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MPROVING THE ACCURACY OF COMIUTED
FICENVALUES AND EIGENVECTORS®

Il OEGARRA G O 1, MOLER saro 51O WILEINSORS

Alistewel. This pager descrilies and analypes dieveral vananis ul & ermmputatsosdl method lor impeoving
vao musterkal gocuracy of, and lor obfaining aoesncal bounds an, matzix eipenvalues and eipenwcin
The method, which is essentially 5 numescally stalile implementatian of Mewl meihod, may b usod
1o “line lune™ e sebelts ohtained from stendard subrounines soch as thine = EISPACK [Lecure Holos
i Compuler Science &, 31, Spreger-Verlag, Berfin, LF78, 1077L Huterslod procises mathmetic s rogiired
ifs Ehe Grmpulalioe of Ceatain residuals

Introduction. The caloulntion of an cigenvalue 4 and the corresponding sigenves-
tor x (hore alter referred o as an cigenpair) of o matrix A involves s solution of
the nealinear system of cguationg

(A-alls =0

Atarling [rony an approximition 1 and &, & sequence of iterates may b determined
using Mewton's method or variants of it The conditions on A ond # guarantecing
comvergence have heen treated extensively in the lierature, For a particelarty lucid
#ocount the reader is referred to the book by Rall [3] In & recent paper Walkisson
[7] describes an algorithm [or determining crror bounds for a computed eigenpair
based on Uess mathematical cancepls. Considerations of numcrical stability were an
pssential fenturs of that paper and iedeed were its main radson 3o, Tngeneral s
algorithm provides an improved cipenpoir and error bounds for it unless the cigenpair
is very ill canditioned the improved eipenpair is usually correct to the precison of
the compautation wied in the main body of the algorithm,

In this paper we present several extensions of that algorithm which greatly increase
itz ronpe of application. These extensions cover the cllicient determination af the
complex conjugate cigenpairs of & real matrix and e determination of appropriate
invariant subspaces when individual eigenvectors are very il conditioned, and finally
give more rapid convergence when the initial elgenpair is of low accuracy. It should
perhaps be emphasized that the main relevance of these algorithms in the case when
the approximate sipenpairs are decived from a well designed cigenvalue package such
a5 BISPACK [41 [2] 15 wo provide eroor bounds. As i the earlier paper, U comphass
in gach of the algorithms is on the problems of numerical stabalivy.

1. The busic algurithom, We begin with a briel deseripizon of the basic algoritlm
deseribed by Wilkinson, 1T A, x is an approximate cigenpain, and i+, x#§ i5 8
neighhoring eipenpair, then

(1.1 Al +Fh= (4 b i+ 7],
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this relation being exact, We assume that x is pormalized so that Jefl, = 1= x,, 2nd
we remove the depree of arbitrariness in § by requiring that ¥, = 0. From (1.1)

(1.5} I:.-'1.—.-'.|r|!,-l—pJ.'".:l..l.".-"l.l.'+r'|}-'|

where the last term on the right will be of seeond order in the erross of &, 2. Equation
(1.2) may be simplified by the introduction of 8 vestor v delized by

“‘3] !.'?:l:}"“:r'h'".}'...|.,'.|.,:|'J|.;,"'.:|-'_..:|.
0 that v gives the full information on hath . and §. Equation (1.2) then becomes
(1.4] By =r+ w4,

where F =A% —Ax is the residual vector correspanding 1o A, 1 and & is the malrix
A—al with calumn 5 eeplaced by —x. For use in the analysis {bul not in the
compulation) we may rewrite (1.4} a5

[1.5] y=gb 4y KW
where
(1.6} X=8" gh=Xr, l=1.

The factor & is introduced 10 emphasize that |||l must be at least moderately soall,
if the algarithm is 10 be satisfactory.

An cssential element in all the algerithas we discuss s the solution of any linear
systerm having ns its matrix of coclficients cither & a5 defined above or some generali-
zation of it, Mow o —1 columns of B are drawn from (A4 = AT} and the remaining
column is o normalized veetor & IF the elements of A are very large oo very soall
compared with unity then & is o badly scaled matrix. The o-condition number
(18 1<)l |l will b very Iarge when & 15 badly scaled, independent of whetler or not
the equations are difficull o solve accurately

This point is perhaps best illustrated by comsidering a trivial example. Consider
Uee 1w Byslems

9142 982 A123
PF[ 142 9825 _T }

~.0475 41230 ~Laoar)

2142 m“’[.m-:z:.]] {_4131
=

s =[—.q-ﬁs 10" .9123]" 037

The exact salutions nre such that
fi=yn xp= 10",

I the systems are solved on a decamal compater, these relations are nbso satisfied
exncily by the computed solution, The rounding errors in the mantissa are identieal;
anly the exponents are different, The matnz P is very well condilioned [!r-::-m any
standpoint) and [|7]. [P ks i5 of order unity. On the ather haned Joor [a.. is ol
order 10", Clearly the a-condition numiber of B will net really ceflect the “difficully
of solving the system™ if it is badly scaled. 108 the ca-condition number af &2 when
A iz sealed so uhot A L, = (1) that is really relevant to the behavior of our algorithm,
and results are quated in terms that are significant anly whea A G5 5o sealed. 1022
clear that there is po necd 1o scale A o tas way s a practical algazithm any more
than we need 1o seale 0 in owr trivial example. However, we must remember thad in
¥ dlefined by [1.3) the sih component give 2 corrections (0 4 whils the remaining
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a— 1 components give corredtions to components of o normalized vector ln general,
errars in the sth component will be accepdable at a level which i |A L. wnes as Large
as errons o the remaining components, 10 might be said that the infinily [orm is no
the appropriate norm when B s badly scaled, and thiat we shoold e wsing seme
digsed norm, Adthouph this is true, iU amaounts 1oowo maze than describing a simple
prnl:-Iu||1 in maare complicated terms,

Felation (1.5} leads quite maturally to consideraiion of the iterative procedure

(1.7} !I.'-" thn = ofr + :',:-*:'._:{'éiu!-.

In practice (1.7) could be wsed in oo rother different ways.
{i) The mtial approximation may already be of quite high aceuracy, and one
i.-' wish merely 1o use an analysis of the ileraiive procedure o demoensirace Uat the
defined by it tends 10 8 lBmit y corcesponding 1o an exacl eigenpair and 1@ abrain
a baund far [y — "™,

(il The ieration may actually be vsed 0 compute 5 succsssion of the ¢™. The
analysis of the convergence behaviowr woauld then be employed o obtpin a bound fos
Iy — ", where 7 s an iterate which is considered 1o be of acceplable ncourpcy,

Elaweever, o certain waleme of computaticn s reguired merely 1o establish thal
the conditions are satislhed Tor the ileration o converpe, Once we have made this
computational effor, ¥ s available with linle sdditional work, Henee, even when
ihe initizl -:allm::w has been derived usng a very 5[.1.1:-I|. algoritlm, one will pormally
determine 3" and then obiain a bound for Jy = y"Y] rather than [y — ™ Dangarra
[1], Wilkinson [3] and Yamamots [B], [9] have both vsed the teration delined by
[1.70; we present their resulis here, meadified sliphtly for convenicnes.

