
ROADMAP
Jack Dongarra
Pete Beckman
Terry Moore
Jean-Claude Andre
Jean-Yves Berthou
Taisuke Boku
Franck Cappello
Barbara Chapman
Xuebin Chi

Alok Choudhary
Sudip Dosanjh
Al Geist
Bill Gropp
Robert Harrison
Mark Hereld
Michael Heroux
Adolfy Hoisie
Koh Hotta

Yutaka Ishikawa
Fred Johnson
Sanjay Kale
Richard Kenway
Bill Kramer
Jesus Labarta
Bob Lucas
Barney Maccabe
Satoshi Matsuoka

Paul Messina
Bernd Mohr
Matthias Mueller
Wolfgang Nagel
Hiroshi Nakashima
Michael E. Papka
Dan Reed
Mitsuhisa Sato
Ed Seidel

John Shalf
David Skinner
Thomas Sterling
Rick Stevens
William Tang
John Taylor
Rajeev Thakur
Anne Trefethen
Marc Snir

Aad van der Steen
Fred Streitz
Bob Sugar
Shinji Sumimoto
Jeffrey Vetter
Robert Wisniewski
Kathy Yelick

SPONSORS

www.exascale.org 1

Table of Contents

1.	 Introduction .. 2	

2.	 The Destination of the IESP Roadmap ... 4	

3.	 Technology trends and their impact on exascale 4	
3.1	 Technology trends:... 5	
3.2	 Science trends:... 6	
3.3	 Relevant Politico-economic trends ... 8	
3.4	 Key requirements that these trends impose on the X-stack.............. 9	

4.	 Formulating paths forward for X-stack component technologies: 9	
4.1	 Systems Software .. 10	

4.1.1	 Operating systems ...10	
4.1.2	 Runtime Systems ...12	
4.1.3	 I/O systems ..16	
4.1.4	 Systems Management...18	
4.1.5	 External Environments ..23	

4.2	 Development Environments.. 23	
4.2.1	 Programming Models ..23	
4.2.2	 Frameworks ..25	
4.2.3	 Compilers..28	
4.2.4	 Numerical Libraries...30	
4.2.5	 Debugging tools ...32	

4.3	 Applications ... 34	
4.3.1	 Application Element: Algorithms...34	
4.3.2	 Application Support: Data Analysis and Visualization37	
4.3.3	 Application Support: Scientific Data Management40	

4.4	 Crosscutting Dimensions .. 42	
4.4.1	 Resilience..42	
4.4.2	 Power Management ..45	
4.4.3	 Performance Optimization ...49	
4.4.4	 Programmability...51	

5.	 IESP Application Co-Design Vehicles ... 54	
5.1	 Representative CDVs .. 55	

5.1.1	 High Energy Physics/QCD ..55	
5.1.2	 Plasma Physics/Fusion Energy Sciences (FES)56	
5.1.3	 Notes on strategic development of IESP CDVs57	

5.2	 Matrix of Applications and Software Components Needs 58	

6.	 Bibliography .. 60	

7.	 Appexdix IESP Attendees .. 61	

8.	 Appendix - Computational	 Challenges	 and	 Needs	 for	 Academic	 and	 Industrial	
Applications	 Communities... 65	

Draft 0.93 18Nov09

www.exascale.org 2

The International Exascale
Software Project RoadMap

Draft 1/27/10 5:08 PM

1. Introduction
The technology roadmap presented here is the result of nearly a year of coordinated effort within global
software community for high end scientific computing. It is the product of a set of first steps taken to
address an critical challenge that now confronts modern science and which is produced by a convergence
of three separate factors: 1) the compelling science case to be made, in both fields of deep intellectual
interest and fields of vital importance to humanity, for increasing usable computing power by orders of
magnitude as quickly as possible; 2) the clear and widely recognized inadequacy of the current high end
software infrastructure, in all its component areas, for supporting this essential escalation; and 3) the near
complete lack of planning and coordination in the global scientific software community in overcoming
the formidable obstacles that stand in the way of replacing it. At the beginning of 2009, a large group of
collaborators from this worldwide community initiated the International Exascale Software Project
(IESP) to carry out the planning and the organization building necessary to begin to meet this critical
problem.

With seed funding from key government partners in the United States, European Union and Japan, as well
as supplemental contributions from some industry stakeholders, we formed the IESP around the following
mission:

The guiding purpose of the IESP is to empower ultrahigh resolution and data intensive
science and engineering research through the year 2020 by developing a plan for 1) a
common, high quality computational environment for peta/exascale systems and for 2)
catalyzing, coordinating, and sustaining the effort of the international open source
software community to create that environment as quickly as possible.

There are good reasons to think that such a plan is urgently needed. First and foremost, the magnitude of
the technical challenges for software infrastructure that the novel architectures and extreme scale of
emerging systems bring with them are daunting, to say the least [4, 7]. These problems, which are already
appearing on the leadership class systems of the US National Science Foundation (NSF) and Department
Of Energy (DOE), as well as on systems in Europe and Asia, are more than sufficient to require the
wholesale redesign and replacement of the operating systems, programming models, libraries and tools on
which high-end computing necessarily depends.

Second, the complex web of interdependencies and side effects that exist among such software
components means that making sweeping changes to this infrastructure will require a high degree of
coordination and collaboration. Failure to identify critical holes or potential conflicts in the software
environment, to spot opportunities for beneficial integration, or to adequately specify component
requirements will tend to retard or disrupt everyone’s progress, wasting time that can ill afford to be lost.
Since creating a software environment adapted for extreme scale systems (e.g., NSF’s Blue Waters) will
require the collective effort of a broad community, this community must have good mechanisms for
internal coordination.

Finally, it seems clear that the scope of the effort must be truly international. In terms of its rationale,
scientists in nearly every field now depend upon the software infrastructure of high-end computing to
open up new areas of inquiry (e.g., the very small, very large, very hazardous, very complex), to
dramatically increase their research productivity, and to amplify the social and economic impact of their
work. It serves global scientific communities who need to work together on problems of global
significance and leverage distributed resources in transnational configurations. In terms of feasibility, the

Draft 0.93 18Nov09

www.exascale.org 3

dimensions of the task – totally redesigning and recreating, in the period of just a few years, the massive
software foundation of Computational Science in order to meet the new realities of extreme-scale
computing – are simply too large for any one country, or small consortium of countries, to undertake all
on its own.

The IESP was formed to help achieve this goal. Beginning in the spring of 2009, we held a series of three
international workshops, one each in the United States, Europe and Asia in order to work out a plan for
doing so. Information about and the working products of all these meetings can be found at the project
website, www.exascale.org. In developing a plan for producing a new software infrastructure capable of
supporting exascale applications, we charted a path that moves through the following sequence of
objectives:

1. Make a thorough assessment of needs, issues and strategies: A successful plan in this arena
requires a thorough assessment of the technology drivers for future peta/exascale systems and of
the short-term, medium-term and long-term needs of applications that are expected to use them.
The IESP workshops brought together a strong and broad based contingent of experts in all areas
of HPC software infrastructure, as well as representatives from application communities and
vendors, to provide these assessments. As described in more detail below, we also leveraged the
substantial number of reports and other material on future science applications and HPC
technology trends that different parts of the community have created in the past three years.

2. Develop a coordinated software roadmap: The results of the group’s analysis have been
incorporated into a draft of a coordinated roadmap intended to help guide the open source
scientific software infrastructure effort with better coordination and fewer missing components.
This document represents the first relatively complete version of that roadmap.

3. Provide a framework for organizing the software research community: With a reasonably stable
version of the roadmap is in hand, we will endeavor to develop an organizational framework to
enable the international software research community to work together to navigate the roadmap
and reach the appointed destination – a common, high quality computational environment that
can support extreme scale science on extreme scale systems. The framework will include
elements such as initial working groups, outlines of a system of governance, alternative models
for shared software development with common code repositories, feasible schemes for selecting
valuable software research and incentivizing its translation into usable, production-quality
software for application developers, etc. This organization must also foster and help coordinate
R&D efforts to address the emerging needs of users and application communities.

4. Engage and coordinate vendor community in crosscutting efforts: To leverage resources and
create a more capable software infrastructure for supporting exascale science, the IESP is
committed to engaging and coordinating with vendors across all of its other objectives. Industry
stake holders have already made contributions to the workshops (i.e. objectives 1 and 2 above)
and we expect similar, if not greater participation in the effort to create a model for cooperation
and coordinated R&D programs for new exascale software technologies.

5. Encourage and facilitate collaboration in education and training: The magnitude of the changes
in programming models and software infrastructure and tools brought about by the transition to
peta/exascale architectures will produce tremendous challenges in the area of education and
training. As it develops its model of community cooperation, the IESP plan must, therefore, also
provide for cooperation in the production of education and training materials to be used in
curricula, at workshops and on-line.

This roadmap document, which essentially addresses objectives 1 and 2 above, represents the main result
of the first phase of the planning process. Although some work on tasks 3-5 has already begun, we plan
to solicit, and expect to receive in the near future, further input on the roadmap from a much broader set
of stakeholders in the Computational Science community. The additional ideas and information we
gather as the roadmap is disseminated are likely produce changes that need to be incorporated into future

Draft 0.93 18Nov09

www.exascale.org 4

iterations of the document as plans for objectives 3-5 develop, and cooperative research and development
efforts begin to take shape.

2. The Destination of the IESP Roadmap
The metaphor of the roadmap is intended to capture the idea that we need a representation of the world,
drawn from our current vantage point, in order to better guide us from where we are now to the
destination we want to reach. Such a device is all the more necessary when a large collection of people,
not all of whom are starting from precisely the same place, need the make the journey. In formulating
such a map, agreeing on a reasonably clear idea of the destination is obviously an essential first step.
Building on the background knowledge that motivated the work of IESP participants, we define the goal
that roadmap is intended to help our community reach as follows:

By developing and following the IESP roadmap, the international scientific software research
community seeks to create an common, open source software infrastructure for scientific
computing that enables leading edge science and engineering groups to develop applications that
exploit the full power of the exascale computing platforms that will come on-line in the 2018-2020
timeframe. We call this integrated collection of software the extreme-scale/exascale software stack,
or X-stack.

Unpacking the elements of this goal statement in the context of the work done so far by the IESP reveals
some of the characteristics that the X-stack must possess, at minimum:

 The X-stack must enable suitably designed science applications to exploit the full resources of the
largest systems: The main goal of the X-stack is to support groundbreaking research on
tomorrow’s exascale computing platforms. By using these massive platforms and X-stack
infrastructure, scientists should be empowered to attack problems that are much larger and more
complex, make observations and predictions at much higher resolution, explore vastly larger data
sets and reach solutions dramatically faster. To achieve this goal, the X-stack must enable
scientists to use the full power of exascale systems.

 The X-stack must scale both up and down the platform development chain: Science today is done
on systems at a range of different scales, from departmental clusters to the world’s largest
supercomputers. Since leading research applications are developed and used at all levels of this
platform development chain, the X-stack must support them well at all these levels.

 The X-stack must be highly modular, so as to enable alternative component contributions: The
X-stack is intended to provide a common software infrastructure on which the entire community
builds its science applications. For both practical and political reasons (e.g. sustainability, risk
mitigation, etc.), the design of the X-stack should strive for modularity that makes it possible for
many groups to contribute and accommodate more than one alternative in each software area.

 The X-stack must offer open source alternatives for all components in the X-stack: For both
technical and mission oriented reasons, the scientific software research community has long
played a significant role in the open source software movement. Continuing this important
tradition, the X-stack will offer open source alternatives for all of its components, even though it
is clear that exascale platforms from particular vendors may support, or even require, some
proprietary software components as well.

3. Technology trends and their impact on exascale
The design of the extreme scale platforms that are expected to become available in 2018 will represent a
convergence of technological trends and the boundary conditions imposed by over half a century of
algorithm and application software development. Although the precise details of these new designs are
not yet known, it is clear that they will embody radical changes along a number of different dimensions as

Draft 0.93 18Nov09

www.exascale.org 5

compared to the architectures of today’s systems, and that these changes will render obsolete the current
software infrastructure for large scale scientific applications. The first step in developing a plan to ensure
that appropriate system software and applications are ready and available when these systems come on
line, so that leading edge research projects can actually use them, is to carefully review the underlying
technological trends that are expected to have such a transformative impact on computer architecture in
the next decade. These factors and trends, which we summarize in this section, provide essential context
for thinking about the looming challenges of tomorrow’s scientific software infrastructure, therefore
describing them lays the foundation upon which subsequent sections this roadmap document builds.

3.1 Technology trends:
In developing a roadmap for X-stack software infrastructure, the IESP has been able to draw upon several
thoughtful and extensive studies of impacts of the current revolution in computer architecture [4, 6]. As
these studies make clear, technology trends over the next decade – broadly speaking, increases of 1000X
in capability over today’s most massive computing systems, in multiple dimensions, as well as increases
of similar scale in data volumes – will force a disruptive change in the form, function, and interoperability
of future software infrastructure components and the system architectures incorporating them. The
momentous nature of these changes can be illustrated for several critical system level parameters:

 Concurrency– Moore’s Law scaling in the number of transistors is expected to continue through
the end of the next decade, at which point the minimal VLSI geometries will be as small as five
nanometers. Unfortunately, the end of Dennard scaling means that clock rates are no longer
keeping pace, and may in fact be reduced in the next few years to reduce power consumption. As
a result, the exascale systems on which the X-stack will run will likely be composed of hundreds
of millions of ALUs. Assuming there are multiple threads per ALU to cover main-memory and
networking latencies, applications may contain ten billion threads.

 Reliability – System architecture will be complicated by the increasingly probabilistic nature of
transistor behavior due to reduced operating voltages, gate oxides, and channel widths/lengths
resulting in very small noise margins. Given that state-of-the-art chips contain billions of
transistors and the multiplicative nature of reliability laws, building resilient computing systems
out of such unreliable components will become an increasing challenge. This can not be cost-
effectively addressed with pairing or TMR, and will must be addressed by X-stack software and
perhaps even scientific applications.

 Power consumption – Twenty years ago, HPC systems consumed less than a Megawatt. The
Earth Simulator was the first such system to exceed 10MW. Exascale systems could consume
over 100MW, and few of today’s computing centers have either adequate infrastructure to deliver
such power or the budgets to pay for it. The HPC community may find itself measuring results in
terms of power consumed, rather than operations performed, and the X-stack and the applications
it hosts must be conscious of this and action to minimize it.

Similarly dramatic examples could be produced for other key variables, such as storage capacity,
efficiency and programmability.

More importantly, a close examination shows that changes in these parameters are interrelated and not
orthogonal. For example, scalability will be limited by efficiency, as are power and programmability.
Other cross correlations can also be perceived through analysis. The DARPA Exascale Technology Study
[4] exposes power as the pace setting parameter. Although an exact power consumption constraint value
is not yet well defined, with upper limits of today’s systems on the order of 5 Megawatts, increases of an
order of magnitude in less than 10 years will extend beyond the practical energy demands of all but a few
strategic computing environments. A politico-economic pain threshold of 25 Megawatts has been
suggested (by DARPA) as a working boundary. With dramatic changes to core architecture design,
system integration, and programming control over data movement, best estimates for CMOS based

Draft 0.93 18Nov09

www.exascale.org 6

systems at the 11 nanometer feature size is a factor of 3 to 5X this amount. One consequence is that clock
rates are unlikely to increase substantially in spite of the IBM Power architecture roadmap with clock
rates between 0.5 and 4.0 GHz a safe regime and a nominal value of 2.0 GHz appropriate, at least for
some logic modules. Among the controversial questions is how much instruction level parallelism (ILP)
and speculative operation is likely to be incorporated on a per processor core basis and the role of
multithreading in subsuming more of the fine grain control space. Data movement across the system,
through the memory hierarchy, and even for register-to-register operations will likely be the single
principal contributor to power consumption, with control adding to this appreciably. Since future systems
can ill afford the energy wasted by data movement that does not advance the target computation,
alternative ways of hiding latency will be required in order to guarantee, as much as possible, the utility of
every data transfer. Even taking into account the wastefulness of today’s conventional server-level
systems, and the energy gains that careful engineering has delivered for systems such as Blue Gene/P, an
improvement on the order of 100X, at minimum, will still be required.

As a result of these and other observations, exascale system architecture characteristics are beginning to
emerge, though the details will only become clear as the systems themselves actually develop. Among the
critical aspects of future systems, available by the end of the next decade, which we can predict with some
confidence are the following:

 Feature size of 22 to 11 nanometers, CMOS in 2018

 Total average of 25 Pico-joules per floating point operation

 Approximately 10 billion-way concurrency for simultaneous operation and latency hiding

 100 million to 1 billion cores

 Clock rates of 1 to 2 GHz (this is approximate with a possible error of a factor of 2)

 Multi-threaded fine grain concurrency of 10 to 100 way concurrency per core

 100’s of cores per die (varies dramatically depending on core type, and other factors)

 Global address space without cache coherence; extensions to PGAS (e.g., AGAS)

 128 Petabytes capacity mix of DRAM and nonvolatile memory (most expensive subsystem)

 Explicitly managed high speed buffer caches; part of deep memory hierarchy

 Optical communications for distances > 10 centimeters, possibly inter-socket

 Optical bandwidth of 1 Terabit per second (+/- 50%)

 System-wide latencies on the order of 10’s of thousands of cycles

 Active power management to eliminate wasted energy by momentarily unused cores

 Fault tolerance by means of graceful degradation and dynamically reconfigurable structures

 Hardware supported rapid thread context switching

 Hardware supported efficient message to thread conversion for message-driven computation

 Hardware supported lightweight synchronization mechanisms

 3-D packaging of dies for stacks of 4 to 10 dies each including DRAM, cores, and networking

3.2 Science trends:
The complexity of advanced challenges in science and engineering continues to outpace our ability to
adequately address them through available computational power. Many phenomena can only be studied
through computational approaches; well-known examples include simulating complex processes in

Draft 0.93 18Nov09

www.exascale.org 7

climate and astrophysics. Increasingly, experiments and observational systems are finding that the data
they generate are not only exceeding petabytes and rapidly heading towards exabytes, but the
computational power needed to process the data are also expected to be in exaflops range.

A number of reports and workshops have identified key science challenges and applications of societal
interest that require computing at exaflops levels and beyond [1, 2, 5:, 2008 #1119, 8]. Here we only
summarize some of the significant findings on the scientific necessity exascale computing, and focus
primarily on the need for the software environments needed to support the science activities. The US
Department of Energy held eight workshops in the past year that identified science advances and
important applications that will be enabled through the use of exascale computing resources. The
workshops covered the following topics: climate, high-energy physics, nuclear physics, fusion energy
sciences, nuclear energy, biology, materials science and chemistry, and national nuclear security. The US
National Academy of Sciences published the results of a study in the report “The Potential Impact of
High-End Capability Computing on Four Illustrative Fields of Science and Engineering” [5]. The four
fields were astrophysics, atmospheric sciences, evolutionary biology, and chemical separations.

Likewise, the US National Science Foundation has embarked on a petascale computing program that has
funded dozens of application teams through its Peta-Apps and PRAC programs, across all areas of
science and engineering, to develop petascale applications, and is deploying petaflops systems, including
Blue Waters, expected to come online in 2011. It has commissioned a series of task forces to help it plan
for the transition from petaflops to exaflops computing facilities, to support the software development
necessary, and to understand the specific science and engineering needs beyond petascale.

Similar activities are seen in Europe and Asia, all reaching similar conclusions: there are significant
scientific and engineering challenges in both simulation and data analysis that are already exceeding
petaflops and are rapidly approaching exaflops class computing needs. In Europe the Partnership for
Advanced Computing in Europe (PRACE) involves twenty partner countries and supports access to
world-class computers and has activities aimed at supporting multi-petaflops and eventually exaflops-
scale systems for science. The European Union is also planning to launch projects aimed at petascale and
exascale computing and simulation. Japan has a project to build a 10 petaflops system and has historically
supported the development of software for key applications such as climate. As a result, scientific and
computing communities, and the agencies that support them in many countries, have been meeting to plan
out joint activities that will be needed to support these emerging science trends.

To give a specific and very timely example, a recent report1 states that the characterization of abrupt
climate change will require sustained exascale computing in addition to new paradigms for climate
change modeling. The types of questions that could be tackled with exascale computing (and cannot be
tackled adequately without it) include:

 ¨How do the carbon, methane, and nitrogen cycles interact with climate change?

 ¨How will local and regional water, ice, and clouds change with global warming?

 ¨How will the distribution of weather events, particularly extreme events, that determine regional
climate change with global warming?

 ¨What are the future sea level and ocean circulation changes?

Among the findings of the astrophysics workshop and other studies are that exascale computing will
enable cosmology and astrophysics simulations aimed at

 Measuring the masses and interactions of dark matter

 Understanding and calibrating supernovae as probes of dark energy

1 Science Prospects and Benefits of Exascale Computing, ORNL/TM-2007/232, December 2007, page 9,
http://www.nccs.gov/wp-content/media/nccs_reports/Science%20Case%20_012808%20v3__final.pdf

Draft 0.93 18Nov09

www.exascale.org 8

 Determining the equation of state of dark energy

 Measuring the masses and interactions of dark matter

 Understanding the nature of gamma-ray bursts

Energy security. The search for a path forward in assuring sufficient energy supplies in the face of a
climate-constrained world faces a number of technical challenges, ranging from the obvious issues related
to novel energy technologies to issues related to making existing energy technologies more
(economically) effective and safer, to issues related to the verification of international agreements
regarding the emission (and possible sequestration) of CO2 and other greenhouse gases. Among the
science challenges are

 Verification of “carbon treaty” compliance

 Improving the safety, security & economics of nuclear fission

 Improve the efficacy of carbon-based electricity production & transportation

 Improve reliability and security in (electric) grid

 Nuclear fusion as practical energy source

Computational research will also play an essential role in the development of new approaches to meeting
future energy requirements, e.g., wind, solar, biomass, hydrogen, geothermal, etc., in many cases
requiring exascale power.

Industrial applications, such as simulation-enhanced design and production of complex manufactured
systems and rapid virtual prototyping, will also be enabled by exascale computing. To characterize
materials deformation and failure in extreme conditions will require atomistic simulations on engineering
time scales that are out of reach with petascale systems.

A common theme in all of these studies of the important science and engineering applications that are
enabled by exaflops computing power is that they have complex structures and present programming
challenges beyond just scaling to many millions of processors. For example, many of these applications
involve multiple physical phenomena spanning many decades of spatial and temporal scale. As the ratio
of computing power to memory grows, the “weak scaling” which has been exploited for most of the last
decade will increasingly give way to “strong scaling”, which will make scientific applications
increasingly sensitive to overhead and noise generated by the X-stack. These applications are
increasingly constructed of components developed by computational scientists worldwide, and the X-
stack must support the integration and performance portability of such software.

3.3 Relevant Politico-economic trends
The HPC market is growing at approximately 11% per year. The largest scale systems, those that will
support the first exascale computations at the end of the next decade, will be deployed by government
computing laboratories to support the quest for scientific discovery. These capability computations often
consume an entire HPC system and pose very difficult challenges for concurrent programming,
debugging and performance optimization. Thus, publicly-funded computational scientists will be the first
users of the X-stack, and have a tremendous stake in seeing that suitable software exists, which is the
raison d’être for IESP.

In the late 1980s, the commercial engineering market place, spanning diverse fields such as computer
aided engineering and oil reservoir modeling, used the same computing platforms and often the same
software as the scientific community. This is no longer the case. The commercial workload tends to be
more capacity oriented, involving large ensembles of smaller computations. The extreme levels of
concurrency necessary for exascale computing suggests that this trend will not change, and that there will

Draft 0.93 18Nov09

www.exascale.org 9

be little demand for those features of the X-stack unique to exascale computing from commercial HPC
users.

3.4 Key requirements that these trends impose on the X-stack
The above trends in technology and applications will impose severe constraints on the design of the X-
stack. Below are crosscutting issues that will impact all aspects of system software and applications at
exascale.

 Concurrency: A 1000x increase in concurrency for a single job will be necessary achieve
exascale throughput. New programming models will be needed to enable application groups to
address concurrency in a more natural way. This will likely have to include “strong scaling” as
growth in the volume of main memory won’t match that of the processors. This in turn will
require minimizing any X-stack overheads that might otherwise become a critical Amdahl
fraction.

 Energy: As much of the power in an exascale system will be expended moving data, both locally
between processors and memory as well as globally, the X-stack must provide mechanisms and
APIs for expressing and managing data locality. This will also help minimize the latency of data
accesses. APIs also should be developed to allow applications to suggest other energy saving
techniques, such as turning cores on and off dynamically, even though these techniques could
result in other problems, such as more faults/errors.

 Resiliency: The VLSI devices from which exascale systems will be constructed will not be a
reliable as those used today. All software, and therefore every application, will have to address
resiliency in a thoroughgoing way if it is to be expected to run at scale. This means that the X-
stack will have to recognize and adapt to errors continuously, and provide the support necessary
for applications to do the same.

 Heterogeneity: Heterogeneous systems offer the opportunity to exploit the extremely high
performance of niche market devices such as GPUs and game chips (i.e., STI Cell) while still
providing a general purpose platform. An example of such system today is Tokyo Tech’s
Tsubame, which incorporates AMD Opteron CPUs along with Clearspeed and Nvidia
accelerators. Simultaneously, large-scale scientific applications are also become more
heterogeneous, address problems multi-scale problems spanning multiple disciplines.

 I/O and Memory: Insufficient I/0 capability is a bottleneck today. Ongoing developments in
instrument construction and simulation design make it clear that data rates can be expected to
increase by several orders of magnitude over the next decade. The memory hierarchy will change
based on both new packaging capabilities and new technology. Local RAM and NVRAM will be
available either on or very close to the nodes. The change in memory hierarchy will affect
programming models and optimization.

4. Formulating paths forward for X-stack component

technologies:

In this section of the roadmap, the longest and most detailed, we undertake the difficult task of translating
the critical system requirements for the X-stack, presented in section three, into concrete
recommendations for research and development agendas for each of the software areas and necessary
components of the X-stack. The roadmapping template we used roughly follows the approach described
in the excellent study from Sandia National Laboratory by Garcia and Bray [3]. Accordingly, the
discussion of each component or area is divided in the following parts:

Draft 0.93 18Nov09

www.exascale.org 10

 Technology and science drivers: The implications of the critical technology trends and science
requirements must be described and analyzed for each software area and/or component of the X-
stack. These impacts represent technology and science drivers for each such each area/component
of the X-stack, and each must be evaluated in terms of how well or poorly current technologies
address the target requirements and where the obstacles to progress lie.

 Alternative R&D strategies: Once the technology and science drivers are identified and studied,
the different possible lines of attack on the problems and challenges involved, in so far as we can
see them today, need to be described and explored.

 Research and development agenda recommendations: Finally, the alternative R&D strategies
in each area need to be evaluated and ranked, and actual plans, including specific milestones,
must be drawn up. Clearly these plans must take into account a variety of factors, many of which
have been (or should be) described elsewhere in the roadmap.

 Crosscutting Considerations: In many of these different parts of the X-stack, there will be
interdependencies and crosscutting effects related to other component areas; allusions to these
effects are likely to be laced or scattered through the previous three subsections. In many cases be
desirable to break out a summary of these considerations as a separate section in order to
highlight gaps or to insure that activities are suitably coordinated. This version of the Roadmap
focuses on four such crosscutting areas: resiliency, power/Total-Cost-of-Ownership, performance
and programmability.

4.1 Systems Software

The system software list is often described as that software that manages system resources on behalf of
the application, but is usually transparent to the user. For the purposes of mapping the road to a viable X-
stack, we include under this heading the operating system, run time system, I/O system, and essential
interfaces to the external environment, (e.g. data repositories, real time data streams and clouds). Each of
these areas is treated in turn below.

4.1.1 Operating systems

Contributors: Barney Maccabe (ORNL), Pete Beckman (ANL), Fred Johnson (DOE)

4.1.1.1 Technology drivers for Operating Systems

Increasing importance of effective management of increasingly complex resources – Exascale systems
will increase the complexity of resources available in the system. Moreover, to attain the benefits offered
by an exascale system, there will be an increasing importance in the effective management of these
resources.

As an example, consider the execution environment presented by an Exascale system. Current systems
provide hundreds of thousands of nodes with a small number of homogeneous computational cores per
node. Exascale systems will increase the complexity of the computational resource in two dimensions:
First, the core count per node will increase substantially. Second, it is all but certain that the cores will be
heterogeneous (e.g., combining stream based cores with traditional cores based on load/store). In addition
to increasing the complexity of the computational resources, the resources shared between the
computational resources (e.g., the memory bus) can have a far greater impact on performance.

