular communicator and message size
ranges. Thus, leaves represent the rules of the particular decision function. In effect, quadtrees allow us to
perform a recursive binary search in a two-dimensional space.

We provide functionality to generate decision function source code from the initialized quadtree. Recur-
sively, for every internal node in the quadtree we generate the following code segment:

if (NW) {...} else if (NE) {...} else if (SW) {...} else if (SE) {...} else {error}.
The current implementation is functional but lacks optimizations, i.e. ability to merge conditions with same
color1. The conditions for boundary points (minimum and maximum communicator and message sizes) are
expanded to cover that region fully. For example, the rule for minimum communicator size will be used for
all communicator sizes less than the minimum communicator size.

3.3 In-memory quadtree decision structure

Alternative to generating the decision function source code is maintaining an in-memory quadtree decision
structure which can be queried during the run time.

An optimized quadtree structure would contain 5 pointers and 1 method field, which could probably
be a single byte or an integer value. Thus, the size of a node of the tree would be around 44B on 64-bit
architectures2. Additionally, the system would need to maintain in memory the mapping of (algorithm,
segment size) pairs to method indexes as well. The maximum depth decision quadtree we encountered in
our tests had 6 levels. This means that in the worst case, the 6-level decision quadtree could take up to
47−1
4−1 = 5461 nodes, which would occupy close to 235KB of memory. However, our results indicate that the
quadtrees with 3 levels can still produce reasonably good decisions. Three-level quadtree would occupy at
most 3740B and as such could fit into 4 1KB pages of main memory. Even so, the smaller quadtree if cached
would still occupy significant portion of the cache. We think that the memory usage and memory access time
overhead of searching this structure could be prohibitively expensive at run time.

1 The code segment generated for each internal node contains at least 21 lines – 5 lines for conditional expressions,
10 lines for braces, a line for error handling, and at least a line per condition.

2 In this analysis, we ignore data alignment issues which would lead to even larger size of the structure.
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4 Experimental results and analysis

In order to determine whether quadtrees are a feasible choice for encoding the automatic method selection
process for MPI collective operations, we analyzed the accuracy of quadtrees built from the same experimental
data but under different constraints. Under the assumption that the collective operations parameters are
uniformly distributed across communicator size and message size space, we expect that the average depth of
the quadtree is the average number of conditions we need to evaluate before we can determine which method
to use. In the worst case, we will follow the longest path in the tree to make the decision, and in the best
case the shortest.

Based on memory requirements analysis in Section 3.3 we decided not to implement the in-memory
quadtree-based decision structure yet. Instead, we implemented the library which generates the source code
for the decision function. The number of tests in generated decision function could potentially be reduced
by merging the rules for blocks of the same color. However, in the worst-case scenario when every block
has a different color, this optimization is not possible. Thus, we believe that analysis of the unoptimized
implementation is acceptable.

The performance data for broadcast and reduce collective algorithms was collected on Grig cluster located
at the University of Tennessee at Knoxville and Nano cluster located at the Lawrence Berkeley National
Laboratory.

4.1 Decision quadtree examples

Figure 1 shows six different quadtree decision maps for a broadcast collective. The experimental data was
collected on the Grig cluster at University of Tennessee. We considered five different broadcast algorithms
(Linear, Binomial, Binary, Splitted-Binary, and Pipeline),3 and four different segment sizes (no segmentation,
1KB, 8KB, and 16KB). The measurements covered all communicator sizes between 2 and 28 processes and
message sizes in 1B to 384KB range.

The coarsening of the decision function in Figure 1 was achieved by limiting the maximum depth of
the quadtree. The exact function exhibits trends, but there is a considerable amount of information for
intermediate size messages (between 1KB and 10KB) and small communicator sizes. Limiting the maximum
tree depth smoothes the decision map and subsequently decreases the size of the quadtree. Table 2 shows
the mean tree depth and related statistics for the decision maps presented in Figure 1.

4.2 Performance penalty of decision quadtrees

One possible metrics of merit is the performance penalty one would incur by using a restricted quadtree
instead of the exact one. To compute this, one can use the performance information for methods suggested
by the restricted tree for particular set of communicator and message size values, and compare them to the
performance results for methods suggested by the exact tree.

While this is a straight-forward approach, one must be aware of the following issues. The main problem
arises from the fact that the exact decision function fits to the particular experimentally measured data
collected on a particular date and time, software, and hardware. The discussion of measurement quality
and reproducibility is out of scope of this paper, however, one must be aware that exact timing of collective
operations is a very hard problem in systems without synchronized clock or extremely fast hardware barriers4.
As with most experimental measurements, measurement introduces an error. In our tests, we kept the
variation of measurement to less or equal to 5%. However, for some algorithms and collective parameter
sizes, the performance difference between two methods was less than 5%. In this case, the exact tree would
use the method which achieved absolute minimum, even though it is possible that the other method was a

3 For more details on these algorithms, refer to [10]
4 The system we used had neither a synchronized clock nor hardware barrier. The main test system in this paper,

Grig cluster, is a cluster of PCs connected by Fast Ethernet.
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Fig. 1. Broadcast decision maps from Grig cluster. Different colors correspond to different method indexes. The trees
were generated by limiting the maximum tree depth. The x-axis scale is logarithmic. The crossover line for 1-level
quadtree is not in the middle due to the “fill-in” points used to adjust the original size of the decision map from
25× 48 to 64× 64 form.

better choice overall. Thus, a fair comparison must compare the performance of a quadtree decisions against
the data that was used to generate them in the first place.