Tunarem 1, Ik = €] and rx <§ then

(1.8) e et e L
.Eu'
and p ey, the sefution of (L4} The convergence i fediredene fa rhad
(1.4 fo'®* 1 — p P, &= ™ = 3,
witerns
(1,101} e T ey

[(1=Zew)4 (1 =deu] )"

In crder to give preater nuaenical stability in the practical realization, the itermiion
(1.7} b5 first recast in the equivalent form:

H-Ei:':'".r. :l_llll_lsllu.'

Hﬁ:;"" :l'!.“:"-“l- yIJI'\-I}I':::IJﬁIIII
iL.11) Bﬁ:e:'5'!.:':.1':'-}':1';.‘"1—;-']".'-3-”"-! S:”]""h. pti o g g

Elﬁrl I 'I'Iﬁ i s i ||}';':I' 1:-_ ]Ilr ||ﬁ.ll 1y ﬁ:_l' Il:F||-|I F-c.--!}_ :l_l|-l i ﬁ:n;.

Here each correction 1o v 1% dereved by solving a linear system with the manns &, Ta
diminish the errors made in sodvang chch of theese systems, we include ane step of
Merative reflnement of the salution of the &th system o the soluion of the (& -+ 1=l
S¥stcm, Thus we obiain a3 the wypical eguation

|:||‘|_:I ﬁl‘i:'l.l' I."I" “--|'|‘_|"'|' :... !III: Wb g ||_I E-.p J_.!l-ll_-u _r|,-||
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where double precision accumulaticn of inner product is used in the coaputaton of
the residual, r= " ond of all the ¢'*~"— B&"" ", Rather surprisingly, this technique
i5 Just 23 cllective os confinuing iterative refinement 10 U8 conclugion in each individual
slep.

1. Extensions of the basic nlporithm, The basic algoritlim con be extended and for
improved in several directions. Te this end we make the following abservatians.

(i} The convergence rate of the bass weration and the error bounds depend on
the condition of 8 with respect 1o inversion, If 4 is an approximation (o a muliipls
cigenvalug or 12 one of & pumber of closs eigenvalues, ten B i ill conditioned. (8
is singular when A, @ i exact and & is 3 multiple cigenvalue.) Both the performance
of the algarithm and the errer bounds suffer from this ill conditioning, though muligte
or pathologically close sigenvalues may be quite well conditioned. (I A iz normal,
all eigenvalues are well conditioned,) Although in the case of closs cigenvalues the
individuzal gipenveciors are ill conditioned, the invariant subspace associated with a
cluster is well determined if the cluster 8 well separated from the remaining cigen-
values. This sugpests that an algorithm for finding generators of such invarian sub-
spaces 18 advisable,

(i) When & is one of a set of r ill conditioned sigenvalues (including possibly
some defective cigenvestans], one should stll be able w detcrmine accurniely an e xr
mateix X and an e e matric M such that

(2.1) AX = XM,

where the columns of X accurately defing the relevant invariant subspacs [7].

{iif) Although 87" peed not be computed explicitly in the basic algorithm, each
step reguires e solution of o linear system with the matrx B This requires some
stable factorization of &, Thus, if A is a full dense matrix, © (™) multiplications Rlad-
additions are required; and il p approximate eigenpairs are 1o be improved, Ofpa”)
operations are pecded. When the approximate cigenpairs bave been found by 2
reduction of A by similarity transformations, the reduced form can ke used o achievs
a mars economical alparithm.

{iv] The basic algerithm wses the sams matriz B throughout. I is natural 1o think
in terms of updating & and x in & at cach stape, thereby preatly improving the rats
af canvergence. This procedure, however, would require a complete relaciorization
of 8 &t cach stoge, (I e initind A, ¥ is an aceurale ¢lgenpair, refactorization may
nod be impartant because ans or &l most two ilerations may suffice.] Suoosis on the
limes discussed in (i) could make medifications in & bess lormidable,

v} When A is real bul & is one of & complex conjugate pair, one would hope
Uhat the impravement of 4, © would require only twice 25 much work &5 e improve-
ment of a real & and . (The factor two is reasonable becauss two eigenvaluss are
cilcetively being determined  simultanecusly.) Straightforward execution of the
nlparithm, however, requires four Limess 25 much work and sterage of an n = e comples
malrix.

It this paper we discoss maodifications desipned 1o cover the nbove weaknomes,
Tt should be appreciated that some of the modifications can be coupled together; to
cover them all elfectively would require 2 substantial number of programs,

3. Invariont subspaces {lincar clementary divisors). We bepin by eding gen-
cralers Lhat give a good determination of 2n invariant sulspace in the case where the
gigenvalues are well conditioned {i.e,, A is nol close 1o being defective), For simplicily
we restrict ourselves initially 1o two approximnte sigenpairs A, o, and 4y, 2z, whers
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[a1= Azl /A is small and x, and xz are substantinlly different, o that the two-space
in which they lic iz numerically well determined. Here is nol pecessary tat 5 andd
xz should be arthoponal but anly that the angle betwcen them be substantiol, 4, amd
Ay miy correspand to a double cipenvalue.

Adthough xy and xp may have substantial crrorg, they should helong reasonnhly
pecurately i the approprizle twa-spiece, Henoe we have

Al F )= Frndin + fu b pales + ¥,
(3.1}

AlgstPah= ooy b 9 g+ pege s + F2)

where ¥y, ¥z and py are expecied 1o be small, Beeposs (3.1) inplies that

2 > : A
(3.3 Ay + Falkz + P2l =[x 4 Falxz + ]'.l][ Pt s

By Az gz

the vetlons x +§,, 1y + §; ore exoct pencrators of an invariand two-space, 106 corres-
ponding cigenvalues being those of the 222 mateix on the right, We zssume tha
fleafke = fxlla = 1. Tio sebect specific vectors in the subspace, we must prescribe some
form of “normalization’ of ki + ¥y and x5+ §; analopous 1o our requirenzent thal §, =
in the Basic algorithm, We shall requine that

(3.3) ¥ =Vap = ¥1q = §2a = 0,

where p 2nd q are such that

(3.4) b ) = mox Jx,
and
(3.5) [ 1 pE2g — K1 22p] = max oy e — i)

Motice thot this selection ensures that g # p, Furiher, if te maximom in (3.5) is small,

&1 and xy are peorly parallel, and small perforbations in teeoy coald mol provide ws

Wilh lwo veclors giving a poad cemerical determination of the invasiant subsprcs,
From cquation (3.2}, we obtain

(A =L — i — ks =0 ey Fo T s,

(360 i =
(A=Al —pan — ke =gt jege ¥y ey,

Velers

17 nehrn—-Ar,

Becauss componenis poand g of both ¥, and §; are 2ero, il is converient o deline
Vechors vy and wy in which o zeros are replaced by geqy and pegy 2l g sl g,
resgectively. The equidions then becoms