In addition to the increasing changes in the resources provided by an exascale system, the programming
models will undergo an equivalent evolution. In particular, non-MPI programming models will
undoubtedly have increasing presence in exascale systems. The only trends that are clear at the present
time is there will be an increasing emphasis on data-centric computations and that programming models
will continue to emphasize the management of distributed memory resources. Given the evolution in
programming models, we can also expect that individual applications will incorporate multiple

Draft 0.93 18Nov09

www.exascale.org 11

programming models. For example, a single application may incorporate components that are based on
MPI and other components that are based on shmem. The particular combination of programming models
may be distributed over time (different phases of the application) or space (some of the nodes run MPI;
others run shmem).

The purpose of an operating system is to provide a bridge between the physical resources provided by a
computing system and the runtime system needed to implement a programming model. Given the rapid
change in resources and programming models, it is essential that we define a common operating system
for the Exascale community. This will provide developer with a common set of APIs for the basis of
their runtime systems. Moreover, it will provide the developers of Exascale systems with a common
framework for exposing unique resources.

The ultimate goal of this Exascale community operating system is to provide a common API that could be
used by a runtime system to support fully autonomic management of resources, including adaptive
management policies that identify and react to load imbalances and the intermittent loss of resources
(resilience). This requires that the APIs supported by the operating system expose low-level resource
APIs and that the runtime is aware of the context (within the application) of a specific computation.

4.1.1.2 Alternative R&D strategies for Operating Systems

There are several approaches that could be adopted in the development of a community OS for Exascale
systems. One approach is to evolve an existing OS, e.g., Linux, Plan 9, IBM’s Compute Node Kernel.
An alternate approach is to start with a new design to address the specific needs of Exascale systems. The
first approach has the advantage that the APIs provided by the OS have already been defined and there are
many runtime implementations that have already been developed for the APIs. Moreover, these operating
systems also provide drivers for many of the devices that will be used in Exascale systems (e.g., the PCI
bus). However, because the APIs are based on the resources provided by previous systems (many of
these operating systems were defined nearly a half century ago), they may not provide the appropriate
access to the resources provide by an Exascale system. In the end, it is likely that a hybrid approach,
which builds on APIs and existing code bases and redesigns and modifies the most specialized
components will prevail.

It is essential that the operating system maintain a high degree of flexibility. This can only be
accomplished by minimizing the resource management strategies that are required by the operating
system.

4.1.1.3 Recommended Research Agenda for Operating Systems

The first step in the development of a common OS for the Exascale community is to develop a framework
for the OS, i.e., to complete the initial designs that will provide the foundation for the community OS.
This should be undertaken by a small collection of researchers in the HPC-OS community who have
significant experience with the implementation of HPC operating systems.

One of the critical challenges in developing HPC operating systems is our inability to study the impact of
resource management decisions “at scale.” To remedy this problem, we will need to develop a full
system simulation capability. There are a number of efforts currently underway that address parts of the
full system simulation capability; however, these efforts need to be coordinated to ensure that they
provide the needed capability.

The most critical APIs provided by the community OS will include APIs to support inter- and intra-node
communication, inter- and intra-node thread management, and explicit management of the memory
hierarchy provided by the entire system. APIs to support energy management and resilience will also be
critical; however, these APIs require more experience and, as such, their final definition should be
deferred until the final stages of this research activity.

Draft 0.93 18Nov09

www.exascale.org 12

The critical research areas in which substantial, if not ground breaking, innovations will be required in
order to reach this goal are the following:

 Fault tolerant/masking strategies for collective OS services

 Strategies and mechanisms for power/energy management

 Strategies for simulating full-scale systems

 General strategies for global (collective) OS services

Time Frame Targets and Milestones – Operating Systems

2010-11
Community defined framework for HPC operating systems. This framework will
define a set of core components and course grained APIs for accessing the resources
provided by an HPC system.

2012-13 Scalable, full-system simulation environment. A full system simulation environment
that can be used to evaluate resource management mechanisms at scale.

2014-15 APIs for fine-grained management of inter-node communication, thread
management, and memory hierarchy management.

2016-17 APIs for fine grained management of power (energy) and resilience.

2018-19
At least one runtime system that provides global, autonomic management of the
resources provided by an HPC system. This runtime system should provide for
transparent resilience in the presence of failing resources.

4.1.2 Runtime Systems

Contributors: Jesus Labarta (BSC, ES), Rajeev Thakur (ANL), Shinji Sumimoto (Fujitsu)

4.1.2.1 Technology and Science drivers for Runtime Systems

The role of a runtime system is to act on behalf of the application in matching its algorithm’s
characteristics and requirements to the resources that the system makes available in order to optimize
performance and efficiency. By programming to the runtime system’s interface, application developers
are freed from the mundane, but often difficult jobs of task scheduling, resource management and other
low level operations that would otherwise force them to think about the computer rather than the science
that they are trying to do. As description of the technology trends and science requirements above should
suggest, it will be extremely challenging to create runtime systems that can continue to fulfill this. The
design of tomorrow’s runtime systems will be driven not only by dramatic increases in overall system
hierarchy and high variability in the performance and availability of hardware components, but also by
the expected diversity application characteristics, the multiplicity of different types of devices, and the
large latencies caused by deep memory subsystems. Against this background, two general constraints on
design and operation of X-stack runtime systems need to be highlighted: power/energy constraints and
application development cost. The first constraint establishes the objective for X-stack runtimes as
maximizing the achieved ratio of performance to power/energy consumption, instead of raw performance
alone. The second constraint means that X-stack runtimes must focus on supporting the execution of the
same program at all levels of the platform development chain, which is in line with the basic criteria for
X-stack success (sec. 2).

The runtime system is the part of the software infrastructure where actual and more accurate information
is available about system resource availability and performance; thus this component has the potential to
make better-informed decisions on behalf of the application. To achieve this goal, however, and
successfully insulate application programmers from the complexities of extreme scale platforms, X-stack
runtimes will have to incorporate much more intelligence than current technologies support. The real

Draft 0.93 18Nov09

www.exascale.org 13

challenge will be to use this added intelligence affectively in the limited timeframe that is typically
available at while the application runs.

4.1.2.2 Alternative R&D strategies for Runtime Systems

Several directions can and should be tried in order to create X-stack runtimes that achieve the targeted
scale. The most obvious division of alternatives is in terms of degree of hierarchy, i.e. between
alternatives that follow a flat runtime model (i.e., message passing), and those that follow a hierarchical
model (e.g, shared memory within a node and message passing across nodes). In the latter case, the
runtime hierarchy can have the same underlying model at different levels or use different models at
different levels. Flat and hierarchical alternatives are not totally opposed in direction as the hybrid
approach can certainly benefit from the flat approach pushing its capabilities to the limits. Another set of
alternatives to explore general-purpose runtime systems, on the one hand, and application type/area
specific (or customizable) runtime systems, capable of more effectively exploiting platform resources
relative to special sets of needs, the other.

4.1.2.3 Recommended Research Agenda for Runtime Systems

Different topics are identified as challenging research topics, including heterogeneity, asynchrony,
reduction of process management and synchronization overheads, provision of shared naming/addressing
spaces, optimization of communication infrastructure, scheduling for parallel efficiency and memory
efficiency, memory management, and application specific customizability.

These topics can be grouped in four priority research directions:

 Heterogeneity:

o Research challenge: X-stack runtime systems will have to work on several different
platforms, each of them heterogeneous, and this will certainly prove challenging. The
objective will be to optimize the application’s utilization of resources for best
power/performance by helping the application adapt to and the exploit the level of granularity
supported by the underlying hardware.

o Anticipated research directions: unified/transparent accelerator runtime models; exploitation
of systems with heterogeneous (functionality/performance) nodes and interconnects;
scheduling for latency tolerance and bandwidth minimization; and adaptive selection of
granularity. This type of research is also expected to be useful for homogeneous multicores.

o Impact: Research in this dimension broaden the portability of programs, decoupling the
specification of the computations from details of the underlying hardware, thereby allowing
programmers to focus more exclusively on their science.

 Load balance:

o Research challenge: A key challenge is to adapt to the unavoidable variability in time and
space (processes/processors) of future applications and systems. This will have to be done
with the objective of optimizing resource utilization and execution time.

o Anticipated research directions: general purpose self tuned runtimes that detect imbalance
and reallocate resources (e.g. cores, storage, DVFS, bandwidth) within/across processes and
other entities at the different level(s); virtualization based mechanisms to support load
balancing; minimization of the impact of temporary resource shortages, such as those caused
(at different granularity levels) by OS noise, partial job preemptions, etc.

o Impact: research in this direction will result in self-tuned runtimes that will counteract at fine
granularity unforeseen variability in application load and availability and performance of
resources, thus reducing the frequency at which more expensive application-level rebalancing

Draft 0.93 18Nov09

www.exascale.org 14

approaches will have to be used. Globally, this will significantly reduce the effort requested
to the programmers to achieve efficient resource utilization and make sure that the resources
that cannot be profitably used are returned to the system to be reallocated.

 Flat runtimes:

o A key challenge is to try and increase the scalability of existing and proposed models with
respect to the resources required for their implementation and the overheads they incur. This
includes the need to optimize the utilization that is presently achieved of internal resources
such as adaptors and communication infrastructure. Also, typical practices today where
globally synchronizing calls (barriers, collectives) represent big limitations at large scale will
have to be addressed.

o Foreseen research directions are: optimization of resources/infrastructure needed for the
implementation of the runtime (e.g., memory used by message passing libraries, overheads
for process management and synchronization) and increased usage of prediction techniques to
accelerate the runtime, or at least introduction of high levels of asynchrony and
communication/computation overlap (i.e., asynchronous MPI collectives, APGAS
approaches, data-flow task based approaches); provide hierarchical implementations of flat
models (e.g., thread based MPI, optimization of collective operations) ; adapt communication
subsystems to application characteristics (routing, mapping, RDMA, etc.)

o Impact: research in this direction will result in increased scalability of basic models.
Techniques developed here will also be beneficial for the hierarchical approach. Globally,
this will extend the lifespan of existing codes and will help absorb the shock that the
transition to exascale represents.

 Hierarchical/hybrid runtimes:

o A key challenge is how to properly match the potentially different semantics of the models at
different levels as well as to ensure that the scheduling decisions taken at each of them have
positive interference. This matching between models must also consider the actual matching
of the execution to the underlying hardware structure and ensure an efficient utilization of the
resources for any target machine. Constraining the size of the name/address spaces (i.e. ranks,
amount of shared state) while still providing a fair level of concurrency/flexibility within each
level is one of the challenges that motivates the hierarchical approach.

o Foreseen research directions are: experimentation on different hierarchical integrations of
runtimes to support models, such as MPI+other threading or task based models, threading
models+accelerators, MPI+threading+accelerators, MPI+PGAS, and hierarchical task-based
models with very different task granularities at each level. Techniques to support
encapsulation, modularity, and reuse; selection of appropriate number of entities
(processes/threads) at each level in the hierarchy and the mapping to actual hardware
resources; automatic memory placement, association, and affinity scheduling.

o Impact: research in this direction will result in effectively matching the execution to the
available resources. It will enable smooth migration paths from today’s flat codes

4.1.2.4 Recommended Research Agenda

Time Frame Targets and Milestones – Runtime Systems

2010-11

Asynchrony/overlap: Demonstrate for both flat and hierarchical models 3x (??)
scalability for strong scaling situations where efficiency would otherwise be very low
(i.e. 30%)
Why: Fighting variance is a lost battle, learn to live with it. Synchronous behavior is

Draft 0.93 18Nov09

www.exascale.org 15

extremely sensitive to variance and does not forgive communication delays

2012-13

Heterogeneity: Demonstrate that “same” code can be run on different heterogeneous
systems.
Locality aware scheduling: demonstrate that automatic locality aware scheduling can
get a factor of 5x (??) in highly NUMA memory architectures.
Why: By then, everybody will have experienced that rewriting the same application
for every new platform is not a viable alternative. Machines will have deep,
noncoherent memory hierarchies and we have to demonstrate we know how to use
them.

2014-15

Optimizing runtime: general purpose runtime automatically achieving load balance,
optimized network usage and communication/computation overlap, minimize
memory consumption at large scale, maximization of performance to power ratio,
malleability, tolerance to performance noise/interference, and on heterogeneous
systems.
Why: Complexity of systems will require automatic tuning support to optimize the
utilization of resources, which will not be feasible by static, user-specified schedules
and partitionings.

2016-17

Fault tolerant run time: tolerating injections rates of 10 errors per hour. (cooperating
with application provided information and recovery mechanisms for some errors)
Why: by then systems will have frequent failures and it will be necessary to
anticipate and react to them in order that the application deliver useful results.

2018-19

Fully decoupling run time: dynamically handling all types of resources such as cores,
bandwidth, logical and physical (i.e. controlling replication of data, coherency and
consistency, changes in the layout as more appropriate for the specific
cores/accelerators).
Why: underlying system complexity and application complexity that will have to be
matched in a very dynamic environment.

4.1.2.5 Crosscutting considerations

The runtime functionality interacts with all cross cutting areas.

 Power management: The runtime will be responsible for measuring the application performance
and decide the appropriate setups (frequency and voltage, duty cycles, etc.) for the knobs that the
underlying hardware will provide.

 Performance: The runtime will have to be instrumented to provide detailed information to
monitoring systems such that they can report appropriate measurements to upper levels of the
resource management infrastructure (ie. job scheduler) or to the user. The runtime will also need
monitoring information about the performance of the computational activity of the application to
take decisions of most appropriate resource for them or to select the appropriate power mode.

o Resilience: The runtime will be responsible for implementing some fine grain mechanisms
(ie. reissue failed tasks, control speculative state) as well as to decide when to fire coarse
grain mechanisms and the actual amount of state they should handle.

 Programmability: The runtime will have to implement the features needed to support the various
programming models used on exascale systems

Global coordination between levels (architecture, runtime, compiler, job schedulers, etc.) is needed.

Draft 0.93 18Nov09

www.exascale.org 16

4.1.3 I/O systems

Contributors: Alok Choudhary (Northwestern U.), Yutaka Ishikawa (U. of Tokyo, JP)

4.1.3.1 Technology and Science drivers for I/O Systems

There are many technology and science drivers for I/O systems ranging from architectural alternatives for
I/O systems, the underlying application requirements or purpose for doing I/O, I/O software stack, the
expected capabilities of the devices and fault resiliency. The data management (discussed in detail in the
Scientific Data Management Section), life-cycle, its future usage and availability also have influence on
how I/O system software should be designed. Given the current state of I/O and storage systems in
petascale systems, incremental solutions in most aspects are unlikely to provide the required capabilities
in exascale systems. I/O architectures, when designed as separate and independent components from the
compute infrastructure have already shown not to be scalable as needed. That is, traditionally, I/O has
been considered as a separate activity which is performed before or after the main simulation or analysis
computation, or periodically for activities such as checkpointing, but still as separate overhead. This
mindset in designing architectures, software and applications must change if true potential of exascale
systems is to be exploited. I/O should be considered an integral activity to be optimized while architecting
the system and the underlying software. File systems, that have mainly been adapted from the legacy
(sequential) file systems, with overly constraining semantics are not scalable. Traditional interfaces in file
systems and storage systems, or even in some cases, higher level data libraries, are designed to handle the
worst-case scenarios for conflicts, synchronization, coherence; mostly ignoring the purpose of the I/O by
an application, which is an important source of information for scaling I/O performance when millions of
cores simultaneously access the I/O system. Emerging storage devices such as solid-state disks (SSDs) or
Storage Class Memories (SCM) have the potential to significantly alter the I/O architectures, systems,
performance and the software system to exploit them. These emerging technologies also have significant
potential to optimize power consumption. Resiliency of an application under failures in an exascale
system will depend significantly on the I/O systems, its capabilities, capacity and performance because
saving the state of the system in the form of checkpoints is likely to continue as one of the approaches.

4.1.3.2 Alternative R&D strategies for I/O Systems

There are many R&D strategies at different levels of the architecture and software stack (see below) that
can potentially address the above technology drivers and for exascale systems. The metrics of I/O systems
are performance, scalability, adaptability of applications, programmability, and fault resiliency.

1. Delegation and Customization within I/O Middleware: The best place for optimizing and scaling
I/O is the middleware within user space because that's where the most amount of semantic, data
distribution, data usage and access pattern information is available. The middleware is not only
for the single user space, but also cooperating with other user file I/O activities on the machine
so that the system-wide optimization could be performed. The concept of delegation within I/O
middleware entails the use of a small fraction of the system, on which the middleware exists
and runs within user space to perform I/O relation functions and optimizations on behalf of the
applications. Using the application requirements, it can perform intelligent and proactive
caching, data reorganization, optimizations, smoothening of I/O accesses from bursty to smooth
patterns. This approach can provide services to the applications in such a way that the
application can customize the resources used based on its requirements. The delegation and
customization approach also has the opportunity to perform various functions on data while it is
being produced or its preprocessing before it is consumed. The availability of multicore nodes
enable the opportunity to use one or more cores on each node to perform I/O services to using
an exclusive set of select nodes, providing a range of customization options including locality
enhancements.

Draft 0.93 18Nov09

www.exascale.org 17

2. Active Storage and Online Analysis: The concept of active storage is based on a premise that
modern storage architectures might include usable processing resources at the storage nodes that
can be exploited for performing various important tasks including data analysis, organization,
redistribution etc. This concept has a significant potential to help improve the performance and
knowledge discovery by exploiting the significant processing power within the caching and
delegate nodes or within the storage system. The potential use of significant more memory and
GPGPUs and FPGA types of accelerators for data reformatting, subsetting, analysis and
searching make it even more attractive. However, the potential for developing these should be
explored within the runtime middleware (e.g., MPI-IO or higher level libraries) or at the file
system layer. These layers should be modified to provide appropriate interfaces to enable this
capability. Online analytics can potentially reduce the need to store certain types of data if all
the necessary information and knowledge from this data can be derived while it is available.

3. Purpose-driven I/O Software Layers: The traditional homogeneous I/O interfaces do not
explicitly exploit the purpose of an I/O operation. A checkpointing I/O activity is different from
an I/O activity, which stores data for future analysis using some other access pattern. An
example of the latter is the use of data in analyzing a subset of variables along time axis.
Optimizations in the two activities may require different approaches by the software layers. The
software layers from file systems, middleware and high-level should be modified with
incorporation of these capabilities by exploiting the purpose of I/O.

4. Software Systems for Integration of Emerging Storage Devices: There is a significant potential of
emerging storage devices such as Solid-State Devices (SSD) and Storage Class Memories
(SCM) to improve performance, reduce power consumption, improve caching; and can
potentially reduce/eliminate explicit I/O activities and traffic on traditional disks if they are
transparently incorporated within the I/O software layers. Research and development of newer
I/O models, and different layers of software systems including file system and middleware
would be very important for the exploitation of these devices. Various approaches must be
investigated along with the various options of using these devices within the exascale
architecture (e.g., an SCM devices being part of each node's memory hierarchy to them being
part of a separate section (subset) of the architecture that have these devices). These alternatives
will have implications in how various layers are designed and optimized, and should be topics
for research and development. Furthermore, power optimizations approaches in software layers
should be explored.

5. Extend Current File Systems: In this approach, efforts may be made to extend current file systems
to address the parallelism and performance needed. However, given the current capabilities and
performance of these files systems, which are derived from conservative and reactive designs
and with strict sequential semantics, the chances of success of this approach are limited.

6. Develop New Approach to Scalable Parallel File Systems: Newer models, interfaces and
approaches, which are not limited by sequential semantics and consistency models, that
incorporate newer and highly scalable metadata techniques, that can exploit information
available from user and higher levels and that can incorporate newer storage devices and
hierarchies would be important.

7. Incorporate I/O into Programming Models and Languages: Language features and programming
model capabilities in which users can use the programming models and language to provide the
I/O requirements, access patterns and other high-level information, which can be further be used
by compilers to optimize I/O, pipeline I/O, and intelligently schedule I/O to maximize overlap
with other computations; and in which multicore architectures can be exploited to utilize cores
for enhancing I/O performance; specify online analysis functions on delegate systems of active
storage are important research areas.

Draft 0.93 18Nov09

www.exascale.org 18

8. Wide-Area I/O and integration of external Storage Systems: This topic has components within the
Scientific data management section. Scalable techniques are needed in which parallelism in
accessing storage devices is integrated with parallelism with network streaming. Also,
integrating parallel streaming of data over the network, using similar principles as those in
parallel I/O would be important.

4.1.3.3 Recommended Research Agenda I/O Systems

The recommended research agenda for I/O systems is all items above except item 5.

Time Frame Targets and Milestones – I/O Systems

2010-11
 I/O delegation concepts in various I/O software layers
 New abstractions and approaches to Parallel File Systems
 Protocols for parallel data transfers for wide-area I/O

2012-13

 Initial I/O Runtime and file system systems for SCM/SSD devices,
 Develop Purpose-driven I/O Software Layers
 I/O delegation optimizations including analytics and data processing capabilities
 Programming language and model constructs for I/O integration

2014-15

 Active Storage alternatives in runtime and file systems
 Customizable I/O APIs and implementations
 Tuned I/O API implementations demonstrated with new memory hierarchy

components that include SCM.
 Scalable tools with parallel I/O and parallel streaming for wide-area I/O

2016-17

 Newer Programming Models and Languages capabilities enabled for active
storage

 Fault resiliency and low power capabilities added in the I/O software layers
 Integration of Online Analysis within Active Storage architecture with new

storage devices (SCM)
 Protocol conversion capabilities for wide-area I/O

2018-19

 File systems and runtime software layers for Exascale I/O optimized for new
storage devices

 Power-performance optimization capabilities in I/O software layers
 Scalable software layers for wide-area I/O integrated with schedulers with

special-purpose protocols for external networks

4.1.3.4 Crosscutting considerations

The architecture of the systems in general and in particular for storage and I/O systems, and their use of
emerging devices will influence the I/O system software. Architectures should consider the issues
outlined above in designing the I/O systems. I/O related communication and storage device usage would
significantly influence power optimizations. The I/O system software clearly has implications on
resiliency, the schedulers, the operating systems and programming models and languages.

4.1.4 Systems Management

Contributors: Robert Wisniewski (IBM) and Bill Kramer (NCSA)

Systems management comprises a broad range of technical areas. We divided the topics into five areas to
be able to more tightly describe the challenges, research directions, and impact of each. The first area
was “Resource control and scheduling”. This is an area includes configuring, start-up and reconfiguring

Draft 0.93 18Nov09

www.exascale.org 19

the machine, defining limits for resource capacity and quality, provisioning the resources, and workflow
management. The second category is “Security” and includes authentication and authorization, integrity
of the system, data integrity, and detecting anomalous behavior and inappropriate use. The third category
is “Integration and test”. It involves managing and maintaining the health of the system and performing
continuous diagnostics. A related fourth category is “Logging, reporting, and analyzing information”.
The data consists of a static definition of machine (what hardware exists and how it is connected), the
dynamic state of the machine (what nodes are up, what jobs are running, how much power is being used),
RAS (Reliability, Availability, Serviceability) events (warning or error conditions, alerts), and session log
information (what jobs ran, how long, how much resource they consumed). The final category ,“External
coordination of resources”, is how the machine coordinates with external components, for example how
the HPC machine fits in a cloud. It comprises a common communication infrastructure, reporting errors
in a standardized way, and integrating with in a distributed computing environment.

4.1.4.1 Recommended Research Agenda for Systems Management

We group the five above described topics in three areas for defining needed deliverables by the
community. “Resource control and scheduling” and “External coordination of resources” is category 1,
“Security” is category 2, and “Integration and test” and “Logging, reporting, and analyzing information”,
is category 3.

4.1.4.2 Technology and Science Drivers for System Management

In addition to the fundamental drivers mentioned above (scale, component count, scale, failure rates, etc.)
there are additional technical challenges for System Management. The first challenge is the fact there is a
“real time” component to all system management tasks, albeit the time periods range from microseconds
to weeks. Whether it is “running the right task at the right time”, “getting the right data to the right place
at the right time”, getting an exascale system integrated and tested in a timely manner or responding to
attempted security compromises, all system management tasks have to be responsive. In the exascale
time the tasks also have to be automatous and proactive in order to stay within response limits.

Another driver for exascale system management is that the limited resources that have been used in
system resource control and scheduling for the giga to peta scale – is processors and computational
operations – are no longer the most constrained resource at exascale. DARPA studies listed in this report
document data movement, rather than computational processing, will be the constrained resource at
exascale. This is especially true when power and energy is taken into account as limiting design and total
cost of ownership criteria. Hence, resource control and management – and the utilization logs for
resources – has to change focus to communications and data movement. Today, most of the data
movement components of a system are shared and not scheduled while most of the computation resources
are controlled and dedicated to an application. That may not be the best solution going to exascale but we
do not know.

System management also has to ensure system integrity, a major factor of which is system security.
(Note security is used here in the sense of open system cyber security) Exascale systems will be so varied
and complex that in order to protect their correct operation, security features (such as authentication and
authorization, intrusion detection and prevention, data integrity) will have to be built into the many
components of the system. The “defense in depth” concepts that are successful for facility wide security
will have to be extended throughout the exascale system without impinging on performance or function.

Finally, system complexity is another driver at the exascale. HPC systems are exceedingly complex and
susceptible to small perturbations having extraordinary impact on performance, consistency and usability.
Taking the measure of number of transistors multiplied by the number of lines of code simultaneously in

Draft 0.93 18Nov09

www.exascale.org 20

use as a measure of complexity, exascale systems will be 4 orders2 of magnitude more complex than their
petascale predecessors. The system manager’s job is to manage this complexity to provide consistency
high performance and quality of service. Without the re-invention of many of the tools used today, and
the invention of new tools, system managers will not be able to meet those expectations.

4.1.4.3 Alternative R&D strategies for System Management

The obvious alternative is to take an evolutionary approach to extending terascale and petascale system
management practices. This will result in significant inefficiencies in exascale system, extended outages
and low effectiveness. As a metric, one can extend the Performability (Performance * Reliability)
measure to also include the effectiveness of resource allocation and consistency (PERC). Given the
evolutionary approach, it is very likely exascale systems will have a PERC metric within an order of
magnitude of exascale because of much less efficient resource management, much less consistency and
much less reliability.

Another approach could be import technical approaches from other domains such as the
telecommunications industry which provisions data movement and bandwidth as key resources. Another
domain that has technology to offer it real time systems, which uses control theory, statistical learning
techniques and other methods to management in a proactive manner, limited resources. As a final
example, some cyber security intrusion detection technology also has potential to offer stateful, near real
time analysis of activities and logs. Data mining and data analytics also have potential to offer point
solutions to managing large amounts of event data and identifying key factors that need to be addressed at
high levels.

4.1.4.4 Recommended Research Agenda System Management

Below we list and comment on a representative list of research problems that will need to be addressed in
order to achieve the goals of exascale system management presented above:

Category 1) “Resource control and scheduling” and “External coordination of resources”

 Need to better characterize and manage non-traditional resources such as power and I/O
bandwidth

 Determine how to manage and control communication resources – provision and control,
different for HPC than WAN routing

 Determine and model real-time aspects of Exascale system management and feedback for
resource control

 Develop techniques for dynamic provision under constant failure of components

 Coordinated resource discovery and scheduling aligned with Exascale resource management

There are five areas of research we identified for category 1. The first, is obtaining a better
characterization of non-traditional resources such as power and I/O data motion. Related, is research into
the ability of how to control that data motion. As part of that study, the community needs to identify
whether additional hardware enhancements should be designed, for example, network switches that allow
multiplexing streams by percentage utilization. In part, the control will need to build on the results of the
ability to better characterize the data motion, but may also proceed somewhat independently. Another
research initiative that must be undertaken is determining how to integrate the characterization and
perform the control in real time. The most challenging piece of research is determining how to keep the

2 Estimates of today’s vendor supplied system software contains between 3 and 18 Million lines of code. If one assumes that each line of code generates 10 machine
instructions, that is 30-180 million instructions. Further assume OS functions use 1/30th of a second (and applications the rest) there are 1 – 6 million instructions per
second in every node. Today’s machines have 1,000 to 10,000 OS images, with some having closer to 100,000. A simplistic complexity value might be considered as
number of instructions * number of images. Today – 6*1014. At Exscale, there may be 10,000,000 nodes. If the code complexity only doubles for Exascale, the
complexity is 1.2*1014. 4 orders of magnitude more complex in the simplest case.

Draft 0.93 18Nov09

www.exascale.org 21

system running in the presence of constant failures. System management in the exascale timeframe
ideally must be able to proactively determine failures and reallocate resources. In the event that a failure
is not pre-detected, the system management infrastructure must be able to detect, isolate, and recover
from the failure, by allocating additional equivalent resources. While there is effort underway in the
application space to handle failures, system management research should target presenting application
with machines where failures are corrected transparently by reallocating working resources to replace the
failed ones. Finally, to integrate the HPC machine into a larger infrastructure, research should be
undertaken to provide standardized reporting of machine definitions and capabilities and exist in a
globally scheduled environment.

