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Solving the Secular Equation Including Spin Orbit Coupling
for Systems with Inversion and Time Reversal Symmetry
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A4 computational method for computing the eigenvaluss and eigenveciars af a class of
eairices that asise in quantum mechanics involving time reversal and inversion $ymmetry is
described. The algorithms presented have greatly reduced the computational effort required to
solve this problem and also produce a stable, more accurals soluticn.

1. [NTRODUCTION

Molecules and solids containing heavy atoms require the use of relativistic
kinematics in the calculation of their electromic structure, because of the large
velocities acquired by the electrons in the deep potentials near the nucle:, Relativistic
kinematics introduces effects of two types (1) those that do not change the symmaetry
of the problem, such as the mass—velocity and Darwin terms, and (2) those that do
modify symmetry, such as the spin—orbit coupling. Because the kinematic effects of
the first type can easily be included at little or no additional computational expense
and leave the symmetry analysis on a familiar basis, considerable efTort has been
expended to excise the spin—orbit coupling from the Dirac eguation |1-=3|.
Nevertheless, it is important—especially in the case of the fifth series and the
actinides—to include the spin—orbit effects. Thus, the more complicated problem
must be dealt with, at greatly increased effort {and cost).

The inclusion of spin—orbit coupling into a calculation is not difficult in principle.
hut it does double the size of the matrices involved in the calculation and require that
the matrices contzin complex elements, This has the potential for increasing
computation times by between one and two orders of magnitude. Such an increase
need not occur, however, if the system has both time reversal {Le.. no magnetic fields
or moments) and parity (spatial inversion) symmetry. In that case, all sigenvalues are
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doubly degenerate. Soven [6] has described a technigue to directly evaluate the term
that, when squared, is the determinant of the secular equation. This scheme has besn
used extensively in relativistic augmented plane wave (RAPW) calculations [7|
which search for eigenvalues by secking zerces of the determinant. Soven's scheme
speeds up the calculation to the extent that the cost of including spin—orbit coupling
is no more than a factor of two over comparable non-relativistic schemes when
applied to procedures where the nonlinear energy variation is done by searching for
the zeroes of the determinant of the secular equation. More recently, RAPW schemes
have been linearized [8-10] such that it is more appropriate to solve a generalized
eigenvalue problem than to plot determinants. In fact, even for the standard nonlinear
APW techniques, it is often better to solve a generalized eigenvalue problem coupled
with a parameter variation than to plot determinants |11,

Techniques have now been developed and are presented here 1o make the
generalized eigenvalue problem more efficient. These techniques are similar to
methods that the Soven scheme yields for determinants. It should be painted out that
there are several equally compelling reasons for incorporating such techniques besides
the increased speed that is achieved. Most easily perceived is that the memory
requirements for the problem are reduced by half. Furthermore, for an RAPW basis
set, the accuracy is greatly enhanced. To understand thiz latter point, one must
remember that the RAPW basis set is. in principle, overcomplete.” (A full plane wave
basis—which is complete over all space—labels that part of the basis lunctions
applied to the incomplete space of the interstitial region.) In practice, the necessity of
truncating the expansion removes the problem. For a reasonably converged
calculation without spin—orbit, the eigenvalue spectrum of the overlap matrix ranges
from | down to 10~%, with-one eigenvalue split off at 10~*, With care. one can still
solve the generalized problem by performing a Cholesky decomposition and
diagonalization. When spin orbit coupling is included, however, several things
nappen. The matrix is doubled in size and becomes complex. Thus the numerical
noise is dramatically increased because of the significant increase in opeérations to be
performed. In addition, all eigenvalues are doubled. so that the smallest sigenvalue
occurs twice. The result is that one cannot directly perform a Cholesky decom-
position on the expanded matrix for an adequate basis set (% is, after all, much
smaller than & as £—+0!). This has made it necessary to introduce schemes that,
although very effective for calculations on elemental syslems, are guite expensive for
compound systems.