138 By =l yipre+ Yifa =132

Where B i A — 4,0 with columns 0 and g replaced with —x, and —ca. 1 s piven
&lgenpairs are reasanably accurate, equation (3.8) is acaupledd pair of mildly ponlinear
Haniens and meay be solved by the iterative procedurs

(3.4 Byl ma+yl R F (im0, 2)
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with p§" = 0. (Here we have changed the upper suffix from p, used in (1.7), to 5 to
nvoid conflict with p and g above) Thess equations may be expresed in the Torm
(2.10) yi' " = e b Ky HY U =120,

precizely oz in (L5}, (1.8}, and (1.7). : j

The znalysis of this algorithm is similor o tat of e basic algorithm, We kave
the following theorsm:

Tieores 2. Lefw, =8, ¢ = max {xq, 0z), £ = max (g, £2), and

o = 4[(1 —dax)+(1 - Bew )],
Then if ex <k, we have
I kS e 4 pacs (f=1,2)
for all 3 arnd _:.-'i" » ), The conpargenss (5 geonerds in thai
T L e e

where 3 = due(l +ore ] = dee (o2 2 1 :
For numerical purposes equation (3,10) may be recast a3 dn (1110 and (112}
The sth equation sosresponding to the set {111} then becomass

(3.11) H&M™mpl E0 Y g0 AT R BT Y (1=1,2),
and the sth eguation corcesponding 12 the set (1.12]) beeomes
B = [ = Bl 4l A T T 48T

-,

(3.12)

where we have incorporated one siape of iteralive refinement in the equatians far
deriving 515" in the equation determining &,

When Ay and Ay are well separaled from the ether eigenvaloes and arg well
conditioned, the matees 8y and &5 will be well conditioned even thaogh the matrices
8 arisang in the use of the baswe algoniihm for improving A, ¥, and Az, ¥z independently
are wvery il conditioned. The twe generators &+ § ond xa+ §; will be accurately
determined. Because the final aceepred values pocurnisly satisly the relation {3.2), the
cipenvoluss of the 22 matrix should give very acourate approximalions to e
cigenvalues, [na KIIFY program in which all the right-hand sades of egquations (3.12)
are degived uaing double precision accumulation inner prodiect and the corrections
E::" are added to the :.l:" in double precision, Uhe loal accorscy 15 appropriale (o
doble precision compuiation throughaot, even thoeph ne multiplication of dauble
precision nembers is vsed and a very high percentage of all compulation s Lherefare
in single precision, 'When A really does have 2 double rool v (say) corresponding to
linedar clementary divesors, we musl have

fA by Lz oy fi
L) l' Lt Ard Hz:] l‘-D '.r'j

with only double precision errars. Henee e gz ond gy showld be of order g * Fia
camputalion with precision @', I the exact &, and Ay are such that |4, = A|/al =
B thien ey and gz showld reflect s closeness and be of srder |41 Impraved
individunl gipenvectors are found in the KDEFY program from the eipenvialues and
cigenverlors of the 232 malnix in (3.2),
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Fas simplicity of notation, we lave exposad Lthe case of two simple eipenvalues.
The algarithm cxtends immedutely 0@ sel of k clase cigenvislues. We have then

{3.14) Al +g, o bd ] =g+ 0y, - -, x5 [ding (A )+ M ],

wheres any = jey amel il is expected thal heh § and g, will be small, We now obiain &
gel of & loasely coupled nonlinear equalions, the matrix I7, associated with the ith sci
being A —Ad with & of iz columns replaced by —xy, =x3, -« +, =xp. The only new
coenplication is how o determing the & clements of g that are w be zero, The chaoe
can be made 25 follows. Let X be the & o matrix with rows 1. Let ihas be sedoced
L Wper-1 rapeznidal form using Gaussian elimination with colomn pivating, rather
than the row piesling involved in the standiard partial pivweding alparithm, 1T the
rebevant pavatal clements are in columnes gy, Pz, - =« Pe, respectively, then these ele
ments are 00 be zere in the @, (Tle lost g ds chosen to be the maximun clement in
the fal reduced row although no ferther reduction is o be dose ot this paint. It will
readily be verified that when & = 2, this gives the chaice which we have described, ]
At cach step in the Derative solution of the nonlinear equations, we have (o salve
& lingar systems of order o with matness B (f= 1, &) in addition, we have the
initial factorization of the I, The fofal amounl of work is only marginnlly prenter
that that i the separate improvement of each of the A, using the basic algorithm,
Indieed, if some of the approximate A% are equal, then corresponding Lo these we
have only one By 1o factorize. Furtheomore, if m of the &, are almost cqual, we can
start by replacing each of these by the mean of the s waluss, The invariant subspoace
alparithm can Lherefore e substantially more economical than the basic alporithm.

4. Invariant subspaces (almost defceilve matrices). When A 05 delective {or
almost defective), the computed eigenveclors correspanding to the relevant sigen-
values will e almost linedr dependent. For a setl of veclors xy, o3, - ¢+, 1 this near
tingar dependence will become apporent when Gaussian elimination with column
pivating is performed, Small correciions 1e such a set of x, will serve e purposs.
Instead, o achiowe a goidd delermination of the invariant subspace, we proceed as
follows,

Again fog simplicity we concentrale on just wo cipanvalues. Clearly il is essential
Lo start with two well separaied generaloos 1, oy of the invarianl subspace, We shouald
starl then with apgokimale xy, Xz and a 222 malnx A7 sach that

4.1} Alxyx] F'[I':':-!:-J'r"[:"ll'g:i[m“ Hn:-'JlI

1
fta  Rizz
andd miempl 0 determine §,, §p and g, G 5= 1, 21 such that

q = o - < MEn taen Wzt
(4.2} Alxy+ Fu, xa+ Fa] =[x, 4 !'l.-'-':l""F:][ :
mrych ey Wzt pn

IFwo attempt 1o derive an alpasithm based on this relation, however, we find that the
Pir of aquations i no longer looscly coupled. A much more ellective alporithm can
be prodiced if 1wy, =0 in (4.0, Equation {2.2) then pives
{3 A= I — g — st = tp ot eaf,
3
ey A =l W =zt — Rt = bpaf b e,

whisrg

H.4) F1 = Ry —Ak, Fe= frgary b iz = Aaa
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and bath vy 2ndd ey ore expecied o be small. These cguations can be expressed in
simpler farm as in (3.8} vsang 8, B3, vy, and pz. Thus we kove obtained the iterotive
pracedure

(4.5 By =y 4 0 4y SO

5 liel ~laedd y  Gadmiad o dsha
(.5 Bap¥t " =y —am a7y pFT Y

in which ¥ is derived from (4.5) and then v¥*" s derived fram (4.6) using the
Fi W just computed. Again we hove only twoe matrices to lactor and two linear systems
of arder m e solve in cach step, The reformulation of the cguatiens in the interest
of numsrical siakility proceeds on the lines already established, The algorithm gives -
very acournte pensrators of the invariant subspace, but alithcugh the 222 matrix on
the right of (4.2) is accurais, this accuracy is nob reflecled in the two eigenvalues
because its clgenvalues arg necessarily sensitive ta small perturbations it its elements.