Category 2) “Security”

 Fine grained authentication and authorization by function/resources

 Security Verification for SW built from diverse components

 Provide appropriate “Defense in depth” within systems without performance or scalability
impact.

 Develop security focused OS components in X-stack.

 Assess and improve end-to-end data integrity.

 Determine guidelines and tradeoffs of security and openness (e.g. grids).

For a system as complex as an exascale system, the risk of undetected compromise is too high to just rely
on traditional security at the boarders (login nodes). Essentially, fine grained authentication and
authorization by function and for each resource is needed through all software and hardware components
of the system. This has to be light weight so as not to restrict or slow down authorized use or limit
scalability, while at the same time comprehensive to assure as complete protection as possible. The
security model should be to monitor and react rather than restrict as much as possible and to also enable
open, distributed ease of use.

Because the system is expected to be built from diverse components, created by different communities,
security verification of software components will have to be done in an efficient manner. This will entire
how to verify correct functioning, but the challenge will be to accommodate the scale and the diversity of
use of an exascale resource.

Since other needs point to creating a novel HPC operating system, a critical feature is to considered is to
make a security focused OS. There may also be hardware assist features that can combine finer grained
control and access management. Security requires integrity, so end to end data integrity has to be
included. Finally, new analysis to provide the right balance between security and openness for distributed
computing (e.g. grid, web services) needs to be explored.

Category 3) “Integration and test” and “Logging, reporting, and analyzing information”

 Determine key elements for Exascale monitoring

 Continue mining current and future Petascale failure data to detect patterns and improvements

 Determine methods for continuous monitoring and testing without affecting system behavior

 Investigate improves information filters; provide stateful filters for predicting potential incorrect
behavior

 Determine statistical and data models that accurately capture system behavior

 Determine proactive diagnostic and testing tools

Draft 0.93 18Nov09

www.exascale.org 22

The first research initiative that must be undertaken to reach the end goal of proactive failure detection is
determining the key elements that need to be monitored. Much work has already occurred in this area.
Thus, a survey and determination of what will be required for exascale is needed, with potentially new
items identified. Additional research must be encouraged in the field of mining failure data to determine
patterns and developing methodologies for doing so. Because the amount of collected data will be vast in
the exascale era, investigations for filters and statistical models must occur. In both cases, it is critical to
significantly reduce the volume while accurately capturing system behavior and not loosing critical
events. For filtering, providing stateful techniques, where the dynamic state of the machine determines
what events the filter provides, is critical. Techniques must be researched to allow this monitoring,
filtering, and analysis to occur in real-time without effecting application behavior running on the system.
Finally, the above defined research initiatives need to feed research of proactively determining where
failures will occur by monitoring and analyzing filtered data.

Time Frame Targets and Milestones – Systems Managment

2010-11

Category 1) Create and validate an analytic model and simulation capability for
Exascale resource management that spans different implementation of job and
resource management systems. This will enable experimentation of alternative
designs that will accelerate implementation in the later time frames.
Category 2) Fine-grained authentication: being able to provide access to individual or
classes of resources to a single user or to groups of users.

2012-13

Category 1) Dynamic provisioning of traditional resources: being able to on-the-fly
provide applications with more nodes and memory.
Category 3) Unified framework for event collection: providing a community-agreed-
upon standard format for events across machines and sub-systems within a machine.

2014-15

Category 1) Expand the analytic model and simulation capability for Exascale
resource management to include External Coordination of Services.
Category 2) Security validation of diverse components: providing a methodology for
the different components in a system to ensure that security is maintained across the
components.
Category 3) Model and filter for event analysis: Using the data produced by the
above unified framework to produce models representing the system for
understanding how different policies would impact the system, and providing filters,
some of which should be stateful (dependent on the dynamic state of the machine).

2016-17

Category 1) Integrated non-traditional resources, such as bandwidth, power: by using
the above models and filters, and the dynamic provisioning of resources, provide the
ability to manage new important resource such power and data motion.
Category 3) Continual monitoring and test: by building on the unified framework for
collecting data and filters, provide real-time monitoring and testing of the machine.

2018-19

Category 1) Continual resource failure and dynamic reallocation: Using the above
proactive failure detection as input, and the above described dynamic provisioning of
traditional and non-traditional resources, provide the ability to keep the machine
running in the presence of continual failures by reallocating resources.
Category 2) Hardware support for full system security: need “defense in depth”
security so that security does not solely rely on access control to the machine,
develop end-to-end methodologies including integrated hardware to protect all
components of the machine.
Category 3) Proactive failure detection: For an exascale machine with the high
component count and failure rate, it will be important to proactively predict failures.

Draft 0.93 18Nov09

www.exascale.org 23

By building on the above continual monitoring and analysis tools, provide the ability
to predict failures.

4.1.4.5 Crosscutting considerations

System Management functionality crosses all aspects of the vertical integration – performance,
usability/programmability, resilience, and power. System management is directly impacts consistency and
total cost of ownership as well. In addition, system management relies heavily on accumulating,
integrating and analyzing disparity data from all system components as well as all applications wanting to
use the system. Multi-level analysis of system usage, subsystem activities and component and subsystem
health are needed to provide dynamically resource provision and to facilitate consistent and correct
execution of application tasks.

4.1.5 External Environments

We use the term “External Environments” to refer to the essential interfaces to remote computational
resources (e.g. data repositories, real time data streams, high performance networks, and computing
clouds). that advanced applications may need to access and utilize. The use of such resources is already
typical for many high-end applications and they form an critical part of the working environment for
most, if not all, major research communities. Although the issues surrounding “External Environments”
were discussed at the IESP workshops, this part of the roadmap remains to be filled in.

4.2 Development Environments
The application development environment is the software that the user has to program, debug, and
optimize programs. It includes the programming language, frameworks, compilers, libraries, debuggers,
performance analysis tools, and at exascale, probably fault tolerance

4.2.1 Programming Models

Contributors: Barbara Chapman (U. of Houston), Mitsuhisa Sato, (U. of Tsukuba, JP), Taisuke
Boku (U.of Tsukuba, JP), Koh Hotta, (Fujitsu), Matthias Mueller (TU Dresden, DE), Xuebin Chi
(Chinese Academy of Sciences)

4.2.1.1 Technology and Science drivers for Programming Models

 Exascale systems are expected to have a huge number of nodes. Even within the node, much
parallelism will exist in many core architectures and accelerators such as GPGPU. Programming
model and Languages should support the use of such huge levels of parallelism.

 Exascale systems may consist of several kinds of components including conventional multicore
CPUs, many-core chips and general and application-specific accelerators, resulting in
heterogeneity. Programming model and Languages should alleviate the programming difficulties
arising from such heterogeneity.

 At the same time, exascale systems will consist of a huge number of components, which will
increase the failure rate. Programming models can provide a way to handle such failures with
fault resilience mechanisms.

 Modern high performance systems have complex memory hierarchies. Memory bandwidth is
critically important even in Exascale systems. Programming models and Languages should
provide models to exploit the data locality to make use of complex memory hierarchies.

 The programming model will need to address emerging and on-going applications trends. For
example, algorithms and applications are increasingly adaptive. Exascale computations will
perform massive amounts of I/O; the programming model will need to enable highest levels of
I/O performance.

Draft 0.93 18Nov09

www.exascale.org 24

 New application domains may require new programming models.

 The increasing complexity of applications and the need to have an increasing level of detail
represented in the simulated models require high programmer productivity.

 The use of deep, large software stacks require the capability to detect and isolate errors at various
stages (code development, production, compile time, run time) and report them at an appropriate
level of abstraction.

4.2.1.2 Alternative R&D strategies for Programming Models

The following alternative strategies are proposed:

 Hybrid vs. uniform: A hybrid programming model is a practical way to program exascale
systems which may have architectural heterogeneity. Uniform programming models provide a
uniform view of the computation. They reduce the need for the application developer to be aware
of the details of the architectural complexity and are often considered to be more productive, yet
their provision is a challenge.

 Evolutionary and revolutionary approaches: Specification of incremental improvements to the
existing models is a safe approach. Revolutionary approaches may be ambitious and attractive,
but risky.

 Domain specific vs. general programming models: For some application areas, domain-specific
models may provide performance and portability with higher productivity than general purpose
programming models.

 Widely embraced standards vs. single implementations: while the latter has the advantage of
rapid development and implementation the former is based on the experience of a wider
community and often required by application groups.

4.2.1.3 Recommended Research Agenda Programming Models

Research is needed into a variety of promising programming models for exascale computing, including
system-wide models that provide a uniform approach to application development across an entire
platform, as well as hybrid programming models that combine two or more programming APIs. Such
models will need to provide a range of means for the expression of high levels of concurrency and
locality, and may be capable of supporting application-specific fault tolerance. Both enhancements to
existing programming interfaces as well as new programming approaches should be explored. For new
models, interoperability with existing HPC programming interfaces is highly desirable. Programming
models that facilitate productive application development are to be encouraged. Other desirable
characteristics are performance transparency and the ability to support incremental application migration.

Time Frame Targets and Milestones – Programming Models

2010-11
Interoperability between established programming models for HPC (MPI, OpenMP
in particular)
Initial workshops to discuss potential exascale programming models

2012-13

Fault-tolerant MPI available
Standard programming model for heterogeneous nodes
System-wide programming model(s) for petascale platforms available

2014-15
Candidate programming models for exascale systems defined

Draft 0.93 18Nov09

www.exascale.org 25

2016-17

Candidate programming models for exascale systems implemented

2018-19

Exascale programming model(s) adopted

	

4.2.1.4 Crosscutting considerations Programming Models

Major characteristics of exascale architectures will have a significant impact on the nature of the
programming models that are designed to facilitate the creation of exascale-level applications. Hence
major departures from the envisaged range of system architectures may necessitate a rethinking of the
dominant features of exascale programming model.

The programming model must facilitate efficient support for massive levels of I/O by applications, and
must enable the application developer to write fault-aware applications.

The implementation technology will need to be developed to realize the programming models that are
defined for exascale computing. The compiler translation will be critical and will need to be of
exceptional quality. The runtime system will be expected to provide significant support to the compiler by
providing features for managing compute threads, implementing a variety of mechanisms for
synchronization, scheduling computations, supporting efforts to balance the workload, execute
correctness checks that have been deferred to run time, collect performance data and more.

Applications and libraries will be created using the programming models defined for exascale computing.
The programming model will be expected to provide a sufficient range of features to enable the
expression of their concurrency and locality, and to enable the orchestration of the actions of different
threads across the system. It must facilitate the composition of different modules and library routines.

A variety of programming model-aware tools will be required to enable productive application
development, translation and deployment. For instance, tools to support application development might
reduce the effort involved in identifying portions of code that are suitable for execution on certain system
components. Tools for debugging will need to be created that are aware of the model’s semantics;
performance analysis and tuning tools will need to be created that reduce the effort involved in program
optimization. They will need to be aware of the specific factors that influence program performance under
a given programming model. In addition to the programming model, additional user annotations may
need to be defined to support the actions of the supporting compilers and tools.

4.2.2 Frameworks

Contributors: Michael Heroux and Robert Harrison

4.2.2.1 Technology and Science drivers for Frameworks

Effective use of exascale systems will place many new demands on application design and
implementation. Left alone each application team would face a daunting collection of infrastructure
requirements, independent of the science requirements. Frameworks (when properly developed) have
been very successful at providing a common collection of interfaces, tools and capabilities that are
reusable across a set of related applications. In particular, challenging computer science issues—which
are often orthogonal to science issues—can be encapsulated and abstracted in a way that is easy for
applications to use while still retaining, or even improving, performance.

It is compelling to have a focused effort on frameworks for exascale systems for the following reasons:

Draft 0.93 18Nov09

www.exascale.org 26

1. We have a large body of existing scalable applications that we want to migrate toward exascale.

2. There are likely many yet-to-be-developed exascale-class applications.

3. The natural cost and feature benefits of frameworks provide the best cost and time approach to
application development.

4. Exascale computing provides a new opportunity for multi-scale, multi-physics and multi-
disciplinary applications.

4.2.2.2 Alternative R&D strategies for Frameworks

No frameworks: Most successful frameworks are developed in response to substantial experience
developing individual components, where these components have substantial common requirements, have
natural interoperability relationships, or both. It is certainly possible to ignore the commonalities and
relationships and focus on one-of-a-kind applications. Initially this may appear to be an attractive
approach because it provides the shortest path to single application completion. However, as more
applications are developed, this approach produces a lot of redundant, incompatible and suboptimal
software that is difficult to maintain and upgrade, ultimately limiting the number of exascale applications,
their quality and their ability to be improved over their lifetime.

Clean-slate frameworks: If exascale systems eventually require a completely new programming model,
the approach we will use to establish exascale frameworks will differ from the case where existing
applications are re-factored. In this case, the framework will be best constructed in to solve a minimally
interesting problem. Then existing applications will be “mined” for their useful software fragments. This
approach was required for many applications when making the transition from vector multi-processors to
MPI.

4.2.2.3 Recommended Research Agenda for frameworks

Successful development of exascale class frameworks will require a decade of effort. Among the critical
research topics that must be addressed to achieve this goal are the following:

 Identify and develop cross-cutting algorithm and software technologies: For the existing scalable
application base, and for new applications, there will be common requirements for moving to
exascale systems. For example, partitioning and load balancing algorithms for exascale systems
and usage of manycore libraries are common needs.

 Refactoring for manycore: In anticipation of manycore programming model decision, we must
still make progress in preparing for exascale systems by understanding the common requirements
of manycore programming that will be true regardless of the final choice in programming models.

The table below, which gives the initial timeline for major activities and deliverables, focuses on the
following elements:

Workshops: The computational science and engineering communities have many existing frameworks,
some are multi-institutional but most are primarily centered at a single institution. As a result, the
practices, tools and capabilities of each framework vary greatly, as does the scope of visibility outside the
host institution. The first priority for successful exascale framework development must be a series of
workshops. The first workshop will bring people from existing framework efforts, developers of enabling
technologies (programming models, algorithms and libraries) and application stakeholders who must
ultimately use and develop within the proposed frameworks to perform capabilities and gaps analyses.
Subsequent workshops will focus on specific R&D issues necessary for success.

Breadth-first frameworks: The next major effort will be the development of 2-3 frameworks, one for
libraries and 1 or 2 specific application domains. Although programming models, libraries and fault-
resilient capabilities will probably not be mature, this initial breadth-first approach will facility co-design

Draft 0.93 18Nov09

www.exascale.org 27

of the framework with these enabling tools to ensure compatibility. This effort will also focus on mining
capabilities from existing applications as appropriate, and provide a first definition of the common tool-
chain.

Full-scope, additional frameworks: In subsequent years, the programming model, libraries and fault-
resilient strategies should mature, allowing the initial frameworks to solidify these aspects of the design
and implementation. Shortly after, or perhaps concurrently, several new domain specific frameworks can
start, utilizing the design decisions, and tool-chain established by the first frameworks.

Deployment: Finally, in the first years of exascale capabilities, all frameworks should be in a state to
demonstrate exascale capabilities on the first available exascale-class systems.

Time Frame Targets and Milestones -- Frameworks

2010-11

Workshops: 2010, 2011, regularly after.
– Bring together members from key existing framework efforts,

algorithm/library developers, programming models.
– Workshop 1:

• Capabilities/Gaps analysis.
• First opportunities for multi-institutional frameworks.
• Best practices from existing efforts.
• Common tool chain requirements.
• Possible win-win scenarios.

– Workshop 2:
• Plan for programming model evaluations.
• Develop library data model semantics.

– Workshop 3:
• App-driven resilience models.

2012-13

Develop first 2 app and first library frameworks, 2013.
– Mine components from existing capabilities.
– Implement common tool chain, programming model, first resilience

harness, library interfaces.
– Breadth first approach.

2014-15

Fully develop exascale-specific framework features:
– Mature framework-library data layout semantics.
– Fully capable fault resilience capabilities.
– Fully-defined common toolchain.

2016-17
Develop 2-3 additional app frameworks, 2017.

– Leverage infrastructure/design knowledge from first efforts.
– Develop inter-component coupling capabilities (e.g., data sharing).

2018-19 Demonstrate full-scale application capabilities across all frameworks on Exascale
system, 2019.

4.2.2.4 Crosscutting considerations

Framework efforts will be greatly impacted by evolving programming models, libraries and new
algorithm development, as well as fault-resilient requirements and capabilities. Although it appears that
MPI will likely be part of the picture, with a node programming model underneath, it is possible that a

Draft 0.93 18Nov09

www.exascale.org 28

radical new programming and execution model will be needed. In all cases, a framework will be very
important for rapidly deploying a critical mass of application capabilities.

Ultimately, any frameworks we develop must have buy-in from application development teams, those
domain scientists who are encoding the physics and engineering models. Without their full support our
frameworks will be irrelevant. Computational domain scientists must be part of the framework
development process as needed to obtain this support.

Finally, frameworks and the libraries they provide must be part of the software stack for petascale, trans-
petascale and exascale systems. This is essential for providing application developers with a common
software environment at several scales of computing.

4.2.3 Compilers

Contributors: Barbara Chapman (U. of Houston), Mitsuhisa Sato, (U. of Tsukuba, JP), Taisuke
Boku (U.of Tsukuba, JP), Koh Hotta, (Fujitsu), Matthias Mueller (TU Dresden), Xuebin Chi
(Chinese Academy of Sciences)

4.2.3.1 Technology and Science drivers for Compilers

Compilers will be a critical component of exascale software solutions. Not only will they be required to
implement new and enhanced programming models, and to generate object code with exceptional quality,
but they will also need to support the process of program adaptation, tuning and debugging. The high
number of potentially simpler (in-order) cores and the existence of specialized components will increase
the importance of the compiler.

Compilers for uniform programming models that span entire systems will need to manage the distribution
of data, locality of computation and orchestration of communication and computation in such a manner
that all components of the machine perform useful computations. With substantial support from the
runtime library, they may also be required to support the balancing of the workload across the system
components. Compilers for node programming models may be required to generate code that runs across
a large collection of general-purpose cores, or across a node that may be configured with general-purpose
cores along with one or more specialized accelerators.

Memory hierarchies will be highly complex; memory will be distributed across the nodes of exascale
systems and will be NUMA within the individual nodes, with many levels of cache and possibly
scratchpad memory. Compilers will be expected to generate code that exhibits high levels of locality in
order to minimize the cost of memory accesses, and may need to explicitly manage the transfer of data
between different subcomponents within nodes.

4.2.3.2 Alternative R&D strategies for Compilers

The alternative R&D strategies described for Programming Models apply equally to compilers, since they
provide a major part of the implementation of the programming models. By ensuring interoperability
between different languages and programming models, compilers can be key to mitigating the risk
involved in selecting an emerging programming model and may increase the adoption of new models by
offering an incremental path from existing or proposed models (e.g. MPI, OpenMP, UPC, X10, Chapel).

4.2.3.3 Recommended Research Agenda Compilers

Compilers must no longer be viewed as a black box but rather as open translation infrastructures that must
be capable of interoperating with all elements of the development and execution environment. Advances
in compiler technology are key to the provision of programming models that offer both performance and
productivity characteristics. We can no longer afford to do without the benefit of compilers at run time.
The following topics should be pursued:

Draft 0.93 18Nov09

www.exascale.org 29

 Techniques for the translation of new exascale programming models and languages supporting
high productivity and performance, support for hybrid programming models and for
programming models that span heterogeneous systems.

 Powerful optimization frameworks; implementing parallel program analyses and new,
architecture-aware optimizations, including power, will be key to the efficient translation of
exascale programs. Improved strategies for automatic parallelization are needed, as are
techniques for determining regions of code that may be suitable for specific hardware
components.

 Exascale compilers could benefit from recent experiences with just-in-time compilation and
perform online feedback-based optimizations, try out different optimizations, generate multiple
code versions or perform more aggressive speculative optimizations. They will need to
incorporate a variety of light-weight strategies for modifying code on the fly.

 Compilers will need to play a role in supporting strategies for enabling fault tolerance. For
example, they may be able to help reduce the amount of data involved in checkpointing.

 Interactions between the compiler and the development and execution environment should be
enabled using standard interfaces. Such interfaces could enable tools or application developers to
drive the translation process in new ways and enable the compiler to drive the actions of tools
during runtime, for example to gather specific kinds of performance data. Compilers should be
capable of automatically instrumenting code.

 Compiler-based tools may be developed e.g. to support the application development process, to
help interpret the impact of the compiler’s translation on the application’s runtime behavior, and
to explain how the application developer might be able to improve the results of this translation.

 Compilers may be able to benefit from auto-tuning approaches, may incorporate techniques for
learning from prior experiences, exploit knowledge on suitable optimization strategies that is
gained from the development and execution environments, and apply novel techniques that
complement traditional translation strategies.

 Time Frame Targets and Milestones -- Compilers

2010-11

MPI aware compilers supporting MPI implementations.
Initial interface specified to enable compilers to interact with performance and
runtime correctness-checking tools.

2012-13
Compiler support for hybrid programming models

2014-15
Standard heterogeneous programming model implemented
System-wide high-level programming model implemented

2016-17

Exascale programming model implemented
Standard interfaces for interactions between compilers and other tools in
development and execution environment

2018-19
Refine architecture awareness
Compilers that interact smoothly with performance and runtime tools

Draft 0.93 18Nov09

www.exascale.org 30

4.2.3.4 Crosscutting considerations

Compilers must no longer be viewed as a black box but rather as open translation infrastructures that must
be capable of interoperating with all elements of the development and execution environment, especially
the run time system and tools.

The runtime system will be expected to provide significant support to the compiler by providing a number
of features for managing compute threads, implementing a variety of mechanisms for synchronization,
scheduling tasks and other computations, and supporting efforts to balance the workload.

Compilers need to generate efficient code for the target architecture. Therefore they need to be developed
in an architecture-aware manner. The use of explicit cost models may simplify the generation of code for
different hardware configurations.

4.2.4 Numerical Libraries

Contributors: Jack Dongarra (U. of Tennessee), Bill Gropp (UIUC), Mike Heroux (SNL), Anne
Trefethen (Oxford U., UK) Aad van der Steen (NCF, NL)

4.2.4.1 Technology and Science drivers for Libraries

Numerical libraries underpin any science application developed for high-performance computing and
offer the potential to exploit the underlying computer systems without the application developer
necessarily understanding the architectural details. Hence, science drivers are more or less automatically
built in. However, we may expect new applications to emerge with exascale systems and libraries should
adapt accordingly.

The technology drivers for library development include: hybrid architectures, programming models,
accuracy, fault detection, energy budget, memory hierarchy and the relevant standards. Numerical
libraries are dependent upon the formation of various standards that will be needed to insure the wide
spread deployment of the software components. The libraries will be equally dependent upon the
operating system as well as the computer architecture features and how they communicated to the library
level.

4.2.4.2 Alternative R&D strategies for Libraries

In effect the alternate research and develop strategies for libraries will be driven by the operating system
and software environment provided on given architectures. We can assume that we see models such as
message passing libraries, global address space languages, and message driven work queues. As we can
assume that all three models will occur at some level in future systems, this means that matching
implementations need to be developed concurrently. In particular the three programming model should be
interoperable to permit the widest deployment.

4.2.4.3 Recommended Research Agenda Libraries

The existing numerical libraries will need to be rewritten and extended in the light of the emerging
architectural changes. The technology drivers will necessitate the redesign of the existing libraries and
will force re-engineering and implementation of new algorithms. Due to the enhanced levels of
concurrency on future systems algorithms will need to embrace asynchrony to generate the number of
required independent operations.

The research agenda will need to include:

1. Hybrid and hierarchical based software: efficient implementations need to be aware of the
underlying platform and memory hierarchy for optimal deployment.

2. Auto tuning: Libraries need to have the ability to adapt to the possibly heterogeneous
environment in which they have to operate.

Draft 0.93 18Nov09

www.exascale.org 31

3. Fault oblivious and error tolerant implementations: The libraries need to be resilient w.r.t. the
increased rate of faults in the data being processed.

4. Mixed arithmetic for performance and energy saving: Find optimal mapping of required precision
in terms of speed, precision, and energy usage.

5. Architectural aware algorithms that adapt to the underlying architectural characteristics: The
libraries must be able to act on provided architectural information to select or generate optimal
instantiations of library routines.

6. Energy efficient implementations to optimize the energy envelope for a given implementation:
The libraries should have the ability to take the total power usage into account and optimize for
this parameter.

7. Algorithms for minimizing communications are a requirement as communications plays such an
important role in performance and scalability.

8. Algorithms for shared memory architectures have always been around but will have a prominent
role on future exascale systems as a way to mitigate the impact of increased iteration counts in
Schwarz-type algorithms.

9. Libraries often introduce artificial separations into the code, based on the function of each
routine. Techniques that permit the fusion of library routine implementations (e.g., fusion of
the loops in two consecutive library calls) will be needed.

Time Frame Targets and Milestones – Numerical Libraries

2010-12

Standards for hybrid (heterogeneous) computing are needed immediately.
2011: Milestone: Heterogeneous software libraries
2012: Milestone: Language issues

2012-14
Standards required Architectural characteristics agreed.
2013: Milestone: Architectural transparency

2014-16
2015: Milestone: Self adapting for performance
Standards required for energy aware

2016-17
2016: Milestone: Energy aware
Standard for fault tolerance required

2018-19
2018 Milestone: Fault tolerance
2019: Milestone: Scaling to billion way

4.2.4.4 Crosscutting considerations

Libraries will require agreed standards to build on. These will include standards for power management,
architectural characteristics, programming for heterogeneous environments and fault tolerance. This
presupposes that the information regarding the underlying architecture, energy usage, etc., will be
available as parameters to be used within the library implementations.

Draft 0.93 18Nov09

www.exascale.org 32

The libraries need to provide language bindings for existing as well as newly emerging languages while
the calling sequences for their routines should fit in with the various programming models that are
available for exascale environments.

4.2.5 Debugging tools

Contributors: David Skinner (LBL), Wolfgang Nagel (Dresden, DE),

4.2.5.1 Technology drivers for Debugging

Historically debugging has meant the process by which errors in program code are discovered and
addressed. The scale of modern parallel computers has pushed the boundaries of that definition in two
ways. Massive concurrency at tera and peta scale has lead to profound challenges in the ability of a
software debugger to encompass the entire parallel application consisting of thousands of processes.
Additionally it has brought the need to debug not just the code but machine and OS environments where
bugs and contention outside the program code itself may be the underlying cause of faults seen at the
application layer.

Looking towards exascale computing we formally broaden the scope of debugging to including finding
problems in the execution of program code by identifying and addressing application incorrectness as
well as application failure and critical application performance bottlenecks that may be either
reproducible or transient. These faults and bottlenecks may have their origins in the code itself or may be
consequences of hardware or software conditions outside the control of the application itself. As a
concrete example, evident already at the petascale, a failed switch adapter on a remote node may cause
failures in other jobs or may bring communication to a near standstill. For bulk synchronous parallel
codes it normally takes only one slow task to limit the overall performance of the code.

The aspects of exascale technology that will drive decisions in debugging are

 Concurrency driven overhead in debugging

 Scalability of debugger methodologies (data and interfaces)

 Concurrency scaling of the frequency of external errors/failures

 Heterogeneity and lightweight operating systems

These technology drivers are specific instances of the more broadly stated technology trends in exascale
of concurrency, resiliency, and heterogeneity within a node. If ignored these drivers will make debugging
at exascale an increasingly costly endeavor both in terms of human effort applied to debugging as well as
diminishing the investment in HPC resources by requiring more machine hours to be devoted to costly
debug sessions. We therefore propose a research strategy for exascale debugging which aims to
streamline the debugging process by making it more scalable and more reliable.

4.2.5.2 Alternative R&D strategies for Debugging

Exascale is a regime in which the rate of hardware faults will make debugging, in the expanded context
mentioned above, a persistently needed real-time activity. We therefore suggest a strategy that “plans to
debug” at compile time and also addresses the data management problems presented by dramatically
higher concurrencies. The utility in debugging in a separate session will be limited since a large class of
bugs may not be reproducible. Exascale will require the ability to “debug without stopping”. Scalability in
debugging has been addressed in previous generations of HPC system. Research to advance the state of
the art in scalability will be required.

Instead of pursuing the development of debuggers as monolithic applications capable of running other
user applications in a debug environment, we propose the research and development of improving the
information sources from which a variety of debugging frameworks can benefit. This borrows a lesson
learned in the performance tools community which has largely moved away from each tool having its

Draft 0.93 18Nov09

www.exascale.org 33

own means of deriving machine function (reading counters, registers, etc.) toward development of robust
APIs which deliver that information in a portable manner. For example, PAPI provides a common
interface for performance information upon which performance tools may be built.