The essential feature of the generalized secular equation with spin—orbit included
is that it can be written in terms of elements that are real multiples of the SL/{2)
matrices (i.e.. quaternions) when one has the required time reversal and parity
symmetry. This is easily seen for the various forms of RAPW methods, since the
Hamiltonian ¢can be written as

Hik, s, 11‘151:'.= Hnﬂ":k:}&:.;: + H ook, 5,1k, s,), (L1}

H:u“'ljn iy r,) = ir(lk, |, |k, "El 1 "E_.JI:"-I X "'-:z.:' - (1.2)

dypmgat
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where (k. §) labels the plane wave part of the basis function in the interstitial region;
g are the Pauli spin matrices; H, is the nonrelativistic matrix with the potential
parameters replaced by properly averaged relativistic ones; and H, and h are real.
The overlap matrix § will have an identical structure. We emphasize the structure,
because it is the crucial feature for the techniques to follow and the precise form of
H, and h will depend on the details of the augmentation chosen. The spin index in
Eq. (1.1) does not imply that the basis functions are of a definite spin. They are taken
to have a definite spin in the interstitial region where the spin—orbit coupling is
negligible, enabling us to use a definite spin index there. However, as the nucleus is
approached, the spin—orbit coupling acts and the spin is mixed, For A, and h to be
real, it is necessary to choose the origin at an inversion site. Fortunately, such a
choice introduces many additional computational efficiences.

From Egs. (1.1) and (1.2), one sees that the effect of including spin—orbit coupling
is to replace each scalar matrix element in the nonrelativistic or spin—orbitless
problem with a complex 2 x 2 matrix of the form

a b
ael (1.3)
It is quite interesting to view this as a case of replacing the real scalar matrix
elements in the spin—orbitless case by a set of hypercomplex numbers or quaternions.
These numbers add and multiply since the resultant will also have the structure of

{1.3). Further, they have an ecasy division since
eta=(lal’ +|b]") [y = rily. (1.4)

{Note that a* is the complex conjugate transpose of a and [ is a 2 x 2 identity
matrix.) They do not commute, but commutivity is not required (except by the
diagonal elements which do commute) to calculate a determinant, perform a
Cholesky decomposition, or diagonalize 2 matrix. Thus one can perform any of these
three operations using the quaternion form. This, then, can be taken as the formal
basis for the Soven technique. Note that it also leads to a very natural demonstration
of the double degeneracy (also using the Hermitian properties, of course) since a real
diagonal matrix of quaternions would contain each scalar eigenvalue twice,

The inclusion of spin—orbit coupling will generate the quaternion form as well as
methods utilizing other basis sets. This can be shown by properly accounting for the
“moment-flip” operator

0 =JK, (1.5)

where J is the parity operator and K the time reversal operator. Mormally one
represents

J =gl
(I, 0 (1.8)
ﬂ=iu h}
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and
K =is,C, (1.T)

where I is the spatial inversion operator and C is the complex conjugation operator.
We require that {J commutes with the Hamiltonian. (@ is a very unusual operator in
that Q*=—1 and (x| Q*|¥}=—{x|@|¥}* (It is antiunitary.) Given the basis
funetion | ¥), the basis function @ |y} will be orthogonal to it,

(y|@lyi={y@" | )" =={¥ Q| »h

using first the Hermitian property of the scalar product and then the @ relation.
Hence. it is reasonable to pair |y and Q¥ The 2 x 2 matrix between the basis
pairs |x}, @ |x) and | ¥}, @ |} will have the quaternion form,

(x| Q| »y=—{x| Q" | ¥)* = {x| ¥}*
{x] @* |y =={x| @| "

{ {x| ¥} (x| @ »} '-|={ (x| ¥} (x| @ y:"].
Wl @F |y @Ry ) A=xl @ It

Clearly the Hamiltonian matrix will have the same properties as the overlap matrix
displayed, since [, H|=0. In the case of a plane wave representation (APW ar
OPW), Q acts as a spin-Tlip operator. and the basis function pairs are the two spin
states. In the case of an angular momentum representation (KKR, LMTO, ASW, or
LCAQ), O translates (/%) to (j, —u) on the site related by inversion symmetry.
These are the magnetic moment-related states that have been the basis for a
generalization of spin polarized calculations in the presence of spin—orbit coupling
[12]. Here, of course, we use them merely to obtain a quaternion format.