There remains the ek of determining pererators x, and ¥y which carrespand 1o
a zego value of miaq. This con be done when the eigenvalue problam of A has been
solved by the orthoponal frizngularization of A, as in Franeis's double QR algarithm,

We assume that
(.7 : QTAQ =T,
amd that the two approxiniate cipsnvaloes Ay and Az are the diagenal elemeants tr and

ooy CEApectively, with § <2, The two eigenvectors of T may be lound inmediately
in the form

(4 Bh ST T Tl 1 P R |
and
(4.4 Iz T23 ' e Edmete Lo 077

by solving the two relevant trianguler systems (F =4, Py =0, (T — Azl )z = 0, thaugh
i our ¢pse, of course, they will be almost parallel. In fact, we nd 2, in this way bl
determing x5 a5 the solution of

(4. 107 (= Aallzg=kzy,
where k is chasen so thal =3, = 0. Clearly & is piven by
14.11) frerdaae PliperTaieat 0 Hliuine =k

and is determined when we reach clernent 2o 0f 27, Then 3, = Q2 ¥ = 074, sutisfying
our relnfion with

4,121 Hg=h,, M=k Map=As

The echnique exiends immediztely 1o a2 set of &l conditiened cagenvalues.
From the triangular motriz T we can detenming 2y, £y, .., 2 sueh that

|.4.|3] T .'I||r:'£'|—':|, '\:T"ui.zurk:—r-“l'.'-zh rT_-J-_IF]-r_I=r-'|'.j.I|+JH'g:r'g|.

where each my 15 chosen 20 Lot the approprinte element of =, & zero, In peneral the
2, determined in this way will be highly linearly independent, and we may take x, = (s
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we can noow define an erative process in cach step in which we solve & sels of hnear
equeations witl mpirices of order m, the left-hand gide being derived by

lljl}.lll1ll|
|I.I::\-:|'I_'\-.I“"'I'“IE_!:'E_“”-.

(4.14)

.I'.I':x'.'E.I L Ll |:|TI|,.'.I'I '|'|'.'Inf:;-l : “.

g that _p';"", :.-!,:‘""_-- - maty b found in succession, The work involved is anly

margitally preater than in determining k individual eigenpairs by the basic algarithm,
If 2ny of the &; are equal, the same is oz of the carrespondomg &7, and the volume
of wark is corrspondimgly reduoced.

5. LUse of erihogenal triongularizalion of real A, We now Llurn Lo the case where

ihe eriginal appreximate eipenpairs have been fownd by Fraocis® double QR algoritdim.
We have an orthogonal matrix & sach that

[5.1) A=0TQT,
where T 18 quast wpper tiangular, Uear i, triangular apart from poessible 2 = 2 diagonal
hlocks eorrespoending to complex conjupate sigenvalues, For simplicity we assume

that T is truly wpper trinngular, In presenting the basic algorithm we solved 0 sucoession
af linsar syslems of the form

(5.2 B =g

with various right-hand sides g, L will be convenient to introduce the generic nodation
=A== and (Z - Al e, = Fue, = 2, Bquation (3,2) may then be written in the form

(53] (A —0x +mder Jw=0d, +eellw =g,
where
(5.4] £ ==K =g

Fram (5,1) we have

[5.5) QT+ Qe [N Tw=p,
Eiving

{5.6) (T Al 1 w =07,
whare

{5.7) d=% fTwelch

The matrix & in (5.8) 05 & rank one modification of the tiangular matris 7. Ta
salve this system, we need to re-triangularize T, +df7, Accordingly, we premuliply
the system by two arthoponzl matrices £ and &y, giving

{5.8) G (T +df T w = 20,27,

Where Oy and Q5 are products of elementary plans rofations determined as follows,
The matrix {3y is such that

15,5 Chyed = [Py -« - P =y where y = ]l
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and F 5o retavon in e (00— 1, () plane designed to annihilate the ith component of
FagPiaz e P We have

(5100 QT+ M= 0T + peaf

(T, = upper Hessenberp whils W.IT i5 nuall excepd in the first row, Hence the
right-hand side of (5,10} is also an wpper Hessenberg matriz AL 5 may now be reduced
1o upper triangular form, T, by premultiplication with £y delined by

(5.11) L= o= PRPS,

where the premuliiplication by P} anmihilates the clement 6, ¢ = 1) of the current
matrix by a ratalion in the (f =1, i} plane. Henee we hove lefi 1o solve the trianpular
Syslem

(5.12) 107w = 200075
Selution of a system with the matrix B may thus be solved in O ®) operations.

O, Upalating of e mairix B When the orthegonal triangularization of A is used,
it becomcs practical fo update the matrix & ot each stage of the ileration using the
current appragimation Lo the eigenpaic. Accordingly, we weat the {p 4 1)st steg of
the iteration as thoagh i were the st step in the basic iteration starting with valucs
A and £ The alposithm then beeomes

(6,10 (A _AI:.Ij]S'ia:l_ELl'I-:lv'l = rln:l - I:.?l.":'f = .-q.:l.l:u:l
where
I-Ella::] rl: d I'|= _n,-"’“'+.$_:":, .-l'l:pl Bk __ El:p.-

We may rewrite this as

(6.3) BiFlgH el = fF

wleere

i6.4) B A = AT oy g

W now write

{6.5) B = T + Qe J 0T = QT +4P 40T
and solve (6.3) by the trizngular system

5.6 L SETVA Bl e e il s R

Mate that O and £ will ke independent of p if 5 15 nod changing from ane ileratlion
iy Lhe nexl. The rolations invelwed in 277 and QY on the other kand, differ from
ol Aberalion 1o 1he mext, but becauss the number of operations in ¢ach re-trinnpulari-
EAULoN 15 CNn :':l and same p’_,"!. multiplication and additions are necessarily involved
in the solution of a riangular system, this is quile aecegiable.

T Converpence of the spdated fteratlon proccss, We can now consider the
converpenss of the updnted ileration process. This process is precisely Mewlon's
method applied to the system

(7.1 (A-allx =0, g =10

(I Tact, the basic algoaithm el s merely o recasting of the simplificd Mewion
vatlsd inowhich the Jacobian mainix s not updaced, ) Convergence counld therefore
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be analyzed using the Newion-Kanterovich theorem [3) Such an analysis woubd lead
o a result of the following form:;

If the tnitial ervor is suall enaugh, the iteration will converge and the convergenre
fe gretaraic.

Hewever, in the rouncding error analysis given later we shall nead most of the
anfeeniedinge resulis which are derived in proving the Eamtorovich tlicorem, 1t s
therefore more convenienl o analvee convergence directly from first principles. In
doing s we can take advantage of the simple form of the equations (7.1)

First we introduce Use notation wsed in asalyeing boil the cxact ilerates and the
compuled iterates. We shall assume that all approximate eipenpaits x, A—whetler
gract of compulsd—are such thai x, = 1. Hence the difference between any lwo x's
has & zera in position £, and we can replace this with the diflerence betwesn the %,
Al the inlormation can therelore he |'|r|:|-|,lid|:d ina 5:i|:||!_]|.' EOEOr VieeLor é W may wrile

(7.2) g A= (X h)=£

where £ = x3—x, & = Az~ Ay, but far brevity we shall often write
(7.3) Kz=xy= £

Carrespanding to any (x, A is 2 B motrix delined by

{7.4) Bed=af—(a,+x)eT

The & matrices corresponding o &, &, ond £, 4 will be denoted by &, and &,
resgectively, Mode that
(1.5 By ={A=Al¥—yx forally.