In order to build such scalable and reliable sources of information for debugging we suggest vertical
integration with compiler, library, runtime, OS and I/O layers. This integration achieves two important
goals at.

First, it expands the perspective into the application from multiple directions by providing multiple layers
or contexts in which to debug. Specific aspects of codes such as just communication, I/O, specific
libraries, or even user defined quantities or data structures will allow the debugging process to zero in on
the anomaly or fault in question. Composition of these data sources will allow for cross checking and
hypothesis testing as to the origin of a fault or bottleneck. This is in contrast with the idea of using a
debugger to step through executing code on an instruction or subroutines basis and moves in the direction
of the debugging framework becoming advisory and participatory in the production execution of codes.

Secondly, vertical integration that delivers portable standards for gathering and acting on debug
information provides efficiency in the design and maintenance of debugging tools. Instead of developing
the end-to-end solution within each debugger we imagine a lowered barrier to entry to the design of
special purpose custom fitted debuggers which draw on reliable, scalable, and portable mechanisms for
monitoring and controlling application codes. Moving from a one-size-fits-all perspective on debugging
to modularly selectable approaches will enhance the ability for applications incorporate the handling of
faults and problem scenarios internally. Currently there is a large mismatch between what the layers
underlying the application tell the application about faults and what the application needs to know.

4.2.5.3 Recommended Research Agenda Debugging

The general thrust of this analysis is that debugging technology needs to grow away from monotlithic
applications towards runtime libraries and layers that detect problems and aggregate highly concurrent
debugging information into a categorical rather than task based context. Pursuing this path, however,
raises a variety research challenges the solution to which will be critical to finding a successful approach
to debugging at exascale:

 Methods for scalable clustering of application process/thread states – Many millions of synopses
can be made understandable by clustering into types or categories. Debuggers will need to have
the ability to search through this volume of data to find the needle in the haystack in order to
speed root cause determination.

 Debugging without stopping (resilient analysis of victim processes) – Support for debugging will
be needed in cases where one node has died and OS and runtime methods are able to migrate
and/or reschedule failed tasks, keeping the application alive. Debuggers will need interoperability
with system and runtime fault tolerance technologies.

 Vertical integration of debug and performance information across software layers – It will be
necessary to find ways to move debugging into multiple levels of application development, build,
and execution in order to get a fuller picture of application problems. Consistent standards in the
design of these interfaces will be needed to make debuggers and tools more portable, and easer to
develop and maintain.

 Layered contexts or modes of debugging – Instead of a one-size-fits-all approach, developers will
need to be able to select custom levels of debug in order to connect the dots between potential
bugs and their causes. “All the data all the time” will not be an option for fullscale exascale
debugging. Intelligent selection from a menu of reliable data sources will have to be able target
the specifics of a potential bug.

Draft 0.93 18Nov09

www.exascale.org 34

 Automatically triggered debugging – Instead of debugging test cases in a separate session, some
exascale debugging must be delivered just-in-time as problems unfold. Users will have to be able
advise the application about objectives from which deviation is considered a bug. A debug
framework wit these capabilities would enable the application to advise the user about situations
indicative of problems, such as expanding memory footprint, incorrectness, sudden changes in
performance.

By focusing on the ability of debugging frameworks to scale well and communicate well this agenda will
lower the barriers to debugging, lower the human and machine costs of debugging, and enhance the trust
in the reliability of scientific output from exascale systems.

4.2.5.4 Roadmap for Exascale Debugging

Time Frame Targets and Milestones – Debugging Tools

2010-11
Planning &Workshops
Lightweight debugging @ 1e5 cores

2012-13 Support for heterogenity in nodes
2014-15 Simulation @ 106 cores
2016-17 Software development to support 1e6 core production debug
2018-19 Near-production exascale

	

4.3 Applications
While IESP may not focus on developing applications per se, nevertheless they are the very reason for the
existence of such systems. It may be that exascale systems are specialized machines, co-designed with
specific families of applications in mind. Therefore, IESP needs to invest in the technology that makes
these applications feasible.

4.3.1 Application Element: Algorithms
Contributors: Bill Gropp (UIUC), Fred Streitz (LLNL), Mike Heroux (SNL), Anne Trefethen
(Oxford U., UK)

4.3.1.1 Technology and Science drivers for Algorithms

Algorithms must be developed to deal with the architectural realities in an Exascale system. In addition,
algorithmic innovation can provide efficient alternatives to computer hardware, addressing issues such as
reliability and power.

Scalability is perhaps the most obvious driver for algorithms. Contributing to scalability are problems in
currency, latency, and load balancing. Because an Exascale system will have 108 to 109 threads, simply
creating enough concurrency from an application can become a challenge (a 10003 mesh has one point
per thread on such a system; the low computation/communication ratio of such a problem is typically
inefficient). Even current systems have a103-104 cycle hardware latency in accessing remote memory.
Hiding this latency requires algorithms that achieve a computation/communication overlap of at least 104
cycles; Exascale systems are likely to require a similar degree of latency hiding (because the ratio of
processor and memory speeds are expected to remain about the same). Many current algorithms have
synchronization points (such as dot products/allreduce) that limit opportunities for latency hiding (this
includes Krylov methods for solving sparse linear systems). These synchronization points must be
eliminated. Finally, static load balancing rarely provides an exact load balance; experience with current
Terascale and near petascale systems suggests that this is already a major scalability problem for many
algorithms.

Draft 0.93 18Nov09

www.exascale.org 35

Fault tolerance and fault resilience is another driver for algorithms. While hardware and system software
solutions to managing faults are possible, it may be more efficient for the algorithm to contribute to
solving the fault resilience problem. Experience shows applications may not detect faults (which may
also be missed by the hardware); we need to evaluate role of algorithms in detecting faults. Note that
detecting faults in hardware requires additional power, memory, etc. Regardless of who detects a fault, it
must be repaired. The current general-purpose solutions (e.g., checkpoint/restart) are already demanding
on high-end platforms (e.g., requiring significant I/O bandwidth). We need to evaluate role of algorithms
in repairing faults, particularly transient (e.g., memory upset) faults. In addition, on can imagine a new
class of algorithms that are inherently fault-tolerant, such as those that converge stochastically. The
advantage of robustness on exascale platforms will eventually override concerns over computational
efficiency.

Because of the likely complexity of an Exascale system, algorithms must be developed that are a good
match to the available hardware. One of the most challenging demands is power; algorithms that are
minimize power use need to be developed. Naturally, this will require performance models that include
energy. Note that this may be combined with other constraints, since data motion consumes energy. As
many proposals for Exascale systems (and power-efficient petascale systems) exploit heterogeneous
processors, algorithms will need to be developed that can make use of these processor structures. The
current experience with GPGPU systems, while promising for some algorithms, has not shown benefits
with other algorithms. Heterogeneous systems also require different strategies for use of memory and
functional units. For example, on some hardware it may be advantageous for algorithms to exploit
multiple levels of precision. Finally, Exascale systems are likely to have orders of magnitude less
memory per core than current systems (though still large amounts of memory). Power constraints may
reduce the amount of fast memory available; adding to need for latency hiding. Thus we need algorithms
that use memory more efficiently, for example, more accuracy per byte; fewer data moves per result. The
choice of algorithm for a particular application may depend sensitively on details of the memory
hierarchy and implementation – portability between diverse architectures will require algorithms that can
automatically adjust to local hardware constraints.

The final driver is this need to re-examine the classes of applications that are suitable for Exascale
computing. Because Exascale systems are likely to be different than simple extrapolations of petascale
systems, some application areas may become suitable again; others (because of the extreme scale and
degree of concurrency) may become possible for the first time.

A major concern is that an Exascale system may be very different from current systems and will require
new approaches.

4.3.1.2 Alternative R&D strategies for Algorithms
All strategies for developing algorithms for Exascale systems must start with several “strawman exascale
architectures” that are described in enough detail to permit the evaluation of the suitability of current
algorithms on potential Exascale systems. There are then two basic strategies: (1) Refine existing
algorithms to expose more concurrency, adapt to heterogeneous architectures, and manage faults, and (2)
the development of new algorithms.

In refining algorithms, there are a number of strategies that may be applied. For sc

Developing new algorithms requires rethinking the entire application approach, starting with the choice of
mathematical model and approximation methods used. It is also important to re-evaluate existing
methods, such as the use of Monte Carlo; reconsider tradeoffs between implicit and explicit methods; and
replace FFT with other approaches that can avoid the all-to-all communication. In creating algorithms
that are fault tolerant, a key approach is to use or create redundant information in the algorithm or
mathematical model. To make effective use of likely Exascale hardware, methods that make more
efficient use of memory, such as higher-order methods, as well as the development of more predictive
analytic performance models, will be key.

Draft 0.93 18Nov09

www.exascale.org 36

4.3.1.3 Recommended Research Agenda Algorithms
A research agenda is shown in the table below, along with comments providing more detail about each in
the enumerated list below. Not captured in this list or table is the need to follow two broad strategies: an
evolutionary one that updates current algorithms for Exascale (following the approaches that have
successfully been followed to take us to petascale) and one that invests in higher risk but higher payoff
development of new algorithms. In either case, it is important to develop performance models (and thus
strawman Exascale architecture designs) against which algorithm developments can be evaluated. In
addition, it is all too easy for applications to define algorithm “requirements” that overly constrain the
possible solutions. It is important to re-evaluate application needs, for example, evaluating changes to the
model or approximation to allow use of Exascale-appropriate algorithms.

Against this background, the critical research challenges that need to be addressed for application
algorithms that build on the X-stack are as follows

 Gap analysis - need to perform a detailed analysis of the applications, particularly with respect to
quantitative models of performance an scalability.

 Scalability, particularly relaxing synchronization constraints

 Fault tolerance and resilience, including fault detection and recovery

 Heterogeneous systems - algorithms that are suitable for systems made of functional units with
very different abilities

Time Frame Targets and Milestones -- Algorithms

2010-11

Gap analysis. Needs to be completed early to guide the rest of the effort.
Evaluation of algorithms needed for applications. Needs to be initiated
early and completed early to guide allocation of effort and to identify
areas where apps need to rethink approach (cross-cutting issue). Needs
to develop and use more realistic models of computation (quantify
need).

2012-13

Algorithms for intra-node scaling
Algorithms for inter-node scaling
Evaluation on petascale systems

Better scaling in node count and within nodes can be performed using petascale
systems in this time frame (so it makes sense to deliver a first pass in this time
frame).

2014-15

Prototype algorithms for heterogeneous systems
Heterogeneous systems are available now but require both programming model
and algorithmic innovation; while some work has already been done, others may
require more time. At the time of this bullet, view this as “a significant fraction
of algorithms required for applications expected to run at Exascale have effective
algorithms for heterogeneous processor systems”.

2016-17

Fault resilience
Fault resilience is a very hard problem; this assumes that work starts now but
will take this long to meet the same definition as for heterogeneous systems – “a
significant fraction of algorithms have fault resilience”.

Draft 0.93 18Nov09

www.exascale.org 37

2018-19

Efficient realizations of algorithms on Exascale architectures
Efficient implementation includes the realization in exascale programming
models and tuning for real systems, which may involve algorithm modifications
(since the real architecture will most likely be different from the models used in
earlier developments). In addition, the choice of data structures may also change,
depending on the abilities of compilers and runtimes to provide efficient
execution of the algorithms.

4.3.1.4 Crosscutting considerations
The ability to design and implement efficient and novel algorithms for exascale architectures will be
closely tied to improvements in many crosscutting areas. Examples include:

The development of libraries that recognize and exploit the presence of mixed precision mathematics will
spur the creation of algorithms that effectively utilize heterogeneous hardware. Ideally, the user could
specify the required precision for the result and the algorithm would choose the best combination of
precision on the local hardware in order to achieve it. The actual mechanics would be hidden from the
user.

The creation of debugging tools that expose cache use, load imbalance, or local power utilization will be
critical for the implementation of self-optimizing algorithms in each of these areas. Currently available
methods of debugging large-scale codes to catch, e.g., load balance issues are very manpower intensive
and represent a significant barrier to the development of efficient algorithms.

Runtime systems that make available to the running code information about MTBF on the hardware can
allow for auto-adjustment of defensive restart strategies. The I/O strategy for even a petascale simulation
must be carefully optimized to avoid wasting both compute and storage resources. The situation will only
be more critical at the exascale.

Tuning of algorithms for performance optimization will benefit from compilers and programming
languages that can recognize and utilize multiple levels of parallelism present in the hardware. Current
strategies for optimization on HPC architectures result in either one-off, hand-tuned codes or portable and
inefficient codes, since it is difficult to express multiple possible levels of parallelism into the structure of
the code. The increased portability allowed by some measure of auto-tuning will maximize the ROI on
code development and thus lower the effective cost of entry into HPC.

4.3.2 Application Support: Data Analysis and Visualization

Contributors: Michael E. Papka (ANL), Pete Beckman (ANL), Mark Hereld (ANL), Rick Stevens
(ANL), John Taylor(CSIRO, Australia)

4.3.2.1 Technology and Science drivers for Data Analysis and Visualization

Modern scientific instruments eg in Synchrotron science, high energy physics, astronomy, biotechnology
are all experiencing exponential growth in data generation rates through a combination of improved
sensors, increases in scale, widespread availability and rapid advances in the supporting information
technology. Model simulations eg in climate, CFD, materials science and biological science are also
producing vast amounts of data as they scale with the exponential growth in HPC performance.
Experimental science, modeling and simulation are routinely generating petabyte scale data sets. Exabyte
scale data sets are now part of the planning process for major scientific projects.

The increasing scale and complexity of simulations, and the data they produce, will be a key driver of the
research agenda in the area of data analysis and visualization. These will force new approaches to
coupling analysis and visualization computations to the larger datasets. Considerations of dataset size will
also drive innovations in analysis techniques, allowing for both the advancement of current technology, as

Draft 0.93 18Nov09

www.exascale.org 38

well as requiring the research and development of new solutions. Analysis and visualization will be
limiting factors in gaining insight from exascale data.

Interactive data exploration will also become increasingly important as dataset scale and complexity
continue to grow; however, it will become increasingly difficult to work interactively with these datasets,
thus requiring new methods and technologies. These solutions will need to supply the scientist with
salient reductions of the raw data and new methods for information and process tracking.

4.3.2.2 Alternative R&D strategies for Data Analysis and Visualization

Several strategies for enabling data analysis and visualization at exascale are available to us. One strategy
would be to continue to incrementally improve and adapt existing technologies (visualization and analysis
algorithms, data management schemes, end-to-end resource allocation). This adiabatic expansion of
current efforts is well traveled and has a lower barrier to entry than others, but may not provide adequate
solutions in the long run.

It is inevitable that some combination of existing technologies and the integration of the four approaches
described next will serve important roles in the necessary R&D enterprise.

 New algorithms – It would make sense to pursue development of entirely new algorithms that fit
well with new large and complex architectures. This approach will be increasingly difficult,
owing to the need to explicitly account for larger pools of heterogeneous resources.

 New data analysis approaches – Identify new mathematical and statistical research needed for
analysis of exabyte data sets

 Integrated adaptive techniques – Development of these would enable on the fly and learned
pattern performance optimization from fine to coarse grain. This strategy would provide a range
of means to extract meaningful performance improvements implicitly, rather than by explicit
modeling of increasingly complex systems.

 Pro-active software methods – Another strategy is to expand the role of supporting visualization
environments to include more pro-active software: model and goal aware agents, estimated and
fuzzy results, and advanced feature identification. This strategy will require abdicating some
responsibility to autonomous system software in order to more rapidly sift through large amounts
of data in search of hidden elements of discovery and understanding.

 Meta tools – With a focus on mitigating the increasing burden of high-level organization of the
exploration and discovery process, it would be advantageous to invest in methods and tools for
keeping track of the processes and products of exploration and discovery. These will include aids
to process navigation, hypothesis tracking, workflows, provenance tracking, and advanced
collaboration and sharing tools.

 Facilitate Collaboration – Plan deployment of global system of large scale high resolution (100
Mpixel) visualization and data analysis systems based on open source architecture to link
universities and research laboratories

4.3.2.3 Recommended Research Agenda Data Analysis and Visualization

Many of the innovations required to cope with exascale data analysis and visualization tasks will require
considerable development and integration in order to become useful. At the same time, most would be of
considerable utility at petascale. Consequently, it is not only required, but could provide up-front benefits
to aggressively develop the proposed methods so that they can be deployed early, at least in prototype
form, for extensive use in research situations, and rigorously evaluated by the application community.

Among the research topics that will prove especially critical in achieving this goal are the following:

 Identification of features of interest in exabytes of data

Draft 0.93 18Nov09

www.exascale.org 39

 Visualisation of streams of exabytes of data from scientific instruments

 Integrating simulation, analysis and visualization at the exascale

Ongoing activities supporting adiabatic expansion of existing techniques onto new hardware architectures
and R&D of new algorithms will continue throughout the time span. The major milestones and timetable
reflected in the following table would be supported by development of many of the ideas at smaller scale,
and beginning as soon as possible.

Time Frame Targets and Milestones – Data Analysis and Visualization

2010-11

Planning &Workshops
• Assess current tools and technologies
• Perform needs and priority analysis across multiple disciplines
• Identify common components
• Identify new mathematical and statistical research needed for analysis of

exabyte data sets
• Integrate analysis and visualization into scientific workflows
• Develop exascale data analysis and visualization architecture document
• Commence initial set of projects for common components and domain

specific data analysis and visualization libraries
• Plan deployment of global system of large scale high resolution (100 Mpixel)

visualization and data analysis systems to link universities and research
laboratories

2012-13

Develop 1.0 common component data analysis and visualisation libraries
Develop 1.0 priority domain specific data analysis and visualisation libraries

 Begin deployment of global system of large scale high resolution (100 Mpixel)
visualization and data analysis systems
 Achieve data analysis & visualisation @ 105 cores with petabyte data sets
 Support for heterogenity in nodes

2014-15
Integrate data analysis and visualisation tools into domain specific workflows
Achieve data analysis & visualisation @ 106 cores with 10-100 petabyte data sets

2016-17
Complete 2.0 domain specific data analysis and visualization libraries and workflows
Complete 2.0 common component data analysis and visualisation libraries
Achieve data analysis & visualisation @ 106 cores with near exascale data sets

2018-19 Roll out data analysis and visualisation at the exascale

4.3.2.4 Crosscutting considerations

Architecture at coarse and fine grain. Analysis and visualization can use any or all of the computational,
storage, and network resources that comprise a computational environment. Methods developed to
address the driving technology and science issues are likely to intersect with design and implementation
of future architectures at all granularities from wide-area considerations to heterogeneity of available
processing elements. Also compiler and debugging tools appropriate for software development on
exascale systems will need to be developed to meet the needs of the development timetable for outlined
above.

Opportunistic methods. Many emerging approaches to analysis and visualization leverage opportunities
that arise from data locality (e.g., in situ methods), synergies of happenstance (as in analysis embedded in

Draft 0.93 18Nov09

www.exascale.org 40

I/O libraries and data movers), and unused capacity (e.g. background analysis embedded in I/O servers).
These will each require coordination with fine grain execution of numerical algorithms comprising the
simulation, ongoing read/write operations, and system level resource scheduling. We should consider
using exascale performance to rapidly do model simulations with data analysis, and visualization
integrated into the simulation to avoid storing vast amounts of data for later analysis and visualization.
This would affect the development of domain specific simulation codes.
End-to-end or global optimizations. Improvements in understanding algorithms for large-scale
heterogeneous architectures and the related advances in runtime and compiler technologies are likely to
afford new opportunities for performance optimization of the combined simulation and analysis
computations. This and other benefits may accrue from taking a more holistic view of the end-to-end
scientific discovery pipeline. Integrating data analysis and visualization into domain specific exascale
scientific workflows will be essential to maximising the productivity of researchers working on exascale
systems.

4.3.3 Application Support: Scientific Data Management

Contributors: Alok Choudhary (Northwestern U.), …

4.3.3.1 Technology and Science drivers for Scientific Data Management

Management, analysis, mining, and knowledge discovery from data sets of this scale is a very challenging
problem, yet a critical one in Petascale systems and would be even more so for Exascale systems. Most
science applications at this scale will be extremely data intensive, and the potential impact of Exascale
computing will be measured not just in the power it can provide for simulations but also in the
capabilities it provides for managing and making sense of the data produced. Furthermore, Data
Management for observational data, analysis of observational data and its use in validating simulations
would be extremely important. Individual simulation would potentially produce Petabytes+ of data due to
scaling, and when combined with multiple executions, the data could approach Exabyte scales. Thus,
managing scientific data has been identified by the scientific community as one of the most important
emerging needs because of the sheer volume and increasing complexity of data. Effectively generating,
managing, and analyzing this information requires a comprehensive, end-to-end approach to data
management that encompasses all of the stages from the initial data acquisition to the final analysis of the
data. Many common questions arise across various application disciplines. Are there data management
tools available that can manage data at this scale? Although scalable file systems are important as un
underlying technology, they are not suitable for user level mechanism for scientific data management.
What are the scalable algorithms techniques for statistical analysis and mining of data at this scale? Are
there mathematical models? Does the "store now and analyze later" model work at this scale? What are
the models, and tools for indexing, querying and searching these massive datasets and for knowledge
discovery? What are the tools for workflow management? An emerging model relies ever more on teams
working together to organize new data, develop derived data, and produce analyses based on the data, all
of which can be shared, searched and queried. What are the models for such sharing and what are designs
for such databases or data warehouses? Data Provenance is another critical issue at this scale. What are
scalable data formats and what are the formats for metadata? Clearly, at exascale level, all of the above
data management issues much be enabled by massively scalable I/O and storage capabilities which must
be used as a basis for designs for the data management software. However, I/O systems drivers,
requirements and research agenda is discussed in a separate section in this report.

4.3.3.2 Alternative R&D strategies for Scientific Data Management

Scientific Data Management covers many subfields from data formats, workflow tools, query to data
mining and knowledge discovery. For most of the subfields, R&D strategies must simultaneously
consider the scalable I/O and storage devices for the required scaling for exascale systems.

Draft 0.93 18Nov09

www.exascale.org 41

1. Data Analysis and Mining Software and Tools: Knowledge discovery from massive datasets
produced and/or collected would require sophisticated, easy-to-use yet scalable tools for statistical
analysis, data processing and data mining. Scalable algorithms and software must be developed that
can handle multivariate, multi-dimensional (and large number of dimensions), hierarchical and
multiscale data at massive scales. Scalable tools based on these algorithms with a capability to
incorporate other algorithms must be developed. Traditionally, analytics and mining specification
languages have been sequential in nature and are unable to scale to massive datasets. Parallel
languages for analysis and mining that can scale to massive data sets would be important. Data
Mining and analysis scalability can also be addressed via the use of accelerators such as GPGPUs
and FPGAs, and the development of scalable algorithms, libraries and tools that can exploit these
accelerators would be important. Techniques for On-line analytics, active-storage and co-
processing models should be developed which can run concurrently (potentially on a subsystem)
with the simulations, that can exploit multicore nature of the systems, maximizing the use of data
while it is available should be investigated.

2. Scientific Work Flow Tools: Scientific workflow is defined as a series of structured activities,
computation, data analysis, and knowledge discovery that arise in scientific problem-solving. That
is, it is a set of tools and software allowing a scientist to specify end-to-end control and data flow as
well as coordination and scheduling of various activities. Designing scalable workflow tools with
easy-to-use interfaces would be very important for exascale systems both for performance and
productivity of scientists as well as effective use of these systems. Scaling of workflow tools will
entail enhancements of current designs and/or developing new approaches that can effectively use
scalable analytics and I/O capabilities and that can incorporate query processing. New design
mechanisms including templates, semantic types user histories etc. will simplify workflow design
and increase dependability. As a part of workflow tools, creation, management, querying and use of
data provenance must be investigated.

3. Extensions of Databases Systems: Commercial database systems such as those based on relational
or object models, or derivation thereof have not proved to be suitable for organizing, storing or
querying scientific data at any reasonable scale. Although it is an alternative for pursuing data
management solutions, it is not likely to be successful.

4. Deign of New Database Systems: A potential approach to database systems for scientific computing
is to investigate completely new approaches that scale in performance, usability, query, data
modeling and an ability to incorporate complex data types in scientific applications; and that
eliminate the over-constraining usage models which are impediments to scalability in traditional
databases. Scalable file systems would be critical as an underlying software layer, but not as a user-
level interface for data management purposes. It is critical to move to "dataset" oriented paradigms
for data management, in which the file systems serve the data management layer and needs to be
optimized for limited functionality needed by data management layer, which in turn presents a
intuitive, easy-to-use interface to the user for managing, querying and analyzing data with a
capability for the users to embed their functions within the data management systems.

5. Scalable Data Format and High-level Libraries: Scientists use different data formats, mainly driven
by their ability to specify the multidimensional, multiscale, often sparse, semi-structured,
unstructured and adaptive data. Examples of these formats and corresponding libraries include
netCDF and HDF and their corresponding parallel (PnetCDF and PHDF) versions. The changes in
these in the past have mainly been driven by backward compatibility. Approaches to adapt these
formats, enhance these formats and scaling the data access libraries must be investigated.
Furthermore, new storage formats, that emphasize on scalability and the use of effective parallel
I/O along with the capabilities to incorporate analytics and workflow mechanisms would be
important to investigate and develop. Although the use of new storage devices such as SCM has
been discussed in the context of I/O systems, their use in redesigning or optimizing storage of data

Draft 0.93 18Nov09

www.exascale.org 42

and metadata for performance and effective querying high-level data formats and libraries should
be pursued, especially given that accessing metadata is a major bottleneck.

6. Search and Query Tools: Effective searching and querying of scientific data is very critical.
Technology for efficient and scalable searching and filtering of large-scale scientific multivariate
datasets with hundreds of searchable attributes to deliver the most relevant data and results would
be important. Users may be interested in querying specific events or presence or absence of certain
data subsets. Furthermore, filtering of data based on certain query specifications is important
including capabilities to combine multiple data sets and query across them.

7. Wide-Area data access, movement and query tools: Wide-area data access is becoming an
increasingly important part of many scientific workflows. In order to most seamlessly interact with
wide-area storage systems, tools must be developed that can span various data management
techniques across wide area integrated with scalable I/O, workflow tools, query and search
techniques.

4.3.3.3 Recommended Research Agenda Scientific Data Management

The recommended research agenda for SDM systems is all items above except item 3.

Time Frame Targets and Milestones – Scientific Data Management

2010-11
• Extensions and Redesign of Scalable Data formats
• Extend capabilities of WorkFlow tools to incorporate analytics
• Design of data mining and statistical algorithms for multiscale data

2012-13

• Design and definition of Scientific Database Systems
• Workflow tools with fault-resiliency specification capabilities
• Integration of scalable I/O techniques with wide-area SDM technologies

2014-15

• Analytics and Mining for Active Storage Systems including functionality for users
to embed their functions.

• Scalable implementations of high-level libraries for various high-level data formats
• Scalable Query and Search capabilities in Scientific Database Systems

2016-17

• Comprehensive parallel data mining and analytics suites for scalable clusters with
GPGPU and other accelerators

• Extensive capabilities for managing data provenance within the Workflow and other
SDM tools

• On-line Analytics capability and its integration with Workflow tools

2018-19 • Real-time Knowledge Discovery and Insights
• Comprehensive Scientific Data Management Tools

Crosscutting considerations

The Scientific Data Management clearly has crosscutting considerations with scalable storage and I/O,
visualization techniques and tools, operating systems, fault-resiliency mechanisms, communication layer
and to some extent with programming models.

4.4 Crosscutting Dimensions
4.4.1 Resilience

Contributors: Franck Cappello (INRIA, FR), Al Geist (ORNL) Sudip Dosanjh (SNL), Marc Snir
(UIUC), Bill Gropp (UIUC), Sanjay Kale (UIUC), Bill Kramer (NCSA), Satoshi Matsuoka
(TITECH), David Skinner (NERSC)

Draft 0.93 18Nov09

www.exascale.org 43

Since exascale systems are expected to have millions of processors and hundreds of millions of cores,
resilience will be a necessity for the exascale applications. If the relevant components of the X-stack are
not fault tolerant, then even relatively short-lived applications are unlikely to finish or worse, may
terminate with an incorrect result. In other words, insufficient resilience of the software infrastructure
would likely render extreme scale systems effectively unusable. The amount of data needing to be
checkpointed and the expected rate of faults for petascale and larger systems are already exposing the
inadequacies traditional checkpoint/restart techniques. The trends predict that for exascale systems faults
will be continuous and across all parts the hardware and software layers, which will require new
programming paradigms. Because there is no compromise for resilience, the challenges it presents need to
be addressed now for solutions to be ready when Exascale systems arrive.

4.4.1.1 Technology drivers:

 Exponential increase in the number of sockets, cores, threads, disks and the memory size.