2. CoMPUTATIONAL TECHNIQUES

Oine can generalize the standard techniques such as deseribed in Wilkinson [13]
and Stewart [14] in terms of guaternions; i.e., given a quaternion data type one <an
generalize the algorithms to operate on quaternion elements instead of complex or
real elements. The increased complexity of the gquaternion arithmetic can involve
more computational effort than merely doubling the matrix size and dealing with
scalars. However, one achieves economy of storage and increased accuracy. In the
case of determinant calculation, the rewriting of the quaternion arithmetic into scalar
operations is the Soven technigue. In the case of the generalized eigenvalue problem,
it is only part of the solution. By a careful organization of the calculations, it is
possible to arrange the majority of operations involving quaternions (O
multiplications involving real scalar multiples of the identity matrix [13]|. This
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reduces the computational efTfort for that part of the reduction to the level of the
spin—orbitless problem. To facilitate writting the necessary programs. one can
implement a quaternion abstract data-type and then construct the algorithms directly
in the abstract language. Application programs can now be written using a
quaternion data type and be translated to Fortran automatically [16, 17]. We have
chocsen to implement the algorithms described here using conventional Fortran
directly, this was done mainly to fully minimize the space and time required to solve
the problem.

In this section, we will expand the quaternion arithmetic to clarify the
reorganization actually used in the computer codes realizing the technique. We will
first examine the standard eigenvalue problem

Hx = lx (2.1}
In terms of quaternions, the matrix H has the form

Oy @y @y @y
+
x [+ 4 i [
12 13 3 24 (2.2)

- -
Oy Ty Oy Ty

- & &
@y Qg My @y

Expanding these elements in terms of complex elements, the matrix has the form

&y 0 &z by a3 b, dyy ‘I-"u
0 ayy —b arn —b ar —bf  af
a; —0y, - ET) 0 dy, b, @ry 0y
b dyy 0 03z —b3 ayn =05 45
afy —by, a5 =0y Dyy 0 I ay, by,
'bl‘.i Qyy b; 13 0 dyy —by:  an
I".'I‘-.l 0y, as, _"bzn. arn, “‘I-":u 8,0 O
bl",_ iy b; oy ya a4 0 dyy

where the a, and b are complex and the g, are real.
We will show that the matrix can be reduced to the form

{; I:"}. (2.3)

where T is a real symmetric n X n tridiagonal matrix. There are n — 2 major steps
cach of which consists of two minor steps. These steps have a great deal in common
with those for the real symmetric cigenvalue problem.
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In the first minor step, we use Eq. (1.4) to construct transformations that change a
column and row of guaternion elements into real elements. These transformations

have the form

i
s ¥

(2.4)

which is a unitary 2 % 2 matrix. As the first stage of reducing a row and column the
matrix to tridiagonal form, we perform a unitary similarity transformation on the

matrix represented in Eq. (2.2) with the 2 x 2 block diagonal matrix defined by

-

I

e

15

|

-

Fys

e

.l'“__‘

After this has besn applied, the transformed matrix is of the form :

2 0 Fiz o Fra 0 | Fis o

':I ﬂl 1 D I"” ﬂ Fuy ; ﬂ r|.
Fiz 0 Tyz 0 T35 L ay, By,
0 ry 0 L -by ad =by, an
ry 0 ap —0y 233 0 dy, by,
ﬂ' Fiy El":rj_ ﬂ_” L1 -I]” -"El'; ﬂ,‘.
Fra ] ay, —by 'ﬂ].-l. _b:l-l G 0O

0 Fra b3 sy &]*q dya Q0 gy

(1.5)

(2.6)

where a,, b, now denote values after the transformations. These new values are
derived wia relations of the type exemplified by

(be ae )

where

X

_J‘l"

ax — by®

b gy — by¥,

x* } T L —b*x—a%y*

bx™® 4 gy
a¥*x® = L%y

r=bx* + ay,

.JII =|: —:“' :I"‘}'
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so that the product of matrices of the form

' a b

{—~b* a* }
is a matrix of the same form. This is the multiplicative property of the guaternion
elements mentioned in the previous section. Matrices of this type generally do not
commute, although they do so if all of the elements are real. Fortunately, we do not
nesd commutivity except on the diagonal where the elements are real. Motice now
that the first two rows and columns of the matrix are real.