We begin the analysiz with the following lemmas about 3 single step of Lhe
fleration,

Lesraa U, Ik, Ay and kz, 1 ave dany (s apprerinene sgeapains, e resfdials
ryand ea dire defired by

{7.60 n=d=Ag i=1,2)
and £ ix the difference between their appracimagions. Then
: B
(17 re=ry— Bz = x,) — £

where By i the 17 ovars carresponaing i Az aned xz.
Fronf,
rp= Ay~ Ary = Aplx, + £ —Alx, 4 £
= (A F — A Aoty — Axy
{7.8) = (Al —AK +hax, - Axy + i1,y
= (Aol =AM +{hpry — A ) o £.£
=1y = Baf = &£ = ry— By, — X, ) = £.£
because Byf = (A~ Anl 1 — s [
Lemisa I, Witk the same sourtion a5 in Lemapr Ui o emned vy aee qisedd as il

""III""'llt'fn'lr wue st af e eradfonr process e and gioe corrce s of 5 &, especrindy,
fiien

Ty Fr=fi— ¢ +(B7" =B — 82 16
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FProaf, By definition,
(.10 by =r, faly = r1,
Fram Lemma 1 we obliain the sccond term
(111} Bde=rn-But-£4,
(712)  &a=Bi'n—f-Bi'tf=8 ¢+l BB GE

Mole that the teem =& an the right of (7.12) cancels the initial difference betweon
(g, ay) and {xz, La) This difference is replaced by

{7.13) (B3' =By - B3 &L

IF the two approcimations are clege, £ 5 amall and kg€l = [T Hence, provided we
have & satislactory bound on |.ﬁ':'l| the second term in (7.13) is promising. For.the
first term we have the following:

Lessds 3. 0 B exiss and 287 |1l =1 then

(7.14) 15, = =2k
and
(715 !lﬂi1-HTl3ﬂI5¥j;1%!%:rl-
Proaf,
(7.16] (By— B0 ={As— Aol — (kg —xidel = —&F = el
(7.17) 18, — 8] =6+ 161 = 20
For the second inequalily we lave
(7.18) B -8y e=lBB - N8
{7.19) B0 =+ E) B = F4F where E=F,— &, g
where

(7.20 FI= 1B IEL - 18 7 TIED = 208 ek — 287" HeD.
Equition (7.15]) Tallows immediately. Using Lenuna 3, we have
lias' — o el 2l sl - 2187 D
=20 [heRls e - 208 D

Lazsapsa 4, & 1, n 15 a4 apprarimaiion e an execl sigerpair |, LY, the u'é_lf."rn:nﬂ'
tedieg £, then

(7.22) F=—Br—Ef,

(7.21)

andd ihe covreciion promided by aae seep of fleradiar iy
(7.23 e

givdie as Eppeax i witl sear —E-L-f:.-f_-
Freaf, Using Lemma §owith (x, &) and (1, A} a5 the two approxundtions, we have

(7.24) For=ff-ffm -BE=f simcer=0,




e have the following lemmia:

" hecause by definition B8
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e (ine step of iteration gives

{7.25) BE= 7= ~HE—EF, .33'7=—¢ T ¥
Hl‘:-w the update iteration gives a sequence of **', 4" defined by
H'"'.ﬁ'"' - |II| J..l: ""+-ﬁ i 41 .-l'":: 5 'El\.lll
o ! i
0 (7.26) g J.':':'—_:':”+-ﬁ'1" PRCEIL L

H”I&”I-rlwl J-.iﬁ-:l:I:AI'PI_'_Ig":I'I‘ l||:|llll._.-||l:|ll"§|1|'|.

Lenaa 5, 0 the o', 3" e iterares provided by the algoritm starting from <"

e
: (727 l.ll"‘l- ﬁlp'lﬂ.l_i'l
Proof. Applying Lemma 1 with x5, Ay=x" " 47" and gz, Az =x", A" 50
that £ = =5 we have
{7.28) PP = Ptk gl clely_ giebEde)
FIVINE
l'r_zg.:. PLLETL ST Hl:rlsl:l-'l_'_a-ip:-g{lu: =ﬁ:‘,lﬁ-m

7L Henee, the exect alporithm is defined by
[7.300) l|3||:||.|_-|Ill| — II_|IIII ||_.:I.'l|d|rl - Elir-—'-:gw-ll [F =1 : b

W are now in o posilion fo oombine these resulie for o sinpgle step to establish
the queadratic convergence of the overall iterative process, We naturally fssums thai
B™ is nengingular. For e process 1o be defined, all 87" must be nonsingular, From
Lemaa 3 we know

(7.31) g - 2™ 2+ N - 18T,
(7.32) iR R F-! i |

We note that 8 will corwainly be nonsingular if

(7.33) 2B 5 - 28T <
and lenes certainly i

(7.34) AcET RS M+ B+ - 5T D=1

W write (" =™ =k and [§M =2 = = 5™, We pee immediately that unbess
Zeg = 1, even B may be singular, 1 s intwitively obvious that [or converpeiss we
require ae 1o be amall enoeph.

W introduce the quantities 5" and """ defined by

(1.35) gi*ha ittt — 2"yt il (p=1,2

¥
T'rl:ll.'ldc::] all w'"™ are positive, iU is evident from (7300 and (7.32) that the « il
7" "majorize [LEF and [E] respectively, and cusurs the existence of the former.
Craicdratic convergenes ol the ieratian can therefore e established Ty provang
that ihe &' remain ond ot the 5™ approach sero guadeacieally. Te s ensd, we
il1|||_'\.|i_|-|{~¢

7 3'-"_' A= h':I”T.'.I.I.
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a0 1hat
[7.47) it = PR =28, )

It is cortainly inzdvisable that the @ should incrzase because this endanpers the
nonsinpularity of £ 1 gy = @, we have

(7.38) i = a0 M = 0 - 2800 = (Bal (1 - 2BV,

piving fo= L (The solutions Bo=10, = -1 arc of ne inferest.} Becauss in general
(730) f, = x' ' = (e P 0 P - 2, 0 e (oL — 28, 0,
we have B.=1ip =1, 2, -] On the other hand,

(T4 o' = = ey 90 BT PeT L 1=
Hence, -

(7.41} "Tlu"l' Vit EEE 1".'JI':':':'=:"I"'“[i-l-i.l . fép_l]=f?m![2—!.r-'].
and T, 7' converges ta 2. For the P e have

{743 o I 1 e PR g

chowing that althaugh all B are certinly nonsingulaz, they moy be tending 1o
sinpularity. The \-:.Lu.;: Ba=1 i5 therefore :L barderline case,

1.1.'11“ ook, (T.38] shows that @, = =1 and then (7.59) shows by induction that
B8, =1 Similarly ™ < dn"""", L7 7" converges, and