 Because of the size and complexity, there will be more faults and a large variety of errors (soft
errors, silent soft errors, transient and permanent software and hardware errors), everywhere in
the system. Some projections consider than the full system MTTF would be in the range of 1
minute.

 Silent soft errors will become significant and raise the issues of result and end-to-end data
correctness

 New technologies such as Flash Mem (SSD), Phase-Change RAM and accelerators will both
raise new opportunities (stable local storage, faster checkpointing, faster checkpoint compression,
etc.) and new problems (capturing the state of accelerators)

 Intel has estimated that additional correctness checks on chip will increase power consumption
15-20%. The need to significantly reduce the overall power used by exascale systems is likely to
reduce the reliability of components and reduce the MTBF of the overall system.

4.4.1.2 Gap analysis:

 Existing fault tolerance techniques (global checkpoint/global restart) and will be unpractical at
Exascale. New techniques for saving and restoring state need to be developed into practical
solutions

 The most common programming model, MPI, does not offer a paradigm for resilient
programming. A failure of a single task often leads to the killing of the entire application.

 Present Applications and system software are not fault tolerant nor fault aware and are not
designed to confine errors/faults, to avoid or limit their propagation, and to recover from them
when possible.

 There is no communication or coordination between the layers of the software stack in error/fault
detection and management, nor coordination for preventive or corrective actions.

 Errors, fault root causes, and propagation are not well understood

 There is almost never verification of the results from large, long running scale simulations

 There are no standard metrics, no standardized experimental methodology nor standard
experimental environment to stress resilience solutions and compare them fairly.

4.4.1.3 Alternative R&D strategies

Resilience can be attacked from different angles:

1. Global recovery versus fault confinement and local recovery,

Draft 0.93 18Nov09

www.exascale.org 44

2. Fault recovery versus fault avoidance (fault prediction + migration),

3. Transparent (system managed) versus Application directed,

4. Recovery by rollback versus replication

Since rollback recovery, as we know it today, will be not applicable by 2014-2016, research needs to
progress on all techniques that help to avoid global coordination and global rollback.

4.4.1.4 Recommended Research Agenda for Resilience

The recommended research agenda follows two main tracks:

 Extent the applicability of rollback toward more local recovery – Scalable, low overhead, fault
tolerant protocols, Integration of SSD and PRAM for checkpointing, reducing checkpoint size
(new execution state management), error and fault confinement and local recovery, consistent
fault management across layers (including Application and System software Interactions),
language support and paradigm for resilience, dynamic error handling by applications

 Fault avoidance and fault oblivious software to limit the recovery from rollback – Improve RAS
collection and analysis (root cause), Improve understanding of error/fault and their propagation
across layers, develop situational awareness, system level fault prediction for time optimal
checkpointing and migration, fault oblivious system software, fault oblivious applications

Time Frame Targets and Milestones -- Resilience

2010-12

 Target1: Extend the applicability of Rollback Recovery

Milestones: Design of Scalable, low overhead fault tolerant protocols

Milestones: Integration of checkpoint size reducing techniques (compiler, incremental,
compression, etc.)

Milestone: Demonstrate replication as alternative to rollback

2013-15

Target1: Extend the applicability of Rollback Recovery

Milestone: Integrate Phase Change RAM technologies

Milestone: Error and fault confinement, Local recovery, TMR (cores)

Milestone: Fault aware system software

Milestone: Language support & paradigm for Resilience

Milestone: Application and System software Interactions (standard API)

Milestone: Consistency across layers (CIFTS or CIFTS like mechanisms)

Target2: Fault avoidance & oblivious software

-Milestone: RAS collection and analysis (root cause), situational awareness

-Milestone: H&S Integration

2016-19

Target2: Fault avoidance & oblivious software

-Milestone: System level fault prediction for time optimal checkpointing and migration

-Milestone: Fault oblivious system software

-Milestone: Fault oblivious applications

Draft 0.93 18Nov09

www.exascale.org 45

4.4.2 Power Management

Contributors: John Shalf (LBNL), Satoshi Matsuoka (TITECH, JP)

4.4.2.1 Technology drivers for Power Management

Power has become the leading design constraint for future HPC system designs. In thermally limited
designs, power also forces design compromises that lead to highly imbalanced computing systems (such
as reduced global system bandwidth). The design compromises required for power-limited logic will
reduce system bandwidth and consequently reduce delivered application performance and greatly limit
the scope and effectiveness of such systems. From a system management perspective, effective power
management systems can substantially reduce overall system power without reducing application
performance, and therefore make fielding such systems more practical and cost-effective. Existing power
management infrastructure has been derived from consumer electronic devices, and fundamentally never
had large-scale systems in mind. Without comprehensive cross-cutting technology development for
scalable active power management infrastructure, power consumption will force design compromises that
will reduce the scope and feasibility of exascale HPC systems.

From an applications perspective, active power management techniques improve application performance
on systems with a limited power budget by dynamically direct power usage only to the portions of the
system that require it. For example, a system without power management would melt if it operated
memory interfaces at full performance while also operating the floating point unit at full performance --
forcing design compromises that limit the memory bandwidth to 0.01 bytes/flop according to the DARPA
projections. However, in this thermally limited case you can deliver higher memory bandwidth to the
application for the short periods of time by shifting power away from other components. Whereas the
projected bandwidth ratio for a machine would be limited to 0.01 bytes/flop without power management,
the delivered bandwidth could be increased to 1 byte/flop for the period of time where the application is
bandwidth limited by shifting the power away from floating point (or other components that are under-
utilized in the bandwidth-limited phase of an algorithm). Therefore, power management is an important
part of enabling better delivered application performance through dynamic adjustment of system balance
to fit within a fixed power budget.

From a system management perspective, power is a leading component of system total-cost-of-ownership.
Every megawatt of reduced power consumption translates to savings of $1M/year even the least
expensive energy contracts. For systems that are projected to consume hundreds of megawatts, power
reduction makes fielding of such systems more practical. HPC-focused power management technology
can have a much broader impact across the large-scale computing market. High-end servers, which are
the building blocks of many HPC systems, are estimated to consume 2% of North American power
generation capacity as of 2006, and this factor is growing. By 2013, IDC estimates that HPC systems will
be the largest fraction of the high-end server market. So the direct impact of improved power
management technology is to reduce the operating cost for Exascale HPC systems, but the broader is to
reduce power consumption of the largest and fastest growing sector of the computing technology market
(HPC systems), and reduce carbon emissions for all server technology.

The current state-of-the-art power management systems are based on features developed for the
consumer-electronics and laptop markets, which make local control decisions to reduce power.
Unfortunately, the technology to collect information across large-scale systems, make control decisions
that coordinate power management decisions across the system, and reduced models of code performance
for optimal control are not well developed. Furthermore, the interfaces for representing sensor data for
the control system, interfaces to describe policies to the control system, and to distribute control decisions
are not available at scale. Effective system-wide power management will require development of interface
standards to enable both vertical (e.g. between local components and integrated system) and horizontal

Draft 0.93 18Nov09

www.exascale.org 46

integration (e.g. between numerical libraries) of components in a complete solution. Standardization is
also a minimum requirement for broad international collaboration on development of software
components. The research and development effort required to bring these technologies into existence will
touch on nearly every element of a large-scale computing system design – from library and algorithm
design to system management software.

4.4.2.2 Alternative R&D strategies for Power Management

Fundamentally, power management technology attempts to actively direct power towards useful work.
The goal is to reduce system power consumption without a corresponding impact on delivered
performance. This is accomplished primarily through two approaches

1. Power down components when they are underutilized: Examples of this include Dynamic
Voltage-Frequency Scaling (DVFS), which reduces the clock rate and operating voltage of
components when the OS directs it to. Memory systems also support many low-power modes
when operating at low loads. Massive Arrays of Redundant Disks (MAID) allow disk arrays to
be powered down incrementally (subsets of disks) to reduce power. In the software space,
operating systems or libraries that use information about the algorithm resource utilization to set
power management policy to reduce power.

2. Explicitly Manage Data Movement: Both algorithms and hardware subsystems are used to
manage data movement to make the most effective use of available bandwidth (and hence
power). Examples from the hardware space include solid state disk caches to lower I/O power for
frequently accessed data, offloading of work to accelerators, and software-managed memory
hierarchies (local stores). Examples from the software space include communication avoiding
algorithms, programming models that abstract use of local stores, and libraries that can adapt to
current power management states or power management policy.

Current power management features are primarily derived from consumer technology, where the power
savings decisions are all made locally. For a large parallel system, locally optimal solutions can be
tremendously non-optimal at the system scale. When nodes go into low-power modes opportunistically
based on local decisions, it creates a jitter that can substantially reduce system-scale performance. For
this reason, localized automatic power management features are often turned off on production HPC
systems. Moreover, the decision to change system balance dynamically to conserve power requires
advance notice because there is the latency for changing between different power modes. So the control
loop for such a capability requires a predictive capability to make optimal control decisions. Therefore,
new mechanisms that can coordinate these power savings technologies at system scale will be required to
realize an energy-efficiency benefit without a corresponding loss in delivered performance.

A complete adaptive control system requires a method for sensing current resource requirements, making
a control decision based on an accurate model for how the system will respond to the control decision,
and then distributing that control decision in a coordinated fashion. Currently the control loop for
accomplishing this kind of optimal control for power management is fundamentally broken. Predictive
models for response to control decisions are generally hand-crafted (a time-consuming process) for the
few examples that currently exist. There is no common expression of policy or objective. There is no
comprehensive monitoring or data aggregation. More importantly, there is almost NO tool support for
integration of power management into libraries and application codes. Without substantial investments to
create system-wide control systems for power management, standards to enable vertical and horizontal
integration of these capabilities, and the tools to facilitate easier integration of power management
features into application codes, there is little chance that effective power management technologies will
emerge. The consequence will be systems that must compromise system balance (and hence delivered
application performance) to fit within fixed power constraints, or systems that have impractical power
requirements.

Draft 0.93 18Nov09

www.exascale.org 47

4.4.2.3 Recommended Research Agenda for Power Management

The R&D required for the X-stack to enable comprehensive system-wide power management is pervasive
and will touch on a broad variety of system components. The cross-cutting research agenda includes the
following elements.

Operating System/Node Scale Resource Management: Operating systems must support Quality-of-
Service management for node-level access to very limited/shared resources. For example, the OS must
enabled coordinated/fair sharing of the memory interface and network adaptor by hundreds or even
thousands of processors on the same node. Support for local and global control decisions require
standardized monitoring interfaces for energy and resource utilization (PAPI for energy counters).
Standard control and monitoring interfaces enable adaptable software to handle diversity of hardware
features/designs. Future OS’s must also manage new power efficient architecutres, heterogeneous
computing resources, including devices such as GPUs, embedded CPUs, non-volatile low power memory
and storage, and manage data movement and locality in memory hierarchy.

System-Scale Resource Management: We need to develop power Performance monitoring and
aggregation that scales to 1B+ core system. System management services require standard interfaces to
enable coordination across subsystems and international collaboration on component development. Many
power management decisions must be executed too rapidly for a software implementation, so must be
expressed as a declarative policy rather than a procedural description of actions. Therefore, policy
descriptions must be standardized to do fine-grained management on chip. This requires standards for
specifying reduced models of hardware power impact and algorithm performance to make logistical
decisions about when and where to move computation as well as the response to adaptations. This
includes analytical power models of system response and empirical models based on advanced learning
theory. We must also develop scalable control algorithms to bridge gap between global and local models.
Systems to aggregate sensor data from across the system (scalable data assimilation and reduction), make
control decisions and distribute those control decisions in a coordinated fashion across large scale systems
hardware. Both online and offline tuning options based on advanced search pruning heuristics should be
considered.

Algorithms: We must investigate energy-aware algorithms that base order of complexity on energy cost
of operations rather than FLOPs. A good example of this approach is communication-avoiding
algorithms, which trade-off FLOPS for communication to save energy. However, the optimal trade-off is
very context specific, so we must enable libraries to be annotated for parameterized model of energy to
articulate a policy to manage those trade-offs on different system architectures. Standardizing the
approach to specifying lightweight models to predict response to resource adjustment will be important to
this effort.

Libraries: To create cross-architecture compatible, energy-aware libraries, library designers need to use
their domain-specific knowledge of the algorithm to provide power management and policy hints to the
power management infrastructure. This research agenda requires performance/energy efficiency models
and power management interfaces in software libraries to be standardized. This ensures compatibility of
the management interfaces and policy coordination across different libraries (horizontal integration) as
well as supporting portability across different machines (vertical integration).

Compilers: Compilers and code generators must be able to automatically instrument code for power
management sensors and control interfaces to improve the programmability of such systems. Compiler
technology can be augmented to automatically expose “knobs for control” and “sensors” for monitoring
of non-library code. A more advanced research topic would be to find ways to automatically generate
reduced performance and energy consumption models to predict response to resource adaptation.

Applications: Applications require more effective declarative annotations for policy objectives and
interfaces to coordinate with advanced power-aware libraries and power management subsystems.

Draft 0.93 18Nov09

www.exascale.org 48

The proposed research agenda targets the following key metrics for improving overall effectiveness of
exascale systems.

 Performance: Scalable, lightweight, and cross- software hierarchy performance models (analytic
models and empirical models) need to be discovered that enable predictive control of application
execution, so that we can find ways of reducing power without having deleterious impact on
performance.

 Programmability: The applications developers cannot be expected to manage power explicitly
due to the overwhelming complexity of the hardware mechanisms. Making power management
accessible to application and library architects requires coordinated support from compiler,
libraries, and system services.

 Composability: There must be standards to enable system components that are developed by
different research groups and to enable libraries from different groups to work in coordinated
fashion with underlying power systems. Standardization of monitoring and control interfaces
minimizes the number of incompatible ad-hoc approaches, and enables an organized international
effort.

 Scalability: There must be able to integrate information from OS, system level resource manager,
and applications/libraries for unified strategy to meet objectives.

Time Frame Targets and Milestones – Power Management

2010-11

Energy Monitoring Interface Standards

Energy aware/communication avoiding algorithms

Should we enumerate specific deliverables in crosscut areas for each epoch?

 System Management:

 Algorithms:

 Libraries:

 Compilers and Frameworks:

 Applications:

2012-13

Local OS-managed Node Level Energy Efficiency Adaptation

System level standard interfaces for data collection and dissemination of control
requests

2014-15

Compatible Energy Aware Libraries using Standardized Interfaces

Enable libraries to be annotated for parameterized model of energy to articulate a policy
to manage those trade-offs (different architectures)

Standardized approach to expressing lightweight performance models for predictive
control (analytic models and empirical models)

Scalable algorithms for adaptive control

Draft 0.93 18Nov09

www.exascale.org 49

2016-17

Automated Code Instrumentation (Compilers, Code-generators, Frameworks)

Standardized models of hardware power impact and algorithm performance to make
logistical decisions (when/where to move computation + response to adaptations)

2018-19

Automated System Level Adaptation for Energy Efficiency

Scale up systems to 1B+ way parallel adaptive control decision capability

4.4.3 Performance Optimization

Contributors: Bernd Mohr (Juelich, DE), Adolfy Hoisie (LANL), Matthias Mueller (TU Dresden,
DE), Wolfgang Nagel (Dresden, DE), David Skinner (LBL) Jeffrey Vetter (ORNL)

4.4.3.1 Technology and Science drivers for Performance Optimization

Exascale systems will consist of increasingly complex architectures with massive numbers of potentially
heterogeneous components and deeper memory hierarchies. Meanwhile, hierarchies of large, multifaceted
software components will be required to build next generation applications. Taken together, this
architectural and application complexity is compounded by the fact that future systems will be more
dynamic in order to respond to external constraints such as power and failures. As reduced time-to-
solution is still the major reason to use supercomputers, powerful integrated performance modeling,
prediction, measurement, analysis, and optimization capabilities will be required to efficiently operate an
exascale system.

4.4.3.2 Alternative R&D strategies for Performance Optimization

In the exascale regime the challenges of performance instrumentation, analysis, modeling and engineering
will be commensurate with the complexity of the architectures and applications. An instrumented
application is nothing but an application with modified demands on the system executing it. This makes
current approaches for performance analysis still feasible in the future as long as all involved software
components are concurrent and scalable. In addition to increased scalability of current tools and the use of
inherently more scalable methods like statistical profiling, techniques like automatic or automated
analysis, advanced filtering techniques, on-line monitoring, clustering and analysis as well as data mining
will be of increased importance. A combination of various techniques will have to be applied.

Another alternative is a more performance-aware and model-based design and implementation of
hardware and software components from the beginning, instead of trying to increase the performance of
functionally correct but poorly performing application after the fact.

Finally, in addition to user-controlled analysis and tuning, especially on higher level (inter-node)
components of the X-stack, self-monitoring, self-tuning frameworks, middle ware, and runtime
schedulers, especially at node levels, are necessary. Autotuning facilities will be of great importance here.

Worse, all of these approaches might not work for machine architectures that are radical departures from
today’s machines; this very likely will need fundamentally different approaches to performance
optimization.

In the performance modeling area, we anticipate that in new methodologies will need to be developed that
go beyond the static description of the performance of applications running on the system, to capture the
dynamic performance behavior under power and reliability constraints. Performance modeling will also
be a main tool for the co-design of architectures and applications.

Draft 0.93 18Nov09

www.exascale.org 50

4.4.3.3 Recommended Research Agenda Performance Optimization

The following considerations are key for a successful approach to performance at exascale:

 Continue development of scalable performance measurement, collection, and analysis (online
reduction and filtering, clustering), and visualization (hierarchical) facilities. Here, performance
analysis needs to incorporate techniques from the areas of feature detection, signal processing,
and data mining.

 Support for modeling, measurement, and analysis of heterogeneous hardware systems.

 Support for modeling, measurement and analysis of hybrid programming models (mixing MPI,
PGAS, OpenMP and other threading models, accelerator interfaces).

 Automated / automatic diagnosis / autotuning.

 Reliable and accurate performance analysis in presence of noise, system adaptation, and faults
requires inclusion of appropriate statistical descriptions.

 Performance optimization for other metrics than time (e.g. power).

 Hardware and software components need to provide performance observability and control
through appropriate interfaces and mechanisms (e.g., counters) to provide sufficient performance
details for analysis if a performance problem unexpectedly escalates to higher levels. Vertical
integration across software layers (OS, compilers, runtime systems, middleware, and application).

 Programming models should be designed with performance analysis in mind. Software and
runtime systems must expose their model of execution and adaptation, and its corresponding
performance through a (standardized) control mechanism in the runtime system.

Time Frame Targets and Milestones – Performance Optimization

2012-13

• Support for hybrid programming models (mixing MPI, PGAS, OpenMP and
other threading models, accelerator interfaces)

• Support modeling, measurement, and analysis, and autotuning on/for
heterogeneous hardware platforms

2014-15
• Handle observation of million-way concurrency
• Predictive exascale system design

2016-17
• Handle observation of hundreds of million-way concurrency
• Characterize performance of exascale hardware and software for application

enablement
2018-19 • Handle observation of billion-way concurrency

4.4.3.4 Crosscutting considerations

To ensure performance analysis and optimization at exascale, the various components and layers of the X-
stack have to be designed to be transparent with respect to performance. This performance intransparency
will result in escalation of unforeseen problems to higher layers, including the application. This is not a
really new problem, but certain properties of an exascale system significantly increase its severity and
significance.

 At this scale, there always will be failing components in the system with a large impact on
performance. A “real-world” application will never run on the exact same configuration twice.

 Load balancing issues limit the success even on moderately concurrent systems, and the challenge
of locality will become another severe issue which has to be addressed by appropriate
mechanisms and tools.

Draft 0.93 18Nov09

www.exascale.org 51

 Dynamic power management, e.g., at hardware level inside a CPU, will result in performance
variability between cores and across different runs. The alternative to run at lower speed without
dynamic power adjustments may not be an option in the future.

 The unknown expectation of the application performance at exascale will make it difficult to
detect a performance problem if it is escalated undetected to the application level.

 The ever growing higher integration of components into a single chip and the use of more and
more hardware accelerators makes it more difficult to monitor application performance and move
performance data out of the system unless special hardware support will be integrated into future
systems.

 Performance comes from all layers of the X-stack, so an increased integration with the different
layers, especially the operating systems, compilers, and runtime systems will be essential.

Altogether this will require a integrated and collaborative approach to handle performance issues and
correctly detect and analyze performance problems.

4.4.4 Programmability

Contributors: Thomas Sterling (LSU), Hiroshi Nakashima (Kyoto U., JP)

Programmability is the crosscutting property that reflects the ease by which application programs may be
constructed. Although quantitative metrics are uncertain (e.g., SLOC) in their effectiveness, qualitatively
level of effort in programmer time may reflect relative degree, noting that there is no “bell jar”
programmer by which to make absolute comparisons. Programmability itself involves three stages of
application development including 1) program algorithm capture and representation, 2) program
correctness debugging, and 3) program performance optimization. All levels of the system including the
programming environment, the system software, and the system hardware architecture affect
programmability. The challenges to achieving programmability are myriad related both to the
representation of the user application algorithm and to underlying resource usage.

 Parallelism – sufficient parallelism must be exposed to maintain Exascale operation and hide
latencies. It is anticipated that that 10 billion-way operation concurrency will be required.

 Distributed Resource Allocation and Locality Management – balancing the tension between
spreading the work among enough execution resources for parallel execution and co-locating
tasks and data to minimize latency is required to make such systems programmable.

 Latency Hiding – intrinsic methods for overlapping communication with computation must be
incorporated to avoid blocking of tasks and low utilization of computing resources.

 Hardware Idiosyncrasies – properties peculiar to specific computing resources such as memory
hierarchies, instruction sets, accelerators, and other characteristics must be managed in a way that
circumvents their negative impact while exploiting their potential opportunities without
demanding explicit user control, making programming much more difficult.

 Portability – application programs must be portable across machine types, machine scales, and
machine generations. Performance sensitivity to small code perturbations should be minimized.

 Synchronization Bottlenecks – barriers and other over constraining control methods must be
eliminated and replaced by lightweight synchronization overlapping phases of computation.

 Data Structure Representation – and distribution.

4.4.4.1 Technology and Science drivers for Programmability

As a crosscutting property of future Exascale systems programmability is directly impacted by all layers
of the system stack that constitute the technology and science drivers. The programming model and

Draft 0.93 18Nov09

www.exascale.org 52

language provide the application programming interface to the user, determine the semantics of parallel
computing, and deliver the degree of control and abstraction of the underlying parallel execution system.
The compiler will assist in extracting program parallelism, establishing granularity of computing tasks,
and contributing to task scheduling and allocation. The runtime system is critical to exploiting runtime
information and determines the level of dynamic adaptive optimization that can be exploited. The
operating system supports the runtime system by providing hardware resources on demand and providing
robust operation. While not part of the software system, the architecture directly impacts programmability
by fixing the overhead costs, latency times, power requirements, memory hierarchy structures,
heterogeneous cores, and other machine elements that determine many of the challenges to programming
and execution.

4.4.4.2 Alternative R&D strategies for Programmability

The two alternative general strategies for “programmability” are evolutionary based on incremental
extensions to conventional programming models, and revolutionary based on a new model of
computation that directly addresses the challenges to achieving Exascale computing. It is anticipated that
the evolutionary strategy will be pursued as part of the efforts of the community to extend common
practices as far in to the trans-Petaflops performance regime as possible. The MPI-3 forum, the HPCS
program, and the roadmaps for Cray and IBM indicate possible trajectories of such incremental
approaches. Hybrid programming models derived from the integration of MPI and OCL or UPC have
been suggested to achieve higher levels of scalability through hierarchical parallelism while retaining
compatibility with existing legacy codes, libraries, software environments and skill sets. However, it is
uncertain as to how far it can be extended to meet the escalating challenges of scalability, reliability, and
power. The evolutionary strategy also assumes incremental extensions to current operating systems,
primarily Unix derivatives (e.g., Linux), that can improve efficiency of synchronization and scheduling
while retaining the basic process, Pthreads, and file model.

The revolutionary path follows historical patterns of devising new paradigms to address the opportunities
and challenges of emergent enabling technologies and the architectures devised to exploit them.
Revolutionary programming models and contributions at other system layers can be created to minimize
the programming burden of the programmer by employing methods that eschew the constraints of earlier
techniques while reinforcing the potential of future system classes.

4.4.4.3 Recommended Research Agenda for Programmability

Unlike programming models and languages, programmability spans all components of the system stack,
both system software and hardware architecture that in anyway influence the usability of the system to
craft real world applications and have them perform correctly and with optimal performance through
minimum programmer time and effort. Thus while research towards programmability must include
factors of programming models, languages, and tools it will also consider compilers, runtime systems,
operating systems, and hardware architecture structures and semantics.

New Model of Computation – In synthesizing the effects of potentially all system layers on
programmability, a single unifying conceptual framework is required to provide the governing principles
establishing the functionality and interoperability of the system components to operate in synergy and
realize critical performance properties. The common scalable execution model for STEM application
targeted systems is CSP which is now unduly stressed in support of present day multi/many-core
heterogeneous systems and cannot, in its current form, be expected to achieve the required functionality
for scalability, efficiency, and dynamic scheduling. Therefore, it is recommended that research be
conducted to devise a new over-arching execution model either as a dramatic extension of current
practices or (as is expected by some) an entirely new (likely based in part on experimental prior art)
model of computation explicitly derived to address the unique challenges of Exascale computing. Such a
model of computation will have strong impact on programmability, one of the strategic requirements.

Draft 0.93 18Nov09

www.exascale.org 53

New Programming Models and Methods – Research of new programming models and ultimately API,
tools, and methods will be required to provide the user interface to construct new application (and system
software) programs and to determine what responsibilities of control of Exascale systems will devolve
directly to the user and which will be assigned to lower levels of the system thus relieving the user of
these burdens (but possible inhibiting needed control as well). An important property of any new
programming model is a clear separation of logical functionality from performance attributes
distinguishing those aspects of code specification that convey across multiple platforms unchanged
(portability) from those that must be adjusted on a per platform basis for performance optimization
(tuning). Preferably, all machine-specific program optimizations will be accomplished by lower system
layers. New programming models will have to greatly expand the diversity of parallelism forms and sizes
over conventional control semantics to dramatically increase by many orders of magnitude exploitable
concurrency. Additionally, whether entirely new or an extended derivative, the next generation Exascale
programming models will have to interoperate with legacy codes, both application (e.g., numerical
libraries) and systems software (e.g., parallel file systems), for ease of transition of community mission
critical workloads to the new classes of Exascale systems architecture. Included in future models needs to
be semantic constructs in support of the broad range of dynamic graph-based algorithms whose access,
search, and manipulation can be very different from more prosaic vectors and matrices for which current
systems have been optimized. Emergent programming methods will require new tools and environments
to make best use of them from a programmer perspective.

New Runtime Systems – Research for advanced runtime systems will be an important means of
dramatically improving programmability supporting dynamic software behavior like load balancing,
thread scheduling, processing and memory resource allocation, power management, and recovery from
failures. Only runtime systems (and OS to some degree) can take advantage of on the fly system status
and intermediate application software state that cannot be predicted at compile time alone. This will be
particularly true for systems of up towards a billion cores and constantly changing system configurations.
In particular, new runtime software will move most programming practices from the static methodology
to dynamic adaptive techniques exploiting runtime information for improved performance optimization.
Examples include the user lightweight thread scheduling, context switching, and suspension management,
as well as inter-thread synchronization, management of deep memory hierarchies, and namespace
management. For dynamic graph based problems, data directed execution using the graph structure to
efficiently define the parallel program execution will further require runtime support.

New Compiler Support – While much of the responsibility of future compilers will reflect prior
techniques for back end support, many new responsibilities will accrue as well to drive the Exascale
systems of the future. Advanced compiler techniques and software will be required for automatic runtime
tuning to match hardware architecture specific properties (e.g., cache sizes), for heterogeneous
architectures, to interface with and support advanced runtime systems, to detect alternative forms of
parallelism, for employing advanced synchronization semantics and primitives, taking advantage of more
sophisticated messaging methods (e.g., message-driven mechanisms), and involving new forms of active
Global Address Space (GAS) and its management.

X-gen Architectures – Although the actual development of future Exascale system hardware architectures
is beyond the scope of the IESP program agenda, research towards critical systems software and
programming methods will be sensitive to and have to respond to the emergence of new architectures
needed to reduce the temporal and power overheads of parallel control mechanisms, optimize the
exploitation of heterogeneous core architectures, support fail-safe reconfigurable system structure
techniques for fault tolerance, engage in active power management, and support for self aware resource
management.