We have now completed the first minor step of the first major step. In the second
minor step, we perform the quaternion analog of the classical Householder
tridiagonalization. This will eliminate all the quaternion blocks beyond the
{guaternion) subdiagonmal. A very important feature here is that the gquaternion
elements of the transformation are now real multiples of the 2 x 2 unit matrix. Thus
their arithmetic is no more involved than that for real scalars. This second minor step
completes the major step. The transformed matrix is of the form

a, 0 Fia 0 ] ] 0

0 a, 0 Fis 0 0 0

ra 0 a;; 0 dyy bas dy, by ™

0 ry 0 dya —b3 a7y —bfy, ag,

(2.7)

':I ':} II-?] _b:.'l d]3 I:I d‘]-l IE:'!_.

o 0 A g3 0 2% —by agn

0 0 ﬂz-l _'bh 'I:I*d- _blq Dya 0

0 0 | b3 334 -4 - I .

which has the same structure as the original matrix except for the first two rows and
columns, which have been processed. After the completion of n — 2 major steps and

the first part of the (n — 1)th step, the matrix has the form

a, 0O ry 0O 0o 0 ¢ 0
0 a, 0 ry 0 0 o 0
rny O a;; O ra 0 0 0
0 r; 0 ay 0 ry 0 o
(1.8)
ﬂ u Fay I:" Zqy L] .l":“ [}
D D I:I FI] ﬂ lﬂj] I:I r].
0 0 0 Q Fqg 0 day Q
0. .0 0 0 0 -ry 0: ag
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AL this point the matrix can be separated easily into twe identical tridizgonal
matrices of the form represented in (£.3) by a simple rearrangement of the rows and
columns. The eigenvalues and eigenvectors af the tridiagonal matrix can be deter-
mined easily by standard techniques [16). The eigenvectors of the original problem
can be found by applying, in the appropriate way, the transformations used in the
reduction to the eigenvectars of the tridiagonal matrix.

1. THE GENERALIZED PROBLEM

The standard problem as expressed in Eg. (1.1) has been presented first for
convenience, but in practice the problem commenly arises in the form

Hr =15z, (3.1}

where both & and S have the same structure as & in the previous section and 5 is
positive definite. The generalized problem can be reduced to the standard problem if
we can determine the matrix ' such that

USU™ =, ; (3.2)
We have then
UHUM(U- ") = AUSLH(U"2). (3.3)

Obviously, for economy of computation, it is desirable 1o determine {f in a factorized
form

U=l ... U, U, {1.4)
and in such a way that the
o, AUy usu
U U HUYUY U, ST

UHL™ I

have the same structure as' & at EVEry stage,

To do so requires (n— [} major steps, each step being determined by the current 5
matrix. The first major step is wholly typical. It again consists of two minor steps.
The first minor step is exactly the same as that applied to & in the previous section.
This reduces § to the form illustrated in (2.6 }—the row and column being worked on
are reduced to real multiples of the 2 % 2 unit matrix.

[n the second minor step, we will annihilate the off-diagonal blocks in the rows and
columns reduced during this step. Since S is positive definite, we can carry ouwt this
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reducticn by performing one phase of a Cholesky factorization at each major slep on
the quaternion form. The structure of § is obviously preserved. IT we think in terms of
the real and the imaginary parts of S, this second minor step obviously affects only
the real part.

After (n— 1) steps of this kind, § is reduced to a real positive diagonal matrix.
This can be reduced to the identity matrix by pre-multiplication and post-
multiplication by the reciprocal sguare root of the diagonal matrix. All transfor
mations applied to 5 must also be applied to H. The structure of K is obviously
preserved, although, of course, it remains a full matrix (ie., no zeroes are induced),
More work is invelved in the transformations applied o N than of 5 both for this
reason and also because all off-diagonal elements of A remain complex throughout.
Once 5 has been reduced 1o the identity matrix the process described in Section 2 can
be used to reduce M to diagonal form.