-

17433 T ' c2y™=

(]

This convergence, however, conceals the essential difference between the condition
1?;.—} and [y -r.','._ From {734} wo have

(7.44) [T e b MPRRET £ Mg
showing thal &, is converging quadratically 1o zero, Beeauss
{745 o= (=28} TFEoL = Ea,

we see that pven {7243} severcly underestimates the converpenss rate,
For the w'™, repeated use of (7,35} gives:
s H:IP:I"'J.":II-”JI[] _?."Il—'l'lp_llp 1:1]._ n:lil-l:l.lll“ __?*:IF--:I'I{P:'IP 11 :l_ll:-l'l:l-l
- - -':"'“.l'rl EI"_.\'.\\'::[_I_|I.\'.\\:I|_|_1'_II1'|_'_ sun g r]ir.-- 1)]].
Necause T, n comvergas andd ils sum is less than g, we ses thi w!™ e i " which is
linite. However,

I,-llliT:l l:|II ill!lll "',r-'l - Hﬁu:llp.ld_

and hence 1 ako rends quadratically 1 zero. When «e is significantly less than 4, |
wr would cxpeet Do o be significantly less |:|'|.|11 Ze, amd this s indeed froe, Te

Ll
estabilish a simple explicit expression fer o, let

[7.48) fo =1~ (1= 403,071 2,
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We establish & simple relation between suocessive fi. From (7.38),
(7.49) 1— 4, = (1 =48, }/(1 =28,V
(=48, _ 1—::,;, - (1-4g,.0"

(7.500 1 -42 =1

(1-23.-1) T ’
1-{1-4g.2"7" 1-28, ,—[|—4ﬁ,,_._]”*_1 28,1 = (148, )"
AL R = r=ii .
{?- JF lepl EH_I::I{-I _E'ﬂ_nul:l ?*:
Hence, becauss 8, = e F T T e have
(7.5 fomfoi=n'*"
Eiving
{150 R R SE R Lt A

Bt Jy -+ 0 (becawse 3, 0] and k" = Hence,

(7.54) L=

(7.55) =[1= (1= 48" "1 Ty
{7.56) = L“Ir;"f'-'-'lll}t,
{7.5T) 2

= l 4 [ ]__ &ﬂu:ll TEE:

This analysis con ke summirized in the fallowing theorém!

Tugorns 3. When fFo=wr <4, then k' is boumded and ' and 8, approac
zera gueadraticaliy. fa facr,

= d

(7.38 w e e

] |'|l.l.IT 1-"'“-_4'3"“":I

Mole thal we may u:%ard the process as starling with any of the ' Becawse
=3, for all powhen @=L we see tha

(7.59) ' -x"Y=f  wEF
and
(7.60} lbe =&l

where x 18 the luntt, e the exacl solution. In fact the process will olien converpe
when By =1 ond some later 8, will satisfy the requirement, AL that siags we shall have
i ball cantaining all subsequent iterations and the limit,

8. Complex eigenvalues for real matrices. When we hove a real malrix with
womplex cipenvidues, the previously developed approach for improving the accuracy
s inco a problem. While we could use the procedures as deseribed witl comples
Brithmetic througlsout, we would end wp daing four lmes as moch compulation il
Using twice 25 much stornge. The virious componenis needed in solving this prablem
Bor tlue miost part are real; only the diagonal of T — A8 ad the vector » are comples,
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In the real cigenvalue case, in anfer 1o find the improvements we need 10 solve
ispstem based an the meatrix

vl — -
T |. ‘_.-'M UI'J

This matrix can be ranslormed Ly l:,':}'f] annd ol Lransposs 10 arnve at

(5.1 |F g {'I'q—?.u S]

wlers po=- c}"'_;,- and = l'.?fe,. O dizmponal element of T —AL is zero, say ol the
Lth position, We will replace this zere by the value 1 through o rank one change and |

remove the raw ¢ similarly. Then the resulting matrix, say T, has Uhe form
. = 1 &

8.3 T, ]

(8.3 i

Wleere T =T —Af 424 I. amel 'f, dilfers fram T by o rank 2 chanpe,

Wilen A and x are complex the matriz T @ real and quasi-triangular, ¥ is real
and T — A5 is complex on the dingonal enly. T = AL bas a singular 2 22 Block on the
diagomal (Lthis corresponds in the real cass 10 8 2era on the ﬁia_gu:u]nl:._ The 2% 2 block
has ihe form

‘e — LA, + IA, 3

(8.4} [“ e Fids) 5 J
i of = A, 40

T fores this bleck 1o b nomsngular, @ rank one change is made by adding | 1o the H

1, 1 element of that block. The cesulting matrix is T = T —AF + el The matrix then
hias the form

T, p

8.5 ety

(8.3 o j,:l

The row ¢ is removed by a rank one change 1o arrive al
e

P )

We wish o solve systems of the Torm Tz = v For this system the matris T, s real
crcepd for its diaganal and last colamn, and the right-hand side vector o B complex,
Since T i olmost completely real, bardly any comples arithmetic & involved. To
correspomd 1oa 1% 1 dizggonal blaock of 775 we have 1o solve

':H-l'l |:rq|. = A _I;l'u] Ty = s

This will invalve o caompler division of v by the quantity s = & =, For the 2x2
diaganal blaock assacinted with A+, 0 2% 2 complex linear sysicm will have o be
ey,

By using such a pracedure the wark needed in this case goes up by 2 factor af
Leect dver Ubs case where there s a simple real sigervalue, This fcter of two is not
surprising since the impravement process will produce an improved cigenpair and its
l:l:llﬁ:,l.u::llc. The tatal additienal storage nesded will be madest, anly o few additionzl
verlors !
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4, Influgnee of rounding ercors, A3 0 resull of owr colcelaiions, we have
sequEnee of compated 71 i are |:9|1|_:|;'||.i|'|:|lq:d by rounding errors. Cne might
attempl to find & IJl:n..u:uJ for ench [|F"% =& and then sum them 1o obtaas 5 B
at any stage for [l="" = £"Y|, This procedure would be reasonable if the ite ralis wuere
groadily drifting apart, In Fact, however, even ol some intermedinte T e
gppreciably distant from '™, A", the iterates must subsequently move logether agan.
This tenclency far current differences in iterates 1o be largely canacelled in the naxt
step is apparcnl |'||_'|-'|:. Lemmas 2-4, Moreover, we may think tn terms of starting fresh
with gach £, & PP Thus the previows history is, in 8 sense, irrelevant, provided the
pterates do not drift so far away teat Ueees 38 a chooce of homing in on some dilferent
salution.

I praclice the boundary walug ,ﬂu—ﬂ iz rather less important Cthan b may scem
frium the above analysis for a number of reasons.

(il The iterntion offen converges starting from a value of #, which 1= much
greater than §. When this i3 true, one soon reaches a stage when §, = 115 well satisficd
amd woe can Ueen regard the current values as the mutal valucs,

{il] Supposs the initial approximation ks been derived by o specilic algorithm.
16 that algorithm i used on two different compsiers, one of which has a mantissa witl
one binary digit more thon that on the other, the initial values of § on the two

machines will nlmast certainly differ by a facior of 2 This puts the relevance of the
valug & = 1 in perspective.