New Operating System – While the execution model is the machine as seen from the semantic
perspective, the operating system is the machine from the usage viewpoint. The OS owns the system,
manages its resources, and makes them available to the program layer as well as providing many services

Draft 0.93 18Nov09

www.exascale.org 54

to that layer. A new operating system will be essential for the X-gen architectures and it supporting
programming environments including APIs, compilers, and greatly expanded runtime software. One of
the most important attributes of a new OS is its order constant scaling property such that it can operate at
speed independent of scale of number of processor cores or memory banks. A second critical property is
the management of an advanced class of global address space that can support multiple applications
sharing all resources in the presence of the need for dynamic allocation and data migration even as it
provides inter-job protection. The new OS must support the greatly expanded role of the runtime system
even as it takes on the added complexity of dealing with heterogeneous cores and deeper memory
hierarchies. The old view of conventional processes and parallel OS threads will have to be revised,
supporting much more lightweight mechanisms offered by the underlying architectures while yielding
many responsibilities to the runtime software driven by application requirements and new programming
models. The operating system will have to provide much more information about system operational state
so that self-ware resource management techniques can be more effectively developed and applied for fail-
safe power-efficient scalable operation.

4.4.4.4 Crosscutting considerations

Programmability is a crosscutting factor affected by all layers of the system stack including software and
hardware. It also is interrelated with other crosscutting factors such as performance and potentially
resilience. It is not clear if there is a relationship between programmability and power management
although when writing system software, the need to develop power management software for the
operating system and possibly the runtime system is certain.

Programmability and performance are tightly coupled. For high performance computing, a major factor
affecting programmability has been performance optimization. This relates to the exposure of application
parallelism, locality management and load balancing, and memory hierarchy management. It is
anticipated that these components will be important even more so for future Exascale systems. The
complexity in that extreme case will require that the responsibility for all but parallelism (and even not all
of that) be removed from the programmer and handled by the combination of compiler and runtime in
cooperation with the operating system and system architecture.

With respect to reliability, it may be of value for the programmer to have the option to dictate the required
recourse in the presence of faults such as recovery or prioritized actions (in the case of urgent/ real-time
computing). However, default options should be prevalent and used most of the time to minimize
programmer intervention and therefore improve programmability.

5. IESP Application Co-Design Vehicles
Contributors: Richard Kenway (University of Edinburgh, UK), William Tang (Princeton
U/PPPL) and Bill Kramer (NCSA)

Co-Design Vehicles (CDVs) are applications that provide targets for, and feedback to, the software
research, design and development efforts in the IESP. These are required because there are several
possible paths to exascale with many associated design choices along the way. The earliest realizations
will include some of today’s terascale applications that have a clear need for exascale performance and
are sufficiently well understood that the steps required to achieve it can be mapped out. CDVs are
accordingly a key part of the exascale design and development process. However, the specific domain
applications themselves are not necessarily the scientific or societal drivers for developing exascale
capabilities.

A CDV must satisfy the following criteria:

1. It is a terascale application today with a demonstrated need for exascale performance;

2. In progressing to exascale, at least one milestone will be achieved that has significant scientific
impact in an area that is expected to be a scientific or societal driver for exascale computing, such

Draft 0.93 18Nov09

www.exascale.org 55

as basic physics, environment, engineering, life sciences, or materials. This criterion is designed
to help insure that the effort elicits the necessary support from at least one agency funding the
IESP;

3. A realistic and productive pathway to exascale can be mapped out over 10 years; and

4. The community developing the CDV application is experienced in algorithm, software and/or
hardware developments and willing to engage in the exascale co-design process. In other words,
there must be at least one organized research group, considered to be among the leaders in the
field, that is interested in and willing to work with the IESP

The IESP will identify a manageable number of CDVs (e.g.,4 or 5) that span the full range of anticipated
software challenges. A “short-list” of the most important “science drivers” in a specific applications
domain will be articulated, and then a description provided of what the barriers and gaps might be in these
priority research directions (PRDs). The primary task for each candidate CDV is to demonstrate the need
for exascale and what will be done to address the PRDs. A major component of this activity is to identify
what new software capabilities will be targeted and to what purpose. Finally, it is necessary to describe
how the associated software R&D can be expected to help the targeted application benefit from exascale
systems, in terms of accelerating progress on the PRDs. With regard to developing an appropriate “living
roadmap” for this activity, it will be important to identify the timescale on which involvement in the “path
to exascale” R&D can produce significant “exascale-enabled impact.” The choice of CDVs will be
informed by the matrix of HPC applications vs software components (Section 5.2 below).

5.1 Representative CDVs
In order to provide some illustrative specific examples of CDVs that conform to the selection criteria, we
focus here on the High Energy Physics/QCD and the Plasma Physics/Fusion Energy Sciences areas. It
should not be inferred that these are the highest priority applications in the “path to exascale” portfolio.

5.1.1 High Energy Physics/QCD

Simulations of QCD, the theory of the strong interaction between quarks and gluons which are the basic
building blocks of hadrons, have played a pioneering role in the development of parallel and, latterly,
high-performance computing since the early 1980’s. Today, lattice QCD codes are amongst the fastest
performing and most scalable applications on petascale systems. Through 30 years of efforts to control
all sources of numerical uncertainty and systematic errors, the current state-of-the-art is that fully realistic
simulations are possible and starting provide results for a range of quantities needed by the experimental
program, relating to the masses and decays of hadrons, with uncertainties at the few-percent level.
Expected discoveries at the LHC will drive the need to extend these simulations to other quantum field
theories that might describe new physics underlying electroweak symmetry breaking.

Lattice QCD already has a long track record of acting as a CDV. Specifically, it meets all of the above
criteria for exascale co-design; i.e.,

1. Lattice QCD codes sustain multi-teraflops performance today and appear capable of scaling
linearly through the petascale range. They are compute-limited, specifically demanding a balance
between compute and on-/off-node memory access speeds, so that scientific progress requires the
highest possible sustained performance. In order to deliver realistic and sufficiently precise
results for the range of quantities needed by today’s experiments, lattice sizes must at least
double, increasing the computational cost by a factor of more than 1000. Even larger lattices will
open up more hadronic quantities to first-principles computation and require performances well
into the exascale range.

2. As lattice QCD codes sustain multi-petaflops the original goal of the field, to solve QCD at the
few-percent level for many of the simplest properties of hadrons, will be achieved. Not only will
this be a major milestone for theory, it will also enable experiment to identify possible

Draft 0.93 18Nov09

www.exascale.org 56

discrepancies with the Standard Model and, hence, clues to new physics. In approaching
sustained exaflops, sufficiently large lattices will be employed to extend these computations to
multi-hadron systems, permitting nuclear physics to be computed also from first principles.
Depending on what is discovered at the LHC, peta/exascale simulations may help explain
electroweak symmetry breaking.

3. The pathway to early exascale performance for QCD requires developing multi-layered
algorithms and implementations to exploit fully (heterogeneous) on-chip capabilities, fast
memory, and massive parallelism. Optimized single-core and single-chip complex linear algebra
routines, usually via automated assembler code generation, and the use of mixed-precision
arithmetic for fast memory access and off-chip communications, will be required to maintain
balanced compute/memory access speeds while delivering maximum performance. Tolerance to,
and recovery from, system faults at all levels will be essential due to the long runtimes. In
particular, use of accelerators and/or GPGPUs will demand algorithms that tolerate hardware
without error detection or correction. The international nature of the science will demand further
development of global data management tools and standards for shared data.

4. The lattice QCD community has a successful track record in co-design, extending over 20 years
and three continents: for example, the QCDSP and QCDOC projects in the US, the series of APE
machines in Europe, and CP-PACS in Japan. Notably, design features of QCDOC influenced
IBM’s BlueGene. In all cases, QCD physicists were involved in developing both the hardware
and system software. Typically, these projects resulted in systems that achieved performances for
QCD comparable to the best that could be achieved at the time from commercial systems. The
community has also agreed an international metadata standard, QCDML.

As a CDV, lattice QCD has already been adopted by IBM for stress testing and verification of new
hardware and system software. Other cross-cutting outputs from a QCD CDV are likely to include
performance analysis tools, optimizing compilers for heterogeneous microprocessors, mechanisms for
automatic recovery from hardware/system errors, parallel high-performance I/O, robust global file
systems and data sharing tools, and new stochastic and linear solver algorithms.

5.1.2 Plasma Physics/Fusion Energy Sciences (FES)

Major progress in magnetic fusion research has led to ITER – a multi-billion dollar burning plasma
experiment supported by seven governments (EU, Japan, US, China, Korea, Russia, and India)
representing over half of the world’s population. Currently under construction in Cadarache, France, it is
designed to produce 500 million Watts of heat from fusion reactions for over 400 seconds with gain
exceeding 10 – thereby demonstrating the scientific and technical feasibility of magnetic fusion energy.
Strong research and development programs are needed to harvest the scientific information from ITER to
help design a future demonstration power plant with a gain of 25. Advanced computations at the
petascale and beyond in tandem with experiment and theory are essential for acquiring the scientific
understanding needed to develop whole device integrated predictive models with high physics fidelity.

As a representative CDV, the FES area meets the criteria for exascale co-design in that:

 FES applications currently utilize the LCF’s at ORNL and ANL as well as advanced computing
platforms at LBNL – demonstrating scalability of key physics with increased computing
capability; 2. HPC FES topics with significant scientific impact were clearly identified at the
major DOE workshop on Grand Challenges in FES & Computing at the Extreme Scale (April,
2009); i.e., (a) high physics fidelity integration of multi-physics, multi-scale FES dynamics; and
(b) burning plasmas/ITER physics simulation capability; and

 A productive FES pathway (over 10 years) can be readily developed for exploitation of exascale.
This includes carrying out experimentally-validated confinement simulations (including
turbulence-driven transport) and serves to demonstrate the ability to include higher physics

Draft 0.93 18Nov09

www.exascale.org 57

fidelity components with increased computational capability. This is needed for both of the areas
identified as PRDs – with the following associated Barriers & Gaps:

o While FES applications for macroscopic stability, turbulent transport, edge physics
(where atomic processes important), etc. have demonstrated at various levels of
efficiency the capability of using existing LCF’s, a major challenge is to integrate/couple
improved versions of large-scale HPC codes to produce an experimentally-validated
integrated simulation capability for the scenario modeling of a whole burning plasma
device such as ITER.

o New simulations of unprecedented aggregate floating point operations will be needed for
addressing the larger spatial and longer energy-confinement time scales as FES enters the
era of burning plasma experiments on the reactor scale. Demands include dealing with
spatial scales spanning the small gyroradius of the ions to the radial dimension of the
plasmas (i.e., an order of magnitude greater resolution is needed to account for the larger
plasmas of interest such as ITER) and with temporal scales associated with the major
increase in plasma energy confinement time (~1 second in the ITER device) together
with the longer pulse of the discharges in these superconducting systems.

 With regard to potential impact on new software development, each science driver for FES and
each exascale-appropriate application approach currently involves the application and further
development of current codes with respect to mathematical formulations, data structures, current
scalability of algorithms and solvers (e.g. Poisson solves) with associated identification of
bottlenecks to scaling, limitations of current libraries used, and “complexity” with respect to
memory, flops, and communication. In addition key areas being targeted for significant
improvement over current capabilities include workflows, frameworks, verification and
validation (V&V) methodologies including uncertainty quantification (UQ), and the management
of large data sets from experiments & simulations. As part of the aforementioned ongoing FES
collaborations with LCF’s, assessments are moving forward on expected software developmental
tasks for the path to exascale with the increasingly difficult challenges associated with
concurrency and memory access (data movement approaches) for new heterogeneous
architectures involving accelerators. Overall, new methods and exascale-relevant tools can be
expected to emerge from the FES application domain. With respect to potential impact on the
user community (usability, capability, etc.), the two FES PRDs noted earlier will potentially be
able to demonstrate how the application of exascale computing capability can enable the
accelerated delivery of much needed modeling tools. The timescale in which such impact may be
felt can be briefly summarized as follows for the FES application:

 10 to 20 PF (2012) integrated plasma core-edge coupled simulations

 1 EF (2018) whole-system burning plasma simulations applicable to ITER

5.1.3 Notes on strategic development of IESP CDVs

The technology drivers for CDV applications are for the most part connected to advanced architectures
with greater capability but with formidable software development challenges. It is expected that the need
to address concurrency issues and to deal with complex memory access/data movement challenges for
emerging heterogeneous architectures with accelerators will drive new approaches for scalable algorithms
and solvers. For risk mitigation purposes, alternative R&D strategies need to be developed for choosing
architectural platform(s) capable of effectively addressing the PRDs in the various domain applications
while exploiting the advances on the path to the exascale. Beneficial approaches include:

1. Developing effective collaborative alliances involving CS and Applied Math (e.g., following the
SciDAC model);

Draft 0.93 18Nov09

www.exascale.org 58

2. Addressing crosscutting challenges shared by CDV applications areas via identification of
possible common areas of software development, appropriate methodologies for V&V and UQ,
and the common need for collaborative interdisciplinary training programs to deal with the
critical task of attracting, training, and assimilating young talent.

In summary, the current applications identification exercise is intended to complement and provide input
into the building of the IESP Roadmap -- a planning instrument designed to enable the international HPC
community to improve, coordinate, and leverage their collective investments and development efforts.

5.2 Matrix of Applications and Software Components Needs
The matrix below was created as an exercise to stimulate and inform thinking about CDVs that the IESP
community might recruit to the effort. Clearly all science areas and engineering areas that contain
potential CDVs need something in all the SW areas, but for the purposes of this exercise we tried to sort
out areas of emphasis for each application domain, i.e. where we expect the major challenges will be for
that domain. For example, all areas need some I/O, but the ones checked were deemed to need lots of I/O,
based on the problems that exist today Likewise, the areas that have less software maturity (like Health
and Energy) got more Xs' in the programming, languages and debugging columns.

Science and
Engineering
Disciplines

Sub Areas

N
ew

Program

m
ing

M
odels and N

ew

w
ays to specify

com
putation

Program
m

ability
- Im

proved C
ode

D
evelopm

ent and
A

pplication
B

uilding
E

nvironm
ents

R
esource

m
anagem

ent,
pow

er
m

anagem
ent

and w
orkflow

s

D
ynam

ic D
ata

Storage and
M

anagem
ent

L
ibraries that

exploit advanced
H

W
 and SW

features

R
esiliency and

Fault
M

anagem
ent

D
ebugging and

Perform
ance

T
uning at Scale

System

m
anagem

ent and
Security

Scalable
O

perating
System

s

Support for
A

pplication
M

odeling

Material
Science

• Nano-
science

• Structural
Analysis

• Electronic
Structures

 X X X X X X X

Energy
Sciences

• Alternative
Fuels

• Nuclear
Fission

• Combustion
• Nuclear

Fusion
• Solar
• Energy

Efficiency

X X X X X X X

Chemistry • Molecular
Dynamics X X X X

Earth
Systems

• Climate
• Weather
• Earthquake/

Seismic
• Subsurface

Transport
• Water

Resources

X X X X X X X X X

Astrophysics
Astronomy

• Dark Energy
• Galaxy

Formation/in
teraction

• Cosmic
Microwave
Background
Radiation

• Supernova
• Sky Surveys

 X X X X X X X

Draft 0.93 18Nov09

www.exascale.org 59

Science and
Engineering
Disciplines

Sub Areas

N
ew

Program

m
ing

M
odels and N

ew

w
ays to specify

com
putation

Program
m

ability
- Im

proved C
ode

D
evelopm

ent and
A

pplication
B

uilding
E

nvironm
ents

R
esource

m
anagem

ent,
pow

er
m

anagem
ent

and w
orkflow

s

D
ynam

ic D
ata

Storage and
M

anagem
ent

L
ibraries that

exploit advanced
H

W
 and SW

features

R
esiliency and

Fault
M

anagem
ent

D
ebugging and

Perform
ance

T
uning at Scale

System

m
anagem

ent and
Security

Scalable
O

perating
System

s

Support for
A

pplication
M

odeling

Biology / Life
Systems

• Genomics
• Protein

Folding
• Evolution
• Ecology
• Organism

Engineering

X X X X X X X

Health
Sciences

• Drug Design
• Contagious

Disease
• Radiation

related health
• Medical

Records
• Comparative

Genomics

X X X X X X X

Nuclear and
High Energy
Physics

• QCD
• Neutrinos
• Accelerator

Design

X X X X X X

Fluid
Dynamics

• Internal
• External X X X X X X

	

Draft 0.93 18Nov09

www.exascale.org 60

	

6. Bibliography
[1] "Challenges In Climate Change Science and The Role of Computing at the Extreme Scale

- Workshop Summary Report," Department of Energy, Washington DC, pp. November 6-
7, 2008.

[2] "Forefront Questions in Nuclear Science and the Role of High Performance Computing
Summary Report - Summary Report," Department of Energy, Washington DC, pp.
January 26-28, 2009.
http://extremecomputing.labworks.org/nuclearphysics/PNNL_18739_onlineversion_opt.p
df.

[3] M. L. Garcia and O. H. Bray, "Fundamentals of Technology Roadmapping " Sandia
National Laboratory, pp. 34, 1997.
http://www.sandia.gov/PHMCOE/pdf/Sandia'sFundamentalsofTech.pdf.

[4] P. M. Kogge and et al, "ExaScale Computing Study: Technology Challenges in
Achieving Exascale Systems," DARPA Information Processing Techniques Office,
Washington, DC, pp. 278, September 28, 2008.
http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/exascale_final_r
eport_100208.pdf.

[5] National Research Council Committee on the Potential Impact of High-End Computing
on Illustrative Fields of Science and Engineering, "The Potential Impact of High-End
Capability Computing on Four Illustrative Fields of Science and Engineering,"
Washington, DC, pp. 142, 2008.

[6] V. Sarkar, et al., "ExaScale Software Study: Software Challenges in Extreme Scale
Systems," DARPA Information Processing Techniques Office, Washington DC., pp. 159,
September 14, 2009.
http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/ECSS%20report
%20101909.pdf.

[7] V. Sarkar, W. Harrod, and A. E. Snavely, "Software challenges in extreme scale
systems," Journal of Physics: Conference Series pp. 012045, 2009.
http://stacks.iop.org/1742-6596/180/012045.

[8] R. Stevens, T. Zacharia, and H. Simon, "Modeling and Simulation at the Exascale for
Energy and the Environment Town Hall Meetings Report," Department of Energy Office
of Advance Scientific Computing Reserach, Washington, DC, pp. 174, 2008.
http://www.sc.doe.gov/ascr/ProgramDocuments/Docs/TownHall.pdf.

Draft 0.93 18Nov09

www.exascale.org 61

7. Appexdix IESP Attendees
 SC08 Santa

Fe
Paris Japan

Giovanni Aloisio Euro-Mediterranean
Centre for Climate
Change

Italy x x giovanni.aloisio@unile.it

Patrick Aerts NWO NL x x x aerts@nwo.nl
Dong Ahn LLNL US x ahn1@llnl.gov
Yutaka Akiyama Tokyo Tech Japan x akiyama@cs.titech.ac.jp
Jean-Claude Andre CERFACS France x x Jean-Claude.Andre@cerfacs.fr
Phil Andrews UT US x pandrew2@mail.tennessee.edu
Mutsumi Aoyagi U Kyushu Japan x x aoyagi@cc.kyushu-u.ac.jp
Mike Ashworth Daresbury UK x mike.ashworth@stfc.ac.uk
Franck Barbier ANR France x franck.barbier@agencerecherche.fr
David Barkai Intel US x x x david.barkai@intel.com
Sanzio Bassini CINECA Italy x bassini@cineca.it
Kyriakos Baxevanidis EU EU x Kyriakos.Baxevanidis@ec.europa.eu
Pete Beckman ANL US x x x x beckman@mcs.anl.gov
Jean-Yves Berthou EDF France x x x x jy.berthou@edf.fr
Richard Blake Daresbury UK x r.j.blake@dl.ac.uk
Jay Boisseau TACC US x boisseau@tacc.utexas.edu
Taisuke Boku U of Tsukuba Japan x x x Taisuke@cs.tsukuba.ac.jp
Bertrand Braunschweig ANR France x x x Bertrand.BRAUNSCHWEIG@agencer

echerche.fr
Bill Camp Intel US x william.j.camp@intel.com
Franck Cappello INRIA France x x x x fci@lri.fr
Barbara Chapman U of Houston US x x x bmchapman@earthlink.net
Xuebin Chi CAS China x chi@sccas.cn
Alok Choudhary NWU US x x x alok.choudhary@eecs.northwestern.e

du
Iris Christadler LRZ Germany x christadler@lrz.de
Almadena Chtchelkanova NSF US x achtchel@nsf.gov
Guillaume Colin de Verdière CEA France x guillaume.colin-de-verdiere@CEA.FR
Frederica Darema NSF US x fdarema@nsf.gov
Bronis de Supinski LLNL US x desupinski1@llnl.gov
David Dean ORNL/DOE US x deandj@ornl.gov
Jack Dongarra U of Tennessee US x x x x dongarra@cs.utk.edu
Sudip Dosanjh SNL US x x x sudip@sandia.gov
Thom Dunning NCSA US x tdunning@ncsa.uiuc.edu
Hugo Falter ParTec Germany x x x falter@par-tec.com
Fabrizio Gagliardi Microsoft US x Fabrizio.Gagliardi@microsoft.com
Alan Gara IBM US x x alangara@us.ibm.com
Al Geist ORNL US x gst@ornl.gov
Luc Giraud CERFACS France x x Luc.Giraud@cerfacs.fr
Kostas Glinos EU EU x konstantinos.glinos@ec.europa.eu
Jean Gonnord CEA France x x jean.gonnord@cea.fr
Robert Graybill ISI US x graybill@east.isi.edu
Bill Gropp UIUC US x x x wgropp@illinois.edu
Jim Hack ORNL US x jhack@ornl.gov
Jean-Francois Hamelin EDF France x x jean-francois.hamelin@edf.fr

Draft 0.93 18Nov09

www.exascale.org 62

Robert Harrison ORNL US x harrisonrj@ornl.gov
Bill Harrod Darpa US x William.Harrod@darpa.mil
Stefan Heinzel Max Planck DEISA Germany x x x heinzel@dkrz.de
Barb Helland OS US x helland@ascr.doe.gov
Mike Heroux Sandia US x x x x maherou@sandia.gov
Ryutaro Himeno RIKEN Japan x x himeno@riken.jp
Kimihiko Hirao Riken Japan x hirao@riken.jp
Dan Hitchcock OS US x Daniel.Hitchcock@science.doe.gov
Thuc Hoang NNSA US x Thuc.Hoang@ns.doe.gov
Adolfy Hoisie LANL US x hoisie@lanl.gov
Charlie Holland DARPA US x Charles.Holland@darpa.mil
Koh Hotta Fujitsu Japan x hotta@jp.fujitsu.com
Yuichi Inoue MEXT Japan x yinoue@mext.go.jp
Yutaka Ishikawa U of Tokyo Japan x x x ishikawa@is.s.u-tokyo.ac.jp
Satoshi Itoh MEXT Japan x satoshi.itoh@toshiba.co.jp
William Jalby U of Versailles France x William.Jalby@prism.uvsq.fr
Jean-Pascal Jégu Teratec France x jean-pascal.jegu@teratec.fr,
Zhong Jin CAS China x zjin@sccas.cn
Fred Johnson DOE US x x x fjohnson@mreg.com
Andrew Jones NAG UK x x Andrew.Jones@nag.co.uk
Laxmilkant Kale UIUC US x kale@uiuc.edu
Richard Kenway EPCC UK x x r.kenway@epcc.ed.ac.uk
David Keyes Columbia U. US x x david.keyes@columbia.edu
Moe Khaleel PPNL US x moe.khaleel@pnl.gov
Kimmo Koski CSC Finland x Kimmo.Koski@csc.fi
Bill Kramer NCSA US x x x wkramer@ncsa.uiuc.edu
Dimitri Kusnezov NNSA US x Dimitri.Kusnezov@nnsa.doe.gov
Jesus Labarta BSC Spain x x x jesus.labarta@bsc.es
Jean-Francois Lavignon Bull France x x x jean-francois.lavignon@bull.net
Alain Lichnewsky Genci France x x lichnewsky@genci.fr
Volker Lindenstruth Heidelberg U Germany x ti@kip.uni-heidelberg.de
Thomas Lippert Juelich Germany x x x th.lippert@fz-juelich.de
Bob Lucas ISI US x x rflucas@ISI.EDU
Barney Maccabe ORNL US x x x maccabeab@ornl.gov
Satoshi Matsuoka TiTech Japan x x x x matsu@is.titech.ac.jp
Bob Meisner NNAS US x Bob.Meisner@nnsa.doe.gov
Paul Messina ANL US x x x messina@mcs.anl.gov
Peter Michielse NWO NL x x michielse@NWO.NL
Kazunori Mikami Cray Japan x mikami@cray.com
Leighanne Mills U of Tennessee US x mills@eecs.utk.edu
Bernd Mohr Juelich Germany x x x b.mohr@fz-juelich.de
Terry Moore U of Tennessee US x x x x tmoore@cs.utk.edu
Hervé Mouren Teratec France x Hervé Mouren (h.mouren@noos.fr)
Jean-Michel Muller CNRS France x Jean-Michel.Muller@ens-lyon.fr
Matthias Müller Dresden Germany x matthias.mueller@tu-dresden.de
Wolfgang Nagel Dresden Germany x x x wolfgang.nagel@tu-dresden.de
Kengo Nakajima U of Tokyo Japan x nakajima@cc.u-tokyo.ac.jp
Hiroshi Nakashima Kyoto U. Japan x x h.nakashima@media.kyoto-u.ac.jp
Mamoru Nakono Cray Japan X nakano@cray.com

Draft 0.93 18Nov09

www.exascale.org 63

Jeff Nichols ORNL US x x nicholsja@ornl.gov
Jane Nicholson EPSRC UK x Jane.Nicholson@epsrc.ac.uk
Jean-Philippe Nominé CEA France x Jean-Philippe.NOMINE@CEA.FR
Nick Nystrom PSC US x nystrom@psc.edu
Per Oster CSC Finland x x Per.Oster@csc.fi
Abani Patra NSF US x x x apatra@nsf.gov
Rob Pennington NSF US x rpenning@nsf.gov
Serge Petiton CNRS France x Serge.Petiton@lifl.fr
Claude Puech INRIA France x x Claude.puech@inria.fr
Tracy Rafferty U of Tennessee US x x x x rafferty@cs.utk.edu
Dan Reed Microsoft US x x Daniel.Reed@microsoft.com
Michael Resch HLRS Stuttgart Germany x resch@hlrs.de
Catherine Rivière GENCI France x x catherine.riviere@genci.fr
Ralph Roskies PSC US x roskies@psc.edu
Faith Ruppert ANL US x ruppert@alcf.anl.gov
Christian Saguez Teratec France x Christian.Saguez@ecp.fr
Vivek Sarkar Rice US x vsarkar@rice.edu
Mitsuhisa Sato U of Tsukuba Japan x x x x msato@cs.tsukuba.ac.jp
Stephen Scott ORNL US x scottsl@ornl.gov
Mark Seager LLNL US x seager@llnl.gov
Ed Seidel NSF US x x x hseidel@nsf.gov
Akiyuki Seki MEXT Japan x a-seki@mext.go.jp
Satoshi Sekiguchi AIST/METI Japan x s.sekiguchi@aist.go.jp
Hideo Sekino Toyohash Inst Tech Japan x sekinoh@gmail.com
John Shalf LBNL US x x JShalf@lbl.gov
Horst Simon LBNL US x x simon@nersc.gov
David Skinner LBNL US x x x DESkinner@lbl.gov
Marc Snir UIUC US x snir@illinois.edu
Mary Spada ANL US x ms@digitale-inc.com
Thomas Sterling LSU US x x x tron@cct.lsu.edu
Rick Stevens ANL US x x x stevens@anl.gov
Michael Strayer DOE OS US x x michael.strayer@science.doe.gov
Fred Streitz LLNL US x streitz1@llnl.gov
Bob Sugar UCSB US x sugar@savar.physics.ucsb.edu
Shinji Sumimoto Fujitsu Japan x s-sumi@flab.fujitsu.co.jp
Makoto Taiji Riken Japan x x taiji@riken.jp
Toshikazu Takada Riken Japan x tz-takada@riken.jp
Bill Tang PPPL US x tang@pppl.gov
John Taylor CSIRO AU x John.A.Taylor@csiro.au
Rajeev Thakur ANL US x thakur@mcs.anl.gov
Anne Trefethen Oxford UK x x x anne.trefethen@oerc.ox.ac.uk
Akira Ukawa U of Tsukuba Japan x ukawa@ccs.tsukuba.ac.jp
Mateo Valero BSC Spain x x mateo.valero@bsc.es
Aad van der Steen NCF NL x steen@hpcresearch.nl
Jeffrey Vetter ORNL US x x x vetter@ornl.gov
Vladimir Voevodin Moscow State U Russia x voevodin@parallel.ru
Andy White LANL US x x abw@lanl.gov
Peg Williams Cray US x x x pegwms@cray.com
Robert Wisniewski IBM US x bobww@us.ibm.com

Draft 0.93 18Nov09

www.exascale.org 64

Kathy Yelick LBNL US x x x yelick@eecs.berkeley.edu
Akinori Yonezawa U Tokyo Japan x yonezawa@is.s.u-tokyo.ac.jp
Thomas Zacharia ORNL US x zachariat@ornl.gov

Draft 0.93 18Nov09

www.exascale.org 65

8. Appendix - Computational	 Challenges	 and	 Needs	 for	 Academic	 and	
Industrial	 Applications	 Communities

The IESP Application subgroup was given two main objectives: establish a roadmap to Exascale for
scientific domains and document software issues (type of issues, time frame).