Figure 2 shows the performance penalty of decision quadtrees from Figure 1 and the Table 2 summarizes
the properties and performance penalties for the same data. The analysis shows that even for noisy decision

Tree Depth Performance Penalty [%] Number of Function size
Max Min Mean Min Max Mean Median Leaves [# of lines]

1 1 1.0000 0.00 346.05 37.11 0.00 4 24
2 2 2.0000 0.00 436.02 18.63 0.00 16 82
3 2 2.9655 0.00 436.02 08.83 0.00 58 330
4 2 3.8554 0.00 391.53 06.29 0.00 166 932
5 2 4.7783 0.00 356.47 05.41 0.00 442 2,496
6 2 5.6269 0.00 000.00 00.00 0.00 973 5,505

Table 2. Statistics for broadcast decision quadtrees in Figure 1. The number of leaves corresponds to the number of
regions we divided the (communicator size, message size) space into. The number of lines in decision function includes
lines containing only braces, error handling, etc.

map in Figure 1, a 3-level quadtree would have less than 9% performance penalty on average, while the exact
decision could be represented with a total of 6 levels.

4.3 Quadtree accuracy threshold

In Section 3.2 we mentioned that an alternative way to limit the size of quadtree is to specify the tree
accuracy threshold.

5



Fig. 2. Performance penalty of broadcast decision function from Grig cluster. Colorbar represents relative performance
penalty in percents. White color means less than 25%, yellow is between 25% and 75%.

Figure 3 shows the effect of varying the accuracy threshold on the mean performance penalty of a reduce
quadtree decision function on two different systems. On both systems, the mean performance penalty of the
reduce decision was below 10% for an accuracy threshold of approximately 45%. This threshold corresponds
to the quadtree structures of maximum depth 3. This means that the quadtree decision which would on
average potentially cause a 10% performance penalty would be evaluated at most in 3 expressions.

4.4 Accuracy threshold vs. limiting maximum depth

Figure 4 shows the mean performance penalty of broadcast and reduce decisions on Grig cluster (See Figures
1, 2, and 3, and Table 2) as a function of the mean quadtree depth for quadtrees constructed by specifying
accuracy threshold and maximum depth. The results indicate that in the cases we considered, constructing the
decision quadtree by restricting the maximum depth of the tree directly incurs a smaller mean performance
penalty than the tree of similar mean depth constructed by setting the accuracy threshold.

The results for the broadcast decision function show that when the quadtree is deep enough to cover
almost the whole initial data set, the tree constructed using an accuracy thresholds achieves the smaller
mean performance penalty. This is not the case for the quadtree-based reduce decision functions. This is
probably due to the fact that the reduce decision function was smoother to start with, so smoothing it with
an accuracy threshold had no further positive effects. Still, we believe that the example of the broadcast
decisions indicates that the accuracy threshold setting could be used to avoid over-fitting the data when the
tree depth is not a concern.
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Fig. 3. Effect of the accuracy threshold on mean quadtree performance penalty.

Fig. 4. Accuracy threshold vs. maximum depth quadtree construction.

5 Discussion and future work

In this paper, we studied the applicability of a modified quadtree encoding method to the algorithm selec-
tion problem for the MPI collective function optimization. We analyzed the properties and performance of
quadtree decision functions constructed by either limiting the maximum tree depth or specifying the accuracy
threshold a the construction time.

The experimental data collected on clusters located at the University of Tennessee at Knoxville for
broadcast and reduce collectives, show that in some cases, the decision function based on a quadtree structure
with a mean depth of 3, incurs less than a 5% performance penalty on the average. In other cases, deeper
trees (5 or 6 levels) were necessary to achieve the same performance. However, in all cases we considered, a
quadtree with 3-levels would incur less than a 10% performance penalty on average. Our results indicate that
quadtrees may be a feasible choice for processing the performance data and decision function generation.
In this work we chose not to explore the performance of the in-memory quadtree decision systems due to
relatively large memory requirements associated with storing the tree. The performance of an in-memory
system will depend greatly on the implementation efficiency and the application access pattern. While we
believe that in general, an in-memory quadtree decision system may not be the best solution, it is possible
that in some cases it could achieve very good performance. We plan to explore this issue in more depth in
the future.

One of the limitations of the quadtree encoding method is that since the decision is based on a 2D-region
in communicator size - message size space, it will not be able to capture decisions which are optimal for single
communicator values, i.e. communicator sizes which are power of 2. The same problem is exacerbated if the
performance measurement data used to construct trees is too sparse. The sparse data set is a high-frequency
information and applying low-pass filters to it can cause loss of important information.

7



The decision map reshaping process to convert measured data from n × m shape to 2k × 2k may affect
encoding efficiency of the tree both positively and negatively. In our current study, we did not address this
issue, but in future work we plan to further improve the efficiency of the encoding regardless of initial data
space.

The major focus of future research will be comparing the quadtree-based decision functions, to the ones
generated using run-length encoding and standard decision tree algorithms such as C4.5.

Finally, if one is interested in an application level optimization, assumptions based on the premise that
the communication parameters are uniformly distributed across the communicator and message size space
are probably optimistic. Thus, it is possible that it would make sense to refine the trees for frequently used
message and communicator sizes while the rest of the domain is more sparse. Quadtrees may or may not be
right structure for this type of approach, but we plan to investigate this approach additionally.
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