(i} Consader the behavior of the |l:-..r-l1mu wilh [ = 1. From (1] above we may
regard this oz “only marginally smaller than 3. Yel the sequence af 3% is now
©1) Bu=i Bi=d Bi=d Bimmm BSLIX10T, BasS50x10
amd thee m; - 0o maech the sane way.

In the rounding error onalysis there is Dtk podnt in obscuring s essential
simaplicity of the arpument by sailing oo close 1o the wind. o the sther hand, realistic
bounds are essentizl for the rounding errors made al gach siep of the compaioed
sequence,

We mssume that [JA]] [JA = a5, 18] are ol of erder unity Uaoughot, @ed, this
wie shall replace them by wnity whenever they oceur. For e computation «f 8,
whees P s an o = w0 omatrix ond @ is an g vector, we make the following assumption
for single-precizion foating point compatation o e base @ with o ¢ digit nantissa:

2.2) MPqy=Pq+£ - llgl=mg "EPllIkl-

If, an the oller hand, all inner preducts arg accemulated in donble precoun and
roanded 1o dinple precizion on completion, we assunee that

9.3 P =Pe+g, =8 1P+ =8 1P

where e seecond term in the hound for & comes Toom the rounding, in the dooble
precision part, and the dirst lerm comes [rom the final rounding (o single predisn
The firs1 Lerin is, of course, the da ngerows one: [is cmission renoyves all reilism o
the analysiz. Finally, we assume that the computed soluion of Pr = ¢ satisfies exactly
Uhe relation

9.4 iP+EIl=q, lIEl=ng "Il

Of the three assumptions, the st two ore strict Tor g compuler using o stdind
foinding procedure, The third nssumplion is partly copigical e pufoee, boi is likely
W b very canservidive for stable methods of salving linear sysiems.
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To demanstrale that our resielis -:nm'l-'ruu to working accurncy, we must show
thal the errar vecior £ sotisfies [J5]| =7 " or w only marginally larper than this. Before
atlempling & detailed errar analysis, hl.'l wever, wie shall show thal higher ]I:I'Ltl:l.i‘:-ll 1%
cssentiel in the compatation of tee residual, Supposs we already have an § which
is correct W working accuracy, snd we then perform one further nerstion. We have then

{8.5) le-al=ll=5""

Ll oo were boperfarm this iteralion cxactly, then from Lemma 4 we would have
(98] F=—Hr-£f

[%.7) BE=F,

(9.8) F=—g-BT

where 7, I ane exsel :’{:5.1.|'|I:5. correspending o the given £, & The creos in the correet
£, 1 iz therefore —F 7VEE, the error £ having been cancelled, Clearly,

9.9} 1R B T 1 -

Matucally we require that [ "= " ar the coroe may actually be increased. However,
something appreciably stronger tian this is peeded in any case when rounding creons
are invalved or § 4 B miglt well be singelar, 1 Fis the computed residual using single
precision aithmetic, we have fram (9.2)

(%.10] F=F+f,  lfl=ng™",
ancd Fram (9.6)
911} lFi=len+lel =g~ 8~

The computed residual is enlikely 1w have any correct significant Agures and even if
we solve the linear equation cxacily, we can gearantes anly that

12 i = 18 g ™

The corrected solutian is likely 1o be much less accuraie than it predecemaor, Becaose
W cannod even conserve a correctly rounded solution, there s Tinle chanos that i
wiould ever be nitained in the Arst place. We shall assume, therefore, that all residuals
are determinad by double precison accumulation with rounding 2o single precaszon
on completion, We have then from (335, (9100, and (2.11)

(5,13 F=F+],

©.04)  [llE A Tl I+ mg 0 S B [5 " + 6+ np P S (e 4 2T
Solving exactly, we obitain the erves from [ bounded Ly

(9.15) b+ ZHE ™,

The solution may he degraded unless |3 15 7" is apprecinhly less than wnity, We lave
alrcady seen that such & demand is, in any case, inevitable. ;

In order to pet some idea of the behavior under conditions which are almost
harderline for Theasem 3 10 apply, we analyze the cose

l.':;|1{3| ﬁ-:l _Kull_“n'u = "‘-.1|-. h'IT,I'.‘l -1 < II'.'-'H-

The secomd of these is reasonatile since if k were appreciably larges than this we
should be computing an invarianl subspace rather than o simple cigenpair, We |
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eraphasize thal relations (8, L6) need nod necessorily be sotishied by the firstapprosana-
gion, but provided Lthere is seme g for which

i#17] Ba= 'y = e <4,

then this gih caompuisd £, could, for the purposes of e analysis, be roparded as
thie inetind valuwe. From the conditiaon . = 2 we know thal the exact process cogverpes
o 2 salution x, & and

TRE] I =™ = (200 #1020 < Lde forall p,
(.19 e =2 = 1de,
9,201 s e e 0,20 2 2 B fl‘.‘lr:!ll!p.

We wish 40 show that the " mewer devinles Tar from the o™ The amitlysis of the
-1

first step is different from that for the general step sinee x™ =" and he sinple
gxpression given in (7.27) for the residueal does nod apply, We have then

[g:‘J HNISI'\C:-=I\D:- " II:II_ IS.\I!E = g
|":I..!E:I ”3'“:"+ ||—II:I'| 'll:ll |u| .|r"“ I.I,-!Lljlllfﬁ-ljrltl‘“_l_"r:r -:I.'r

whire wa assume [ = a " covers the errans nlndcduriuﬁ e solution of the linsor
Fystem imel alzo the trivial errors maide in compating A — 2 '.F. From (9,11 we lave

.23 =15 =,

ancd froam (9,220 we have

(2,24} FM = (B M - A B e (B ™ B
wherg

(.25 |Wfsle "™ 'IIII-"'”'Jei1 [ IR s en® ™ — ™!
ey EET+EMT s e ™ - EETTIET D S k] —eed '
Henee Trom (8.24] we get

{5.27) R A it P A

anid

(B.28) M BB E Frlne +[IF™

= 'I:?'fn'ﬁ—:l.'lfi et @ e e )
.29) = 1020 aE " 4 48 000G,
where we have wsed candition {(%.17), Te stmplily the analysis, we assame o 160 {1
mesely ensures @ <0 LafE ) comadition (3029) then pives
':_':'1(]] "auu_ SIIIIJ =012 .-1\.-'I|I:|' i

; v, ' C '
Westill have 1o 2dd 8™ 10 £ ™, this atep gives i lunther eoror, boandod by i ' 00 Tagi
ingd

f0:31) T B ETE
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I subsequent sieps we hive
[1]..31) I.f""S"ﬂ: r-:r-l - 5-::- -.;&r.. ||F mm",__. I:I"';. II‘rlr"II -‘-'-'l:r;u':" -||]:I
(2.33) (4 EYE = computed [7'™),

where ' i the exact B carrespending 1o £, and £ covers the rounding crrars
made bath in the computation of A — &7 and in the solution of the linear system.
Wi asgarmes