The Application Subgroup identified the application domains to be considered, listed the scientific and
technical questions raised by Exascale simulation and finally established a list of experts in US, Japan and
Europe that could provide inputs between the Paris and the Tsukuba meetings. The application domains
identified were:
- Weather, Climate and Earth Sciences,
- Astrophysics, HEP and Plasma Physics,
- Materials Science, Chemistry and Nanoscience,
- Life Sciences,
- Engineering, Finance and Optimization.

A contact person has been identified for each expert among the member of the IESP Application
Subgroup and was in charge of interviewing the experts, addressing the following issues:
- Scientific and computational challenges: brief overview of the underlying scientific and

computational challenges and potential impact,
- Software issues – 2009: brief overview of identified software issues for addressing state of the art

machines,
- Software issues – 2012, 2015, 2020: expected scientific and technical hurdles,
- Expert feedback: identification of the impact of the last machine change the expert has been face to

on the applications (porting, optimization, re-writing, …) and ways of doing simulation and expected
impact of the next machine change (going from Tflops to Pflops, Pflop to Eflops).

Twenty contributions have been received before the Tsukuba meeting, eleven more just after: five
contributions in "Weather, Climate and Earth Sciences", two in "Astrophysics, HEP and Plasma
Physics", seven in "Materials Science, Chemistry and Nanoscience", five in "Life Sciences" and twelve in
"Engineering and Finance & Optimization".

The expert contributions have been first briefly presented to the Tsukuba Application Subgroup.
Following this presentation and discussions between the participants, four technical transversal items
were identified of particular importance for addressing Exascale computing in the different applications
domains. The first one, “Validation – verification - uncertainty quantification”, proposed to address
the comparison of simulation results with experiment, the evaluation of how realistic is a simulation and
how software tools can help that (i.e. visualisation). The second one, “Mathematical methods”, focused
on algorithms and solvers. The third one, “Productivity and efficiency of code production”, dealt with
load-balancing, scalability, tools for code development (debugging, performance analysis), programming
model for actual and next computer generation and use of scientific libraries. The fourth one, “Integrated
framework”, addressed the integration and interoperability of multi-code/models/scales, interoperability
of CAE, computation and visualisation and the management and supervision of workflows.

The Tsukuba Application Subgroup then divided into four working groups, addressing these four items.
The conclusions of the four working groups once presented, the Application Groups divided into five
disciplinary working groups in order to proceed to a classification of issues with respect to expectation
from the SW groups.

These different contributions are summarized in the attached slides.

Draft 0.93 18Nov09

11/10/09

1

Computational Challenges and
Needs for Academic and

Industrial Applications
Communities

IESP – Tsukuba

October, 2009

Methodology

Three ways to look at these issues
1. Preliminary (i.e. between the Paris and

Tsukuba meetings): the (disciplinary)
expert views

2. A view transversal to all application
domains: 4 main items

3. Back to the disciplinary views:
classification of issues with respect to
expectation from the SW groups

11/10/09

2

Methodology

Three ways to look at these issues
1. Preliminary (i.e. between the Paris and

Tsukuba meetings): the (disciplinary)
expert views

2. A view transversal to all application
domains: 4 main items

3. Back to the disciplinary views:
classification of issues with respect to
expectation from the SW groups

Engineering
12 contributions

11/10/09

3

Earth Sciences – Oil & Gas
Depth Imaging / Reservoir simulation

Paul	 Messina	 June	 28,	 2009	

Scientific and computational challenges
• Sub Salt and Foothills Depth Imaging
• Fine scale reservoir simulation
• 4D monitoring
• Less approximation in the physics:
 non linear full waveform inverse problem
• Elastic, poro-elastic ground models…,

Software issues – short term (2009/2011)

•  Mesh generation: scalability, load balancing
•  Accurate and fast Wave Equation Solver
•  Solvers (multi-grid, better pre-conditioner)
•  Standard programming tools for addressing
 accelerating technology (e.g. GPGPU)

Software issues – long term 2015/2020
•  New numerical methods for solving more complex
 Wave Equation formulation
•  Scalable solvers for reservoir simulations
•  Adaptive methods for heterogeneous platforms
 (hybrid e.g. CPU+GPU)
•  New optimization methods (no gradient computations)
•  Programming tools: PGAS language such as CAF ?

Expert name/affiliation - email: Henri CALAN DRA, TOTAL, Henri.CALANDRA@total.com

Impact of last machine changes
(a few Tflops -> 100 Tflops)

•  Last change (10=> 100 TFlops) was almost seamless,
Depth Imaging codes were ready in OpenMP/MPI hybrid
mode up to 4000 cores + scheduling of many jobs of
different sizes to optimize the 100+ Tflops machine
global workload – should scale up to 1+ Pflops/s 2010
NEXT: 10 PFlops 2012?
• Reinforcement of HPC expertise to harness
 petascale and beyond computers,
• Accelerating technology: load balancing on large
 systems with different kinds of compute units
• Impact of network technology: better, direct data
migration, IO, initialisation; better SMP or distributed
memory usage
• Impact of the many core technology on the design of
 the algorithm: will we have to revisit the physics?

6

Industrial challenges in the Oil & Gas industry: Depth Imaging roadmap

Algorithmic complexity Vs. corresponding computing power

3-18 Hz

3-35 Hz

3-55 Hz

RTM

9.5 PF

900 TF

56 TF

1015 flops

0,1

1

10

1000

100

1995 2000 2005 2010 2015 2020

0,5

Algorithm complexity

Visco elastic FWI
petro-elastic inversion

 elastic FWI
 visco elastic modeling

 isotropic/anisotropic FWI
 elastic modeling/RTM

 isotropic/anisotropic RTM
 isotropic/anisotropic modeling

Paraxial isotropic/anisotropic imaging

Asymptotic approximation imaging

Substained performance for different frequency content
over a 8 day processing duration

courtesy

HPC Power
PAU (TF)

11/10/09

4

Computational Challenges and Needs for Academic and
Industrial Applications Communities

Paul	 Messina	 June	 28,	 2009	

Scientific and computational challenges

Software issues – short term (2009/2011)

Parallel I/O, for CSM, for visualization
Multi-level parallelism
Load-balancing in industrial geometries, with
adaptative meshing
Integrating and coupling (non-parallel)
commercial codes
Data mining for constructing reduced models

Software issues – long term 2015/2020

Increased efficiency (algorithms, compilers)
Compilers for hybrid architectures
Fault-tolerance, dynamic reconfiguration
Virtualization of matching between needs
and resources

AERONAUTICS – Eric CHAPUT / AIRBUS – eric.chaput@airbus.com

Impact of last machine changes
(??flops -> ?? flops)

 Better exploration of parameter space
(embarrassingly parallel problem !)

Maintaining the scaling properties,
maintaining the efficiency

Aero Optimisation & CFD-CSM coupling
Full multi-disciplinary optimization
CFD-based noise simulation
Real-time CFD-based in-flight simulation

High Performance Computing
as key-enabler

1980 1990 2000 2010 2020 2030

Capacity:
of Overnight

Loads cases run

Available
Computational

Capacity [Flop/s]

CFD-based
LOADS
& HQ

Aero
Optimisation
& CFD-CSM

Full MDO

Real time
 CFD based

 in flight
 simulation

x106

1 Zeta (1021)

1 Peta (1015)

1 Tera (1012)

1 Giga (109)

1 Exa (1018)

102

103

104

105

106

LES

CFD-based
noise

simulation

RANS Low
Speed

RANS High
Speed

HS
Design

Data
Set

Unsteady
RANS

“Smart” use of HPC power:
•  Algorithms
•  Data mining
•  knowledge

Capability achieved during one night batch
Courtesy AIRBUS France

11/10/09

5

Computational Challenges and Needs for Academic and
Industrial Applications Communities

Paul	 Messina	 June	 28,	 2009	

Scientific and computational challenges

- Digital aircraft: complete design before
starting industrial developments
- Preparation of certification before 1st flight

Software issues – short term (2009/2011)

- Software and libraries should be applicable
to all types of computers
-  Need for solving the dilemma: implicit
solvers not easy to parallelize, explicit
solvers not very efficient
- Parallel IO for post-processing (to be done
outside the mainframe), for allowing
interaction with the simulation, for
optimization using genetic algorithms, …

Software issues – long term 2015/2020

-  Need for standards
-  Operating systems taking care of task
allocation, of load-balancing

AERONAUTICS – Cord ROSSOW / DLR – h.mueller@dlr.de

Impact of last machine changes
(??flops -> ?? flops)

- Domain not using the newest architectures
or machines (Top 25 rather than Top 5), for
minimizing the impact of machine change

Computational Challenges and Needs for Academic and
Industrial Applications Communities

Scientific and computational challenges

Real-time simulation of full aircraft

Flight simulation using full Navier-
Stokes equations

Software issues – short term (2009/2011)

Mainly efficiency issues due to
scaling

Software issues – long term 2015/2020

Effect of hardware changes.

Codes need to be rewritten to exploit
GPUs

Prof. Christian Allen, University of Bristol, CFD Rotor Aircraft

Impact of machine changes

No problem so far with large
distributed memory clusters

Need to write codes more in terms of
memory and data management rather
than message passing

11/10/09

6

Computational Challenges and Needs for Academic and
Industrial Applications Communities

Scientific and computational challenges

Fully utilise CFD in the engineering
design cycle for

•  Engine design

•  Aerodynamics

Software issues – short term (2009/2011)

Multi-core with reduced memory
bandwidth per core is seriously
impacting most CFD codes

Input/output is becoming critical

Software issues – long term 2015/2020

Short-term problems (memory
bandwidth, I/O etc) will become
greatly exacerbated

Prof David Emerson, STFC Daresbury Lab, CFD

Impact of machine changes

Machine change was OK until
memory bandwidth per core began to
drop dramatically

Investigating whether mixed MPI/
OpenMP will help

Computational Challenges and Needs for Academic and
Industrial Applications Communities

Scientific and computational challenges

Simulations at high Reynolds numbers
given the strong scaling of memory
and CPU time with Re

Software issues – short term (2009/2011)

Codes perform badly due to limited
memory bandwidth on multi-core
nodes

Software issues – long term 2015/2020

Exploitation of multi-core nodes

Input/output

Complete software chain from CAD
to visualisation of solution

Dr Stewart Cant, University of Cambridge, CFD &Combustion

Impact of machine changes

So far painless to O(1000) cores

This is not expected to be the case
for Exascale

11/10/09

7

CFD Simulation
Mechanical and vibratory behaviour of the fuel assemblies

inside a nuclear core vessel – a developer point of view

Scientific and computational challenges
Computations with smaller and smaller scales in
larger and larger geometries for a better
understanding of physical phenomena
⇒ A better optimisation of the production (margin
benefits)
2007: 3D RANS, 5x5 rods, 100 millions cells, 2 M
cpu.hours (4000 cores during 3 weeks)
2015: 3D LES Full vessel (17x17x196 rods)
unsteady approach, >50 billion cells, 1000000 cores
during few weeks

Software issues – short term (2009/2011)
Mesh generation, visualization
Scalability, load balancing

Solvers (multi-grid, better&simpler pre-conditioner, …)

Mixing programming models (ex. MPI/OpenMP)

Stability and robustness of the software stack (MPI, ..)

API of scientific libraries (ex. BLAS!)

Standardisation of compiler optimisation level pragmas

Computing environment standardization (batch system,
MPIExec,

Software issues – long term 2015/2020
New numerical methods (stochastic, SPH, FV)
Scalability of linear solvers, hybrid solvers

Code optimisation: wall of the collective communications,
load balancing

Adaptive methods (may benefit all of computation/
visualisation/meshing)
Data redistribution, IO (if flat MPI-IO model OK, good,
otherwise require new “standard” data models)
Fault tolerance

Machine independent code optimisation & performance

Expert name/affiliation - email: Yvan Fournier/EDF – yvan.fournier@edf.fr

Impact of last machine change
(x10 Gflops -> 100 Tflops)

Pre/post adaptation
Reinforcement of the HPC expertise

Few extra “simple” programming rules

No rewriting, same solvers, same
programming model, same software
architecture thanks to technological
evolution anticipation
Expected impact (100 Tflops -> Xpflops):
ie. 2015 software issues

Computational Challenges and Needs for Academic and
Industrial Applications Communities

BACKUP

IESP/Applica8on	 Subgroup	

2003 2010 2015 2007 2006
Consecutive thermal fatigue
event

Computations enable to
better understand the wall
thermal loading in an
injection.

Knowing the root causes of
the event ⇒ define a new
design to avoid this
problem.

Part of a fuel assembly
3 grid assemblies

Computation with an
L.E.S. approach for
turbulent modelling

Refined mesh near the
wall.

9 fuel assemblies

No experimental approach up
to now

Will enable the study of side
effects implied by the flow
around neighbour fuel
assemblies.

Better understanding of
vibration phenomena and
wear-out of the rods.

The whole vessel
reactor

106 cells
3.1013 operations

108 cells
1016 operations

1010 cells
5.1018 operations

109 cells
3.1017 operations

107 cells
6.1014 operations

Fujistu VPP 5000

1 of 4 vector processors

2 month length computation

Cluster, IBM Power5

400 processors

9 days

1 Gb of storage

2 Gb of memory

IBM Blue Gene/L

20 Tflops during 1 month
600 Tflops during 1 month

15 Gb of storage

25 Gb of memory

10 Tb of storage

25 Tb of memory

1 Tb of storage

2,5 Tb of memory

200 Gb of storage

250 Gb of memory

Power of the computer Pre-processing not parallelized Pre-processing not parallelized

Mesh generation

… ibid. …

… ibid. …

Scalability / Solver

… ibid. …

… ibid. …

… ibid. …

Visualisation

10 Pflops during 1 month

Computations with smaller and smaller scales in larger and larger geometries
⇒ a better understanding of physical phenomena ⇒ a more effective help for decision making

⇒ A better optimisation of the production (margin benefits)

11/10/09

8

Computational Challenges and Needs for Academic and
Industrial Applications Communities

Paul	 Messina	 June	 28,	 2009	

Scientific and computational challenges

-  Uncertainty quantification: leading to a lot of
additional computations, but critical for
predictive science
- Jet noise using CFD methods
-  Multiphysics and multiscale problems
(turbulence, interfaces, combustion, multiphase
flows, shocks)

Software issues – short term (2009/2011)
-  Linear solvers running well on 103-105 cores
-  Scalable Parallelization methods for complex
and coupled systems and unstructured
methods
-  Parallel I/O and scalable management of
large data sets

Software issues – long term 2015/2020

- Future of MPI-based codes is uncertain:
New languages (domain-specific languages,
DSL) for expressing parallelism will allow
both performance and portability (103-105)

Combustion – Parviz MOIN / Stanford Univ. – moin@stanford.edu

Impact of last machine changes
(??flops -> ?? flops)

- Major rewrite of core infrastructure to support
parallel I/O and parallel post-processing on
multicore clusters

- For next major machine change, impact will
be minimized somewhat due to long-standing
interactions between computer scientists and
applications scientists, and development of
pde-specific DSL

CFD, Hydro-environmental Simulation
A developer and a user point of view

Scientific and computational challenges
3D free surface flow, sedimentology and
ground water flow simulation

2009/10: 30 millions time step, 30 millions
elements, 10 TB/run, 30 Tflops during several
months/run, 10xrun/study
2015/20: model coupling (fluid/structure,
sedimentology/wave/courant), LES, 3 Pflops
during several months/run, 10xrun/study

Software issues – short term (2009/2011)
Porting the whole computation scheme (not only the
computing kernel)
Mesh generation, visualization
Scalability, load balancing (characteristics method)
Dealing with large number of time steps (30 millions),
=>time parallelization?
Mixing parallelism (MPI/OpenMP), use of GPU

Software issues – long term 2012/2020

Coupling different scales,
geometries, models, physics
Inverse problem
Uncertainty Quantification,
Data Assimilation
Numerical solvers

Expert name/affiliation - email: Jean-Daniel Mattei/EDF –jean-daniel.mattei@edf.fr

Impact of last machine change
(x10 Gflops -> 100 Tflops)

Difficulty to “think” parallel
Reinforcement of the HPC expertise and support
Data management (data transfer, IO)
Transparent access to computing power
Portability/machine independent optimisation is
still an issue

11/10/09

9

Computational Challenges and Needs for Academic and
Industrial Applications Communities

Scientific and computational challenges

Improving the capability and reliability
of CFD calculations for impact on
industrial design, esp. for engine and
airframe noise

Software issues – short term (2009/2011)

Codes perform badly due to limited
memory bandwidth on multi-core
nodes

Exploring mixed MPI/OpenMP as a
possible solution

Software issues – long term 2015/2020

New methods for spectral codes
which currently use all-to-all
communications

Data management

Prof. Neil Sandham, University of Southampton – DNS & Turbulent Flows

Impact of machine changes

So far painless to dual-core with O
(1000) cores

The dual-core to quad-core change
has had a major impact on
performance through limited memory
bandwidth

Neutronic Simulation
3D PWR Core Calculation – a user point of view

Scientific and computational challenges
Goal: optimize the nuclear fuel usage in power plants
and in particular the reactor core reload pattern
Means : reference neutron transport calculations
2010: 3D full core calculation with homogenized fuel pins
description 10 Tflops during 10 hours per study, x100 runs
per studies

2020: 3D full core calculation with heterogeneous fuel pins
description and thermal coupling, >1 Pflops during few days
per study, x100 runs per studies

Software issues – short term (2009/2011)
Pre & post processing: parallel visualization
(capability to go from a global picture to the
finest mesh level) and data management,
IO management (dealing with 10-100 GB
for each run)

Dealing with more and more unknown
induces algorithmic convergence issues,
more iterations => more efficient
acceleration techniques needed
Solvers (multi-grid, better&simpler pre-
conditioner, …)
Computing environment standardization
(batch system, MPIExec, …)

Robustness of software stack

Software issues – long term 2020

New numerical methods: advanced acceleration techniques,
coupling stochastic with determinist methods

How to deal with global operations (integral parameters
evaluation, global spatial coupling of neutronic equations)
with one million cores ?
Using not only parallel solvers but parallel data management
through all the calculation process including I/O

Machine independent code optimisation & performance,
hiding the hardware specificities

Expert name/affiliation - email: Tanguy Courau/EDF – tanguy.courau@edf.fr

Impact of last machine change
(x10 Gflops -> x10 Tflops)

Revisiting parallel algorithm (PDEs)
Higher machine dependence in code optimisation
process

Pre/post adaptation

Strong reengineering is needed: few neutronic codes
are natively well adapted to massively distributed
memory architecture
Reinforcement of the HPC expertise, support from
dedicated high skilled HPC experts is needed

11/10/09

10

Stockastic Optimisation
Electricity production optimisation and risk simulation

Scientific and computational challenges
Determine strategies for the electricity production that optimize
specific economic criteria over varied time scales: maximum gain,
minimum risk …: large scale stochastic optimization with millions
of variables and constraints, in general continuous and integer
values
Operational issue: energy stocks management (hydraulic
reservoir, consumer contracts, nuclear fuel stocks) dealing with
uncertainties of production, consumption, energy market, weather
patterns
2010: taking into account 3 aggregated hydraulic stocks and 6
aggregated consumer contacts, 25 Tflops during few days
2015 : include fuel stocks management and power plants stops,
dealing emission constraints, 20 Pflops during few weeks

Software issues – short term (2009/2011)
Algorithmic:
•  Used of well know algorithms (dynamic programming type,
price decomposition methods) to deal x100 cores

•  Investigating new algorithms to deal with binary constraints
and adapted to x1000 cores
Programming model :

•  Use of mixing programming models (MPI/OpenMP, MPI/Intel
TBB)
•  Investigating GPU programming model

Software issues – long term 2015/2020

Algorithmic is the key issue
Fault tolerance as transparent as possible for the
programmer

Compiler issue: dealing with dynamic multi-level thread
management

Expert name/affiliation - email: Xavier Warin/EDF – xavier.warin@edf.fr

Impact of last machine change
(x Gflops -> 10 Tflops)

Algorithmic adaptation
Code rewriting
Increased of collaboration with academics, specially
specialists in parallel programming model
Has popularised use of HPC in production optimisation
domains, has opened new opportunities for energy
management

Materials Science, Chemistry
and Nanoscience

 7 contributions

11/10/09

11

Computational Challenges and Needs for Academic and
Industrial Applications Communities

Scientific and computational challenges

Electronic and structural properties of
ever larger and more complex systems

New properties e.g. For nano-devices

Software issues – short term (2009/2011)

Scaling of existing algorithms

Latency hiding

Software issues – long term 2015/2020

Further scalability issues

Development of new algorithms

Mixed mode MPI/OpenMP

Dr Matt Probert, University of York, Chemistry

Impact of machine changes

So far painless to O(1000) cores but
reaching limit of scalability with
current algorithms

Use Exascale for ensembles
simulations for parameter searches
etc.

Computational Challenges and Needs for Academic and
Industrial Applications Communities

Scientific and computational challenges

Extend current calculations with fully
dynamical quarks into a regime where
the quark masses are realistically light

Software issues – short term (2009/2011)

Relatively simple codes allow
efficient exploitation of SIMD
systems

Expert specialist help is absolutely
crucial

Software issues – long term 2015/2020

Exploitation of multi-core nodes

Fault tolerance

Prof. Simon Hands, University of Swansea, QCD

Impact of machine changes

New algorithms required to
parallelise in all four dimensions

11/10/09

12

Computational Challenges and Needs for Academic and
Industrial Applications Communities

Scientific and computational challenges

Simulations of the standard model of
particle physics and theories beyond

Discover and understand new physics

Software issues – short term (2009/2011)

Main performance-limiting factor is
memory latency/bandwidth

Support of community codes

Software issues – long term 2015/2020

There is no particular reason why
sustained Exaflop/s should not be
possible with modest adaptation of
existing codes

Prof. Richard Kenway, University of Edinburgh, QCD

Impact of machine changes

The step to Exascale should be
smooth

A disruptive change may be required
if checkpointing becomes highly
inefficient

Computational Challenges and Needs for Academic and
Industrial Applications Communities

Scientific and computational challenges

Excited states

Thermodynamics

Multiple length and time scales

Software issues – short term (2009/2011)

Current quantum codes do not scale
beyond O(1000) cores

Exploitation of hierarchical
parallelism

Software issues – long term 2015/2020

Completely new algorithms are
required

Prof Nic Harrison, Imperial College & STFC Daresbury Lab, Materials Science

Impact of machine changes

Distributed memory codes have
transitioned well across several
generations up to O(1000) cores

Major re-code will be expected to
exploit Exascale

11/10/09

13

Computational Challenges and Needs for Academic and
Industrial Applications Communities

Scientific and computational challenges

No response

Software issues – short term (2009/2011)

Currently adding functionality to
linear scaling code ONETEP

Compute/communications imbalance
will cause some problems

Software issues – long term 2015/2020

Biggest challenge is going multi-
scale with multiple localised
quantum regions

Need databases

Prof Mike Payne, University of Cambridge, Chemistry

Impact of machine changes

Scrapping dusty deck codes and
starting from scratch with new codes
has been a big win

Ensemble of multiple instances can
be used to exploit Petascale and
Exascale

Materials Science, Chemistry and Nanoscience
Gilles Zerah - CEA 	

Scientific and computational challenges

The scientific challenge is mostly to develop tools to
achieve predictive descriptions of response of
materials, in conditions of usage as well as in their
fabrication process.

Another challenge is “computational” synthesis of new
materials. The two main computational challenge are:
spatial scalability (more or less ok) and temporal
scalability (difficult)

Software issues - 2009

Techniques for which communication is minimal
efficiently address new architectures (eg GPU). This
impose the development of “localized” techniques
and basis sets. This is not really an issue, but
points to the necessity of standard libraries based
on localized basis sets adapted to these new
architectures.

Software issues – 2012, 2015, 2020

One can envision a more and more tightly integration of
materials simulations at many scales (the multiscale
paradigm). This is probably the direction to go to
achieve temporal scalability.

On an horizon of 10 years, one of the principal
challenge will be to seamlessly integrate those scales
which will rely on different description of matter
(quantal, atomistic, mesoscopic etc..) which in turn
must be adapted to the new hardware.

An efficient “communication” tool has yet to be
developed to allow for scalable communication between
the different scales.

This view is common to many engineering fields, but
materials simulation naturally involve discrete
constituents (atoms, molecules, defects etc..) in very
large quantities, which is somewhat favorable to the use
of massively parallel machines.

11/10/09

14

Material Science
Thierry Deutsch - CEA

Paul	 Messina	 June	 28,	 2009	

Scientific and computational challenges

• Better approximation of the N-Body
effect
• O(N) algorithms instead of O(N3)

• Yield an accurate description of
electronic interactions

• Simulate large size atomic systems

• Simulate the kinetics and dynamics
of those large systems

• Better understanding of the kinetics
and the dynamics of materials

• Find new molecules by means of
exploration of new atomic
configurations

• Predict new physics

• Better prediction of structures and
properties of material for chemistry,
materials ans nanosciences

• First results should be reached by the
end of 2010.

Summary of research direction

Potential scientific impact Potential impact on material science

Material Science
Thierry Deutsch - CEA

Computational Challenges
Prediction of

structures
and properties

Accurate
Electron interaction

Larger system
(complex environment)

Dynamics,
Kinetics, Growth

11/10/09

15

Astrophysics, HEP and Plasma
Physics

 2 contributions

Astrophysics:	 Bridging	 the	 many	 scale	 of	 the	 Universe	

Paul	 Messina	 June	 28,	 2009	

Scientific and computational challenges
Bridging the many scales of the Universe using simulations
of increasing spatial and temporal resolution which include
complex physical models ((magneto)hydrodynamics,
gravity, radiative transfer, thermo-chemistry, nuclear
burning,…)

  Physics of black hole and compact object

  Cosmology and large scale structures formation

  Dynamics of galaxies and of the interstellar medium

  Formation and evolution of star and planetary systems

Software issues – short term (2009/2011)

Software issues – long term 2015/2020

Expert name/affiliation - email: Edouard AUDIT, CEA/IRFU, edouard.audit@cea.fr

Impact of last machine changes
(several 10 Tflops -> 100+ Tflops)

  Handling large data set (transfer, post-processing,
visualisation)

  I/O on machines with over 10 000 core
  Scaling on a large number of cores (weak-scaling)
  Debbuging and optimisation on a large number of cores
  Shifting from memory to time limited runs
 NB: codes are mostly recent, some 10klines of source code
+ first hybrid CPU/GPU versions

  Scaling, especially for implicit solver

  Performances on special architecture (GPU, Cells,…)

  Manpower to follow the rapid change in programming
paradigm

  IO, reliability (MTBF)

  Data handling, local vs. remote processing

  Design of a new I/O patterns

  Reduction of global communications

  Setup of a new local shared-memory system (256Gb) to
post-process the data

  Hybrid (MPI/OpenMP) programming (not yet in
production phase)

11/10/09

16

Computational Challenges and Needs for Academic and
Industrial Applications Communities

Paul	 Messina	 June	 28,	 2009	

Scientific and computational challenges

•  Preparation and analysis of ITER
discharges within days with
resources between PF and EF.
•  Advancement of plasma theory

Software issues – short term (2009/2011)

•  Ensemble of various CFD solvers
for 5 dim grid, FFTs
•  Particle in cell approach, Monte
Carlo codes in 5 dim phase space

Software issues – long term 2015/2020

Evaluation of alternative, better
scaling approaches e.g. multi grid,
pure Monte Carlo methods

Prof. S. Guenter Max Planck Institute for Plasma Physics guenter@ipp.mpg.de

Technical Requirements

Extreme low latency for high communication
requirements (high bandwidth less decisive)
Dedicated interconnect for synchronization and
global operations required
Efficient and strong I/O system for handling of
large input/output data in the PB range
In general weak scaling requirements
Multilevel of parallelism: Mixed mode possible
to address core / node hierarchy
Pre- and post-processing: highly relevant

Life Sciences
 5 contributions

11/10/09

17

Computational Challenges and Needs for Academic and
Industrial Applications Communities

Scientific and computational challenges

Free energy simulations of
thermodynamically feasible crystal
structures of organic molecules

Ab initio methods for organic materials

Software issues – short term (2009/2011)

Software maintenance

Retention of key software developers

Software issues – long term 2015/2020

Funding of experienced and expert
software developers in support of
long-term software developments

Prof. Sally Price, University College London, Biology

Impact of machine changes

Limited by human resources

Stability, reliability etc of systems

Life Science - Simulations molecular ensembles

Scientific and computational challenges
Simulations of 1-2 order of magnitude larger molecular
ensembles (incl. solvent) over 2-3 orders of magnitude
longer time scales are critical for:
•  Structure prediction (e.g., protein conformation;
combinatorial search for optimized structure of multinary
materials)
•  Direct simulation / evaluation of short-term dynamics,
•  Meaningful parameterization of coarse-grained kinetic
models (e.g., kinetic Monte Carlo, Markov models)
•  lAdvancement beyond density functional theory in the
local or generalized gradient approximation for large-scale
problems

Software issues – short term (2009/2011)

•  Efficient distribution of operations
based on a real-space grid
•  Fast robust eigenvalue solution for
generalized, non-sparse eigenvalue
problems

Software issues – long term 2015/2020
•  Efficient parallel matrix algebra for “beyond-
DFT” approaches
•  Efficient parallel “distribution” of independent
sub-processes with regular but infrequent data
synchronization between runs
•  Parallel post-processing of large amounts of
output data (information collected during long
molecular dynamics trajectories)

Prof. M. Scheffler - Fritz Haber Institut of the Max Planck Society
matthias.scheffler@fhi.mpg.de

Technological requirements

•  Extreme low latency for point-to-point communication
operations Extremely fast global communication for
synchronization of real-space grid based operations
•  Dedicated interconnect for synchronisation and global
operations required
•  Large per-core memory for “beyond DFT” matrix
algebra (large matrices, swapping to disk highly
detrimental to performance)
•  Efficient and strong I/O system for handling of large
input/output data in the 10s of TB range

11/10/09

18

Protein Function Prediction : From sequences to structures
Michel Masella/CEA

Michel	 Masella,	 2009	

Scientific and computational challenges

Regardless of the genome, 2/3 of its
proteins belong to uncharacterized

protein families.