4, [MPLEMENTATION

For the software implementation, only part of the information represented in
Eq.(3.1) need actually be stored, and many of the arithmetic operations are not
performed because of the obvious symmetries in the processes,

Each of the matrices, & or 5, can be represented mathematically by a quaternion
matrix of order n. Each of the elements in the quaternion matrix has the form of
Equation (1.3), and can be defined by the two quanties a and 5. Which require twao
complex numbers or four real elements for their representation. Since the matrices &
and 5 are Hermitian, only half the elements are necessary. Thus, for each matrix of
n’ quaternion elemems, 2n’ real locations are required. In the implementation, we
have chosen to segregate the elements so one nxn array  holds elements
corresponding to the a's and another n % n array holds elements corresponding to
the 5's. The lower triangular part of each array contains the real part of the slements
and the upper triangular part the imaginary part. Thus. in order to determine the i J
clement of the quaternion matrix, references are made to the i, fand j, | elements of
each array in storage.

The algorithm used in the implementation is presented here 1o illustrate the
structure and give a feeling for the operational complexity of the procedure, We start
with the reduction of the matrix § in Eg. (3.1) o :lia'g-::lna.l form.

Reduction of § 1o Diagonal Form

Forj=ltona=1
Fori=j+ltwan
Call giveng(if, Sa, 55, Ha, Hb)
End
Call cholsky{ j, Sa, Sk, Ha, Hb)
End
Apply Diagonal Mairix 1o Ha and Hb
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Routines giveng and cholsky used above apply their transformations to &, The next
step 15 to reduce H to tridiagonal form and determine the eigenvalues and EIgEn-
vectors of the reduced system.

Determine the Eigenvalues of H

Forj=1ton—2

Fori=j+1ton

Call given(i, j, Ha, Hb)

End

Call kouse(j, Ha, Hb)
End
Call given{n, n — 1, Ha, Hb)
Find Eigenvalues and Eigenvectors of Tridiagonal Marrix

The routines given and giveng apply transformations of the form illustrated in
Eq, (2.4]). The lecops on { in the above procedures correspond to application of the
matrix described in Eq. (2.5). The values of i and / reflect the rows and columns that
are effected by the transformation, The two routines difTer only in that giveng applies
the transformations to H as well as to 5.

The arithmetic performed by given and giveng will be totally complex. They
introduce a zero and produce a real element into the matrix. The routines cholsky and
house, in a sense, remove this real quantity produced by given and by giveng. They
perform real arithmetic on the complex matrix entries. In terms of Operation counts,
when given is invoked there are n — j + | elements involved in the process and each
clement is involved in 4 complex multiplies operations. The same is true for giveng
plus 4n complex multiplies as a result of applying the transformations to 4.

5. APPLICATION

Mo detailed evaluation of the timings of this approach is available. We can,
however, offer some observations that have been made in the course of applying it in
a number of applications. Rough timings indicate that the inclusion of spin—orkit
effects in both the Hamiltonian H and the overlap matrix § requires 5-6 times the
computational effort rather than the factor of 16 one might have experienced
otherwise. Because not as much calculation can be avoided in the Cholesky transior-
mation, the situation is much better when the overlap matrix need not be considered
in quaternion format. This occurs when the spin—orbit coupling need not modify the
basis functions so they can be treated as product functions of spin and coordinate
space. The overlap matrix is then spin diagonal. This is easily achieved for the lighter
elements up through the rare earths but is not really an acceptable approximation
through the 54"s and into the actinides. The diagonalization alone is six times faster
than a straightforward doubling of the matrix size making the efficiency gained
roughly comparable to that achieved in the evaluation of determinants.
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Previous techniques for dealing with the problem of the spin orbit coupled matrices
in the APW formalism have involved solving the problem with the spin—orbit
coupling excised and using the lower energy subset of eigenvectors to perform a
second restricted variation including the spin—orbit coupling. In the material CeRh,,
errors as large as four milliRydberg were found in the results for this Approximate
method with the truncation set that was used. By using the quaternion formulation,
one achieves roughly the same computational efficiency but with better accuracy.
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