(9,354 [E*F =™
From Lenuma 5 we have
9.35) Ilp!-=.rull_b!'i|li£|.|?-|'l+l£:‘|l 1:-5”-“_

3 The computed results show Chat

(Here 7% is the exact residual cerresponding 1o &
(% 56) camputed (F¥h = P 4 o,

(9,371 |“cr-||£g"!|m1"_r /A sﬁ--mr-:p:rl_,_"frp. '1J+|§'°':T.}]+-r1|€"1:.
Henee we got

[%.38) (L BN = e ietgiee iy el

[%.39) g gl TIge=1 g R

0400 U™l e R T

We now need Lo show (hat the matrices 7'+ E' are nonsingular and have baunds
far their inverses. We know that the ' are nonsingular; for information on '+ £,
weg naed bownds for !EI"_L'[_=|I.E':P'—.:"'5'||. remsembaring Lhat

) 18- B = IF = 2

A rough preliminary analysis indizates thal 7 il ot exceed 3 maodest mullipls
of pE ™", and we now prove by mdeetion that

i%.42) le* e 05m3 " forallp
{and indeed that the later £ are much smaller). We already know it is true for p =0,

and we assume that it is true op o &%, Haotice that this would merely extend the
tcunds b {9, 18) and (9.19) 10 1.4 +0.508 ", From our inductive hypothesis we have

Hu'l: H|:|+!I.Ip:-1 IIF{PII‘_EE ® |.'|.5.'I|T - r‘ﬂ-l|

I'Sl':i ?] J—_}ull i Eu'l - B-\.rl + EI:'\I_| !_'\-lll:l "I'?IP:.'—.II'.“'II ‘:--z“ﬁ --'I

Framy (9200 nnd (9,19} we therelons have

Lpl
wtF

B T PR B 1)
YT S R B

(5.44] [id + B =

(Somelimes we sholl use the former and sometimes the later of the two hounds.)
Surnnlarly g have

‘A% (3 FY Ty e (B - LR N foralle
wlers
(9.44] LY 105 T 2nE T 2 2 AR (20E ")

v b

e ]

o,

N E Tt T Eo T
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and

[9.47) (L P R g Ay
whert

(o A8 [l Y == 105k i 1) 2 2 3 Gun 3 .

The inductive hypotesis guarantess the nonsingularity of all relevan nialrices e a
ard neluding the case we are aboul o use in determining &, Returning now 10
(2.38) we lave firsl, using (945 and (9.46) with g =",

[{Iq’-':"l wl.‘l.l i Ellll] I|_I.'l|= Er"'—.l'_;":ﬁ':"' = 5I.'l.l '|'|'£IH

where

{9,500 k"= 105" 2ng =y ™

then, using (2.47)

%51 {5174 BT F R o gt gl leoT) o de=ih g
wheere

[9.52) [ =2 360mE EP Y.

Finally, we wish to bound (8" + £ "g*® using (9400, We treat the term in (940}
invalving {n'" " "* cifferenily from the rest. We have

053 BT EY A S 105 = o,
while froan the rest of g'™' we have the bound

©54) 2360 e ) + g ] =
Combining teese nesulls, we get

{9.55) G = 1Pt girthy iR

where

(.56) N 0a b o,

Clearly

Pt = Y+ B R Tt | RIS Y

the 87" coming from the addition of &% to £, Mote that the term —£7 " in (9.55)
amnihilates the previows crrar. In {9360 the Arst twa lorms involve 9" oad 5",
e “belonging™ fo the cxact process, and 1end quadeatically to zern, They are ol

. sEEnilicance anly in the frst ane or teos Derations, The terms |5 and 2 ullimately

antrol the behavior eompletely, Using the inductive hypothesis {and the assumption
that o = 100}, we have

[ = 2 36wm® (0. 50T b < 0,011805 ",
d'* = 236002508 + 0508 T +0.250°8 M 4 ]
< 2 IELO0Z5wE " 4 AWM S T 02 508 T 00 DR

<9 2aE
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The terms [l and o' present their greatest danper when g =1 and we have
e s 1S = 5
[l = .08 (2nd ';:—q S I 1T

} P % 1058
M3 105k gy ™) = (105} ne"B " < o Enp ™
G .0l
which is negligible for any reassnable @7
Summing the contributions, we sze that

™= 0408 7"

Henee the result is improving, but the proof shows that after the fust two ilerations
e .f':" are decreasing rapidiy. The computation of the LUCTEISIVE {'m' i5 s dediogs
that we have contented ourselves with showing that the £°3 remain less than 0.5n8 ™,
Hlowever, it §s evident that after the first two iterations the [|£*'] decreascs rapidly.
Althouph tedious, the computations arc perfectly straightforward; all the error anilysis
is covered in the assumplions embadied in (9.2), (8.3) asd (940 It is more in the
spirit of practical numerical analysis to praduce a program for computing the J¢"7.
The program parameiers are

Beoit, 7' and w= T
[t is more convenient 10 work 1o terms of 4 and o, defined by
=g ond JEEang

The fiest step is special and g 5 given by
1
g = [,‘9...+;I:]‘i.-.+m':l-|f[1 wl,

For subsequence steps we have Use relations
1

B s Ti= L
ﬁ._[]_?ﬂu-a] ' T 1-28, R
i =a ‘.r.ﬂ:]:‘ whiere & = w1+ Ja o Jos
and
LR B B [ okl 1
”"__!I—n‘il. r‘.-'.-u'i] ﬂl.:|+1-_|.rln'__|-ll;]rﬂ iz * # }-lﬂl

of which the last term comes merely from the addition of 8" 10 x'™. The & computed
in this way give realistic upper bounds tor the J6". In fact, if £7 " = ang ™" we have

165 = 0.02360nE ™,
" = 2.36[0.00 a +0.001 6 +.0001a " Jag ™" + 002368,

whers the last term arises from the s@ ™ and we have pol made the substitution of

.0 ™" for @7 This Iast term and the teon @' coming from the addition of &% 1o ;

' finally remnin when afl the other terms have receded. The ultimate £ will

almast certainly b2 the cerrect rounded salution, though the term 002363 " poses a |

slight danger that it will not be the correctly rounded value and could cven oscillae
between two valuess that differ by 3 7

B L v e

iy
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As an example, we display these quantities as abtzined from the above Tormalaes
with wg = &, senB ™ =001, e =9 (Table 1)

Taiitii 1
Feror dndiysle quiniiies

i L? n I, T

0 G5 10t 1.0 1 e |
1 Lod =t 1.07 11 2
2 L3 e J0E0d [ 1]
3 LA%=10° 2,23 4.5x 007 EL
4 LA%=10° .24 TS s It LS
5 L.45=10° 1.4 4.31=10"" 1S

Maturally whew se 05 significantly sowaller tan § andfor s 05 significantly
smealler thon 001, all sur resulis will be significantly stronger, 1T s ™ =877 (zay),
then if we ilerate until convergence towarking nccaracy and addd the final computation
10 5" using precision, we shall have an sigenpair with an error of approximately @™

s LRSS

el
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