Main goal : identifying the structure of
these proteins and their biological

partners => protein function prediction
- PLOS 2 (2004) e42 -

Software issues - 2009

Software issues – 2011 and beyond

New bio-informatic algorithm =>
improving the proteinic structure
prediction - SCOTCH software

 - PNAS, 105 (2008) 7708 -

Refining protein structures and
identification of protein partners
using massive molecular dynamics
simulations based on sophisticated
force-fields - POLARIS(MD) code

- J Comput Chem 29 (2008) 1707 -

Coupling and scaling up both the
approaches to propose a systematic
functional annotation of new families

Well established software for protein
structure prediction : Modeller

⇒  Needs of high level of sequence
similarity

Grand Challenge GENCI/CCRT 2009
CEA/DSV/IG-GNG

11/10/09

19

Atomistic Simulations for Material Sciences and
Biochemistry

Scientific and computational challenges

•  Strongly coupled electron systems
•  More realistic free energy calculations
=> Application to material design, biochemistry
•  Models are well know (quantum mechanics
etc.), petascale codes are already running but
numerical schemes that solve models in
reasonable time are key (exponential
complexity of models)
• Importance of strong scaling (time to solution)
while being power efficient (CPU efficiency)

Software issues – short term (2009/2011)

Software issues – long term 2015/2020

Expert name/affiliation - email: Thomas SCHULTESS, CSCS, thomas.schulthess@cscs.ch

Impact of last machine changes
(1=Pflops ; 2=next/beyond)

 1. major re-writing of codes; consolidation of
“in situ” post-processing and data output
filtering that lowered final I/O load

2. More code re-engineering, more in situ data
processing co-located with computation

•  Codes are now ok for Petascale– parallelism
that fits well on MPP machines
• Very high efficiencies in double or mixed
precision were achieved on Jaguar/ORNL (up to
1.3 PF sustained w.r.t. 1.38 peak; i.e. > Linpack)

•  Keep the ability to re-write or re-engineer codes with
mixed teams (models, maths, s/w, h/w) and get suited
funding for this
Since not every technology evolution is predictable,
keep flexibility + capability of applications people to
program
• Programming models or approaches able to harness
heterogeneous cores/nodes, use both large memory
nodes and address memory globally – how to further
integrate partial promising approaches such as UPC,
CUDA,OpenCL…
• Scalable and fault-tolerant communication (MPI or MPI-
like)

Computa:onal	 biochemistry	 and	 molecular	 biology	
T.	 Simonson	 –	 X/France	

T	 Simonson,	 September	 2009	

A few important scientific and computational challenges

Simulations of cellular nanostructures (106 particles: ribosome, spliceosome,
molecular motors, etc) over microsecond timescales.

Prediction of the association modes of multiprotein assemblies from their
component monomers, using extensive conformational searching and realistic
energy functions and solvent models.

Ability to routinely simulate association/disassociation of libraries of biological
complexes, such as protein:antibiotic or RNA:antibiotic librairies; requires
microsecond turnaround for tens of ligands within a 24 hour timeframe (103
speedup from today)

Simulations of crowded, multicomponent cellular compartments: 107-108
particles, 100 microsecond timescales.

Software issues - 2009

Multilevel parallelism, integrating many nodes with many cores each

Better human interface; better integration of multiscale models

11/10/09

20

Weather, Climate, Earth
Sciences

 5 contributions

Computational Challenges and Needs for Academic and
Industrial Applications Communities

Scientific and computational challenges

 Global 1km model for internal waves

 Global carbon cycle at hi-resolution

 Large ensembles to address
uncertainty in climate predictions

Software issues – short term (2009/2011)

Data handling, including input/output

Performance tuning tools

Software issues – long term 2015/2020

Mixed mode parallelism for maximum
efficiency

Programming environments for
accelerators

Dr Adrian New, National Oceanography Centre Southampton, Ocean Science

Impact of machine changes

New compilers for accelerator
architectures

Data handling, including input/output

Mixed mode parallelism for efficient
exploitation of multi-core nodes

11/10/09

21

Computational Challenges and Needs for Academic and
Industrial Applications Communities

Scientific and computational challenges

- High-resolution numerical weather
prediction (NWP)
- Ensemble and high-resolution data
assimilation

Software issues – short term (2009/2011)
- Next procurement (2013): going from 104+
to 105+ cores
- Parallel methods for minimization problems
(data assimilation, i.e. strong scaling)
- Load-balancing methods at the lowest
possible level, not at the programming level
- Effective performance analysis tools for
104-106 cores

Software issues – long term 2015/2020

- Need for standard programming language's
before giving-up with FORTRAN, MPI, …
- Need for new algorithmic approaches,
allowing to look for the most adequate
computer for solving the NWP problem

METEO-CLIMATOLOGY – Walter ZWIEFLHOFER / ECMWF – walter.zwieflhofer@ecmwf.int

Impact of last machine changes
(37 Tflops -> 310 Tflops)

- No problem with I/O

- Still ok with parallelization paradigm (weak
scaling for most parts)
- Incremental methods for data assimilation
present the greatest challenge

Earth System Modeling

Scientific and computational challenges
Improved climate change predictions (decadal and long
term) with reduced uncertainty, improved uncertainty
quantification and better regional information.

Assess impacts of future climate change due to
anthropogenic forcing and natural variability: global
warming, sea level changes, extreme weather, distribution
of precipitation, ice and clouds, etc…

Software issues – short term (2009/2011)

Short term issues dominated by scalability bottlenecks (i.e.
strong scaling):

Largest bottleneck is existing atmospheric dynamical cores
based on numerics, limited 1D domain decompoistion and
insufficient scalability past t O(1K) cores. Ocean barotropic
solver is stiff and limits scalability to O(10K) cores. Modern
parallel I/O support needed in many legacy components.
Scalability will now be required in every routine, impacting
many previously computationally insignificant legacy
procedures.

Software issues – long term 2015/2020
Hybrid architectures require new programming models to
expose all possible levels of parallism. Time-stepping
bottleneck (perfect weak scalable models have linear
reduction in simulation rate) becomes dominant. Exascale
software needed for handling adaptive, multiscale and
multiphysics approaches to simulation, data workflow and
visualization.

Mark Taylor, Sandia Nat. Labs., mataylo@sandia.gov

Impact of last machine changes
(100 Gflops -> 100 Tflops)

MPI/Fortran model still effective with some benefit from
hybrid MPI/openMP model. Short term scalability
bottlenecks identified (left panel) now become significant
and have motivated much progress on these issues.

Limited scalability of existing models allows for increased
focus on ensembles including multi-model ensemble, with
dozens to hundreds of members.

Eflops machines with a petascale-ready Earth system model
will allow for ensembles of regionally resolved century long
simulations for improved uncertainty quantification and
assessment of regional impacts of climate change.

11/10/09

22

Computational Challenges and Needs for Academic and
Industrial Applications Communities: Weather and Climate

Scientific and computational challenges
Scientific goal: development of a global cloud resolving
model for the study of climate change. The scientific goals
for the project fall into two broad categories: improved
estimates of cloud feedbacks and thereby improved
estimates of the overall magnitude of climate sensitivity; and
improved projections of the patterns of regional changes in
precipitation and other aspects of hydrology, including
extreme weather events.

Computational Challenges: The underlying requirement is
the need for scalable algorithms for all components of the
model infrastructure. This algorithmic development has been
under development at the Geophysical Fluid Dynamics
Laboratory, Princeton for the last several years. The
software infrastructure needed to develop and support all
phases of the climate experiments: pre-processing, post-
processing, and model infrastructure does require significant
institutional commitment.

Given the scientific and computational challenges of this
multi-year project we expect this activity to evolve into a
community project that will allow researches to utilize the
tools under development to study climate change and
related issues.

Software issues – past two years
Over the past two-years, the primary software issues
addressed in the models have included implementation of:

• algorithmic schemes that scale with increasing numbers of
cores

• hybrid programing model (MPI and OpenMP)

• scalable memory schemes

• scalable I/O schemes

Software issues – long term 2015/2020
Over the next couple of years, we expect to address the
following software issues:

• continued development of the above schemes.

• study the implementation of different programming
methodologies.

• develop methodologies for improving the single and multi
core performance of the model.

• develop scalable pre-packages and post-processing
packages for the models. The current packages are written
for single-processor platforms.

• develop different strategies for performing post-processing
on the model output. The current models write the model
diagnostics and post-processing is done in a different job-
step. We need to explore how the post-processing can be
done as the model runs.

Christopher Kerr, NOAA, chris.kerr@noaa.gov

Coupled Climate Modeling

Robert Jacob/Argonne National Laboratory - jacob@mcs.anl.gov
Scientific and computational challenges

Software issues – short term (2009/2011)

Software issues – long term 2015/2020

Make predictions of future climate statistics (average
temperature, precipitation) on global and regional scales for
the next several decades.

Models developed separately by sub-disciplines
(atmosphere, ocean) and then coupled.

 Approximately 1 million grid points in each model and 100’s
of variables. 512 cores. Bound by both memory and
network speed.

Impact of last machine changes
(??flops -> ?? flops)

Most disruptive recent change was from vector to MPP (only
10 years ago). Climate model’s consume flops by more
detailed non-fluid processes (e.g. radiation) or adding
resolution.

Gflops -> Tflops: massive increase in storage requirement.

Tflops -> Pflops: current viz/analysis tools will break.

Pflops -> Exflops: Merging of weather and climate scales in
model resolution.

Conservative numerical methods that can scale to 100K
nodes while still maintaining useable simulation speed
(approx 5 simulated years/day)

Propagate mixed mode programming through entire climate
model (only present in some components).

Visualization on irregular and unstructured grids.

Debugging at scale

Workflow and metadata for models with 100’s of possible
configurations.

Heterogeneous node programming.

Performance portability.

Possible loss of bit-for-bit reproduceability.

Revisit output strategy (all variables at all points at regular
intervals may not scale)

Fault tolerance.

More comprehensive unit and system testing.

Inherent treatment of uncertainty.

11/10/09

23

Methodology

Three ways to look at these issues
1. Preliminary (i.e. between the Paris and

Tsukuba meetings): the (disciplinary)
expert views

2. A view transversal to all application
domains: 4 main items

3. Back to the disciplinary views:
classification of issues with respect to
expectation from the SW groups

A view transversal to all application
domains: 4 main items

A. Validation – verification - uncertainty quantification Bill Tang leader
- compare with experiment, evaluate how realistic is the simulation. How

software tools can help that ?
- visualisation
B. Mathematical methods Fred Streitz leader
- algorithms
- solvers
C. Productivity and efficiency of code production Rob Harrison leader
- load-balancing, scalability
- tools for code development (debugging, performance analysis)
- programming model for actual and next computer generation
- use of scientific libraries
D. Integrated framework Giovanni Aloisio leader
-multi-code/model/scale
-CAE-computation-Viz
- Workflows

11/10/09

24

A.  Validation – verification - uncertainty
quantification
Bill Tang leader

Verification & Validation (V&V)

• Establishing the physics fidelity of modern simulation tools requires strong V&V --
Reliable codes demand solid theoretical foundations and careful experimental
validation at all appropriate scales

 • Validation assesses degree to which a code (within its domain of applicability)
“describes the real world.”

 --- improves fidelity of computational models by systematic, quantitative comparisons with
experimental measurements

 • Verification assesses degree to which a code correctly implements the chosen
physical model

 --- addressing accuracy of numerical approximations, mesh/space and temporal discretization,
 statistical sampling errors, etc.
 --- code verification approaches also include:
 (1) comparisons with analytic theoretical predictions
 e.g. – threshold/onset conditions for instabilities; etc.
 (2) cross-code benchmarking – involving codes based on different mathematical

formulations/algorithms but targeting the same generic physics
 e.g. -- finite difference, finite elements, spectral methods, implicit schemes, etc. and/or models

such as Kinetic [Particle-in-Cell, Vlasov/Continuum], Fluid [Hydrodynamic], Hybrid Kinetic-Fluid,
etc.

 • Uncertainty Quantification (UQ) is a key element of the V&V process

11/10/09

25

1. V & V within Advanced Scientific Code Development

Theory
(Mathematical Model)"

Applied
Mathematics
(Basic Algorithms)"

Computational
Physics"

(Scientific Codes)"
Computer
Science"

(System Software)"

Problem with
Mathematical Model?"

Pr
ob

lem
 w

ith
 C

om
pu

ta
tio

na
l

Me
th

od
?

Computational
Predictions"

Agree* w/
Experiments?"No" Yes" Speed/Efficiency?"

Inadequate"

Adequate Use the New Tool for Scientific
Discovery

(Repeat cycle as new phenomena
encountered)

*Comparisons: empirical trends;
sensitivity studies; detailed structure
(spectra, correlation functions, …)

“V&V” Loop

“Performance”
Loop

Example of V&V from Fusion Energy Science
 • Combined Efforts from Theory/Modeling/Experiment for Development of Realistic Simulation

Capability of Turbulent Transport in the Core Region of a Fusion System

11/10/09

26

UQ Defined
Uncertainty Quantification is the end-to-end study of the reliability of

scientific inferences.
•  Ideally, UQ results in
 (i) a quantitative assessment of that reliability,
 (ii) an inventory of possible sources of error and uncertainty in

the inferences and predictions,
 (iii) an inventory of the sources of error and uncertainty

accounted for in the assessment, and
 (iv) an inventory of assumptions on which the assessment is based.
•  UQ studies all sources of error and uncertainty, including:

systematic and stochastic measurement error; ignorance;
limitations of theoretical models; limitations of numerical
representations of those models; limitations on the accuracy and
reliability of computations, approximations, and algorithms; and
human error.

October 7, 2009

UQ with Extreme Computer Architecture

Scientific and computational challenges

Develop new UQ methodologies
Change requirements for extreme scale
HW/SW to reflect usage model
Couple development of UQ Pipeline,
applications and scientific data mgmt &
storage
Improve system IO balance

Petascale models require Exascale UQ
Extreme data management
Usage model continuum from Exa-
capacity to Exa-Capability

New UQ methods with broad impact on
every area of simulation science
Adjoint enable forward methods
Gaussian process models
Local approximations, response surface,
filtering

Enables use of extreme computing in a
variety of usage models

Summary of research direction

Expected Scientific and Computational Outcomes
Potential impact on Uncertainty Quantification and
Error Analysis Problems that arise in various apps?

11/10/09

27

Curse of Dimensionality

Scientific and computational challenges

• Adaptive sample refinement
• Dimension reduction
• Variable selection
• Advanced response surface methodology
• Topological characterization techniques
• Embedded UQ, e.g., adjoint methods

Sampling of topological complexity in
high dimensions (>100)

Maximizing information content/sample

• Self-adapting, self-guiding UQ pipeline
•UQ-enabled application codes

Consistent uncertainty estimates in global
climate sensitivity
•Predicting regional climate impacts
(hydrology) and extreme events
•

Summary of research direction

Expected Scientific and Computational Outcomes Potential impact on Uncertainty Quantification and
Error Analysis Problems that arise in various apps?

B. Mathematical methods
Fred Streitz leader

11/10/09

28

Bulk of algorithm design work will be done internally
- development of innovative algorithms to solve both new and familiar problems

at the exascale requires research in (and utilization of) applied
mathematics,applied statistics,numerical methods, …

Certain desirable design elements can exploit X-stack (external)
-  optimize data flow: tools to map cache use, to inform of cache hits/misses (with cost),

need for software stack to hide latency, for user- accessible tools to manage memory
hierarchy

-  exploit coarse/fine grain parallelism: parallelization parameters resulting from
hardware expressed in way that can be incorporated into algorithms, option of hand/
auto tuning

-  load-balance aware: tools/hooks to that provide tuning information (user managed
load-balance), “Automagic” load balancing (OS managed load-balance) design for
load balance first

-  utilize mixed/variable precision: user specifies precision requirements, at a minimum:
information available to users about int/double/single resources available, at best:
stack automatically uses correct hardware

- manifestly fault tolerant: failure information available to users, fault tolerant OS, MTBF

C. Productivity and efficiency of code
production

Rob Harrison leader

11/10/09

29

Scien8fic	 applica8on	 user	 produc8vity	

Key	 challenges	

Data	 reduc:on	 methods	 and	 hierarchical	
representa:ons	

Automa:on	 and	 expert	 systems	 including	 VV	 &	
UQ	

Evolu:on/sampling	 methods	 for	 rare-‐events	

Data	 analysis	 and	 mining	 methods	

Remote	 interac:on	 with	 HPC	 resources	 (data	
volume)	

Automa:ng	 work	 flow	

Automa:ng	 data	 analysis	

Non-‐expert	 use	 of	 complex	 codes	

Tools	 for	 capturing	 and	 employing	 expert	
knowledge	

Exascale	 work	 flow	 framework	 (differs	 from	
petascale	 in	 1000x	 volume	 and	 much	 broader	
deployment)	

Exascale	 simula:on	 moves	 beyond	 basic	 science	
discovery	 (knowledge	 crea:on,	 informing	
decisions)	

Summary	 of	 research	 direc:on	

Poten:al	 impact	 on	 soXware	 component	
Poten:al	 impact	 on	 usability,	 capability,	 	

and	 breadth	 of	 community	

Scien8fic	 applica8on	 developer	 produc8vity	

Key	 challenges	

Standard,	 transparent	 programming	 model	 for	
hybrid	 systems	

Resilient	 programming	 paradigms	

Scalable	 distributed-‐shared-‐memory	 environments	
(beyond	 local	 node)	 	 	

X-‐PACK:	 efficient	 &	 robust	 math	 libs	

HPC	 entry	 barrier	 already	 too	 high	

Life-‐cycle	 cost	 of	 exascale	 codes	

Correctness	 and	 code	 quality	

Enabling	 rapid	 science	 innova:on	

Breadth	 of	 science	 at	 exascale	

Many	 more	 disciplines	 at	 exascale	

Deep	 capability	 for	 cri:cal	 sciences	

Capacity	 science	 enabled	 on	 tera	 and	 petascale	
subsystems	

Summary	 of	 research	 direc:on	

Poten:al	 impact	 on	 	
soXware	 component	

Poten:al	 impact	 on	 usability,	 	
capability,	 and	 breadth	 of	 community	

Reduced	 cost	 to	 develop	 &	 deploy	 exascale	
applica:ons	

Rapid	 deployment	 of	 new	 exascale	 applica:ons	

Inter-‐operable	 science	 components	

11/10/09

30

D. Integrated framework
Giovanni Aloisio leader

Integrated framework

  Support for multi-scale and multi-physics S/W

  Interoperability between scientific components (codes), between
scientific components and transversal services (meshing, Visualization,
Uncertainties Quantification, Data Assimilation, …)

  Ability to instantiate the framework for dedicated usage/community

•  Component programming model and standard/portable
implementation of the execution model

•  Tools for defining and supervising workflows (coupling scheme)

•  Common data model and associated libraries for data exchange

•  Transparent access to computing power (massive and distributed)

11/10/09

31

Methodology

Three ways to look at these issues
1. Preliminary (i.e. between the Paris and

Tsukuba meetings): the (disciplinary)
expert views

2. A view transversal to all application
domains: 4 main items

3. Back to the disciplinary views:
classification of issues with respect to
expectation from the SW groups

High-Energy Physics,
Astrophysics and Plasma Physics

11/10/09

32

High Energy Physics

Key	 challenges	

• 	 To	 achieve	 the	 highest	 possible	 sustained	
applica:ons	 performance	
• 	 Exploi:ng	 architectures	 with	 imbalanced	 node	
performance	 and	 inter-‐node	 communica:ons	 	
• 	 To	 develop	 mul:-‐layered	 algorithms	 and	
implementa:ons	 to	 fully	 exploit	 on-‐chip	
(heterogeneous)	 capabili:es	 and	 massive	 system	
parallelism	
• 	 Tolerance	 to	 and	 recovery	 from	 system	 faults	 at	 all	
levels	 over	 long	 run:mes	

Generic	 soXware	 components	 required	 by	 the	
applica:on:	
• 	 Highly	 parallel,	 high	 bandwidth	 I/O	
• 	 Efficient	 compilers	 for	 mul:-‐layered	 parallel	
algorithms	
• 	 Automa:c	 recovery	 from	 hardware	 and	 system	
errors	
• 	 Robust,	 global	 file	 system	

• Stress	 tes:ng	 and	 verifica:on	 of	 exascale	 	
hardware	 and	 system	 soXware	
• Development	 of	 new	 algorithms	
• Reliable	 systems	
• Global	 data	 sharing	 and	 interoperability	

Summary	 of	 research	 direc:on	

Poten:al	 impact	 on	 soXware	 component	
Poten:al	 impact	 on	 usability,	 capability,	 	

and	 breadth	 of	 community	

Applications community will be involved in
developing:
•  Multi-layer, multi-scale algorithms and
implementations
•  Optimised single-core/single-chip routines for
complex linear algebra
•  Support for mixed precision arithmetic
•  Tolerance to numerical errors to exploit eg GPU/
accelerators
•  Data management and standardization for
shared use	

Pioneering Applications

New capability 1
Core plasma

Single hadron physics
Regional climate

Global coupled climate processes
Regional decadal climate

Multi-hadron physics
Electroweak symmetry breaking

Whole plasma

2010	 2011	 2012	 2013	 2014	 2015	 2016	 2017	 2018	 2019	

Your	 M
etric	

1 PF 10 PF 100 PF 1 EF

Pioneering Applications with demonstrated need for Exascale to have significant

scientific impact on associated priority research directions (PRD’s) with a productive

pathway to exploitation of computing at the extreme scale

11/10/09

33

Materials Science, Chemistry
and Nanoscience

Challenges for materials, chemistry
and nano community

•  Transition codes from replicated, dense data structures to
distributed, sparse data structures

•  Runtime, programming models, libraries
•  Reduce algorithmic complexity to increase system size to

nanoscale
•  Transition from data-focused algorithms to compute-

focused algorithms
•  I/O, runtime, libraries
•  Identification of characteristic motion and rare events in

molecular dynamics
•  Transition to less tightly coupled algorithms to increase

strong scaling (at expense of computing)
•  Programming models, libraries, runtime
•  Stochastic sampling of multiple coupled trajectories
•  Extends effective time scale of simulation

11/10/09

34

Challenges for materials, chemistry
and nano community

•  Transition to hybrid/heterogeneous parallelism to expose
scalability in algorithms

•  OS, Runtime, programming models, languages
•  Overlapping execution of multiphysics codes
•  Expressing and managing fine-grained concurrency
•  Gain factor of 1000 in parallelism?

•  Develop new data handling paradigms
•  I/O, runtime, programming models, frameworks, libraries
•  can’t save everything – need to carefully design the simulation
•  Data reduction must occur prior to post-analysis
•  need embedded analysis/visualization

•  Transition to multiphysics codes
•  Frameworks, libraries, I/O, programming models
•  Mission-driven science demands greater interoperability between

disciplines
•  Device level simulations couple physics/chemistry/engineering codes

Engineering

11/10/09

35

Computational Engineering Issues
Preliminary remark: different concerns between code developers,

simulation environment developers, end users

Productivity.

  Programming model: Exaflop machines will first run Petaflop
grade apps (x1000 runs)

⇒  dealing with hierarchical and heterogeneous architectures
addressing portability (functional & efficiency),
maintainability …. but using actual standards Fortran/C/C++,
Python, MPI/OpenMP

  Debugging/perf. tools

  Fault Tolerance: strong fault tolerance for production (result
within the night, non human interaction), weak fault tolerance for
“reference” computations (run during several weeks/months,
possible human interaction)

Computational Engineering Issues

X-Algorithms. Libraries, solvers, numerical method, algorithms:
portable, efficient on cross architectures, unified interfaces

  multi-grid, better and simpler pre-conditioner

  new numerical methods for CFD: stochastic, SPH, FV

  Adaptive methods for heterogeneous platforms

  Advanced acceleration techniques,

  Coupling stochastic with determinist methods (Neutronic)

Verification and validation, UQ. i.e. dedicated slides

Rmqk: UQ type simulation needs management of very large data set
and large number of data set:

11/10/09

36

Computational Engineering Issues
Integrated framework

  Framework: support for multi-scale and multi-physics S/W,
interoperability between scientific components (codes), between
scientific components and transversal services (meshing, Vis, UQ,
DA, …), ability to instantiate the framework for dedicated usage/
community
•  Component programming model and standard/portable implementation

of the execution model

•  Tools for defining and supervising workflows (coupling scheme)

•  Common data model and associated libraries for data exchange

•  Transparent access to computing power (massive and distributed)

•  Meshing and visualization (pre and post)

Example: producing/adapting visualizing 50 billions of cells mesh for CFD
simulation, impact on scalability, load balancing

Computational Engineering Issues

Other concerns:

•  Need (more) dedicated high skilled HPC experts in application
teams

•  Keep the ability to re-write or re-engineer codes with mixed teams
(models, maths, s/w, h/w)

•  Strong links to be established/reinforced between high end
computing facilities design and engineering communities in order to
anticipate (at least 5 to 10 years) application breakthrough (through
pioneers apps?)

11/10/09

37

Climate,
Weather, and Earth Sciences

From the application people (internal)
Model Development at exascale : Adopt a system view of climate modelling,

improving model resolution, model physics, data analysis and visualization

Expectations from the software groups (external)
Productivity: All Climate models have to be rewritten for exascale =>Climate scientists would have

to be parallel-computing experts unless the community can define software engineering guidelines
encoded in community frameworks (software library in Physics and Numerics, new programming
infrastructures to enable sustained extreme scale performance

 How climate scientists can efficiently interact with the climate code (e.g. Exascale SDK and/or
through advanced workflow tools)

Reliability: fault detection and resilience strategies in order to reduce the likelihood of undetectable
errors, hardware checkpoint restart, Improved debugging tools

Performance: programming models and auto-tuning technologies for performance portability, fault
resilience and a greater understanding of causality to understand performance

Load Balancing: efficient strategies

I/O: advanced parallel I/O support for many legacy components.

Scalability: scalable memory schemes

Programming models: Clarity in the programming model for exascale

Computational Climate Change Issues

11/10/09

38

Data management climate
change issues

Data Storage: caching algorithms to move in/out data from dynamic storages
providing high level of performance
Parallel File System: improvements in parallel I/O libraries (concurrency,
scalability, bandwidth usage)
Parallel file systems are vendor specific => Integration issues in heterogeneous
solutions! Open solutions…
Data movement : improvements in replication strategies, caching/replication
schemes, optical connectivity
Metadata/Knowledge management: Efficient search algorithms (keyword
based, full text, etc.)
Data analysis and visualization: mathematical & algorithms approaches and
related parallel implementations able to scale with the high number of available
processors
Active storage processing studies, software libraries to embed functions within
storage, data analysis techniques (clustering, statistical analysis, etc.)

