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Chapter 1

Transparent Cross-Platform Access to

Software Services Using GridSolve

and GridRPC

Keith Seymour1, Asim YarKhan1, and Jack Dongarra1 2

Distributed computing can be daunting even for experienced programmers. Although

many projects have been created to facilitate developing distributed applications, they are

often quite complex in themselves. While many scientific applications could benefit from

distributed computing, the complexity of the programming models can be a high barrier

to entry, especially since many of these applications are developed by domain scientists

without extensive training in software development. Thus, we believe that the paramount

design consideration of a distributed computing model should be ease of use. With this in

mind, we will discuss GridRPC, which is a model for remote procedure call in the context

of a computational Grid or other loosely coupled distributed computing environment. Then

we will discuss GridSolve, an implementation of the GridRPC model.

1Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37919 USA
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1.1 Introduction to RPC and Network Based Software Services

RPC (Remote Procedure Call) refers to a mechanism that allows invoking a procedure on

a remote machine as if the procedure was implemented locally. The invocation is typically

carried out by means of a communications library and “stub” procedures . The library

handles packing up the user’s data, sending it across the network to the remote machine,

and unpacking it there. The process of packing the data into a standard format (especially

important for cross-platform scenarios) is referred to as data marshalling. Once the data has

been transferred, the RPC system invokes the user’s procedure and passes the data to it.

From that point, the user’s procedure takes control and executes until completion. Then the

process is reversed to send the results back to the client machine. The “stub” procedures

are used to enable linking the programs (since the actual procedure does not exist locally to

be linked) and to initiate the RPC process via calls to the RPC library. This standard RPC

process is depicted in Figure 1.1.

One of the earliest implementations of RPC was part of the Cedar project at Xerox Palo

Alto Research Center [1], although the concept had been discussed for several years prior to

the Xerox implementation [2]. Cedar used RPC to enable distributed computing primarily

because of the ease-of-use inherent in the RPC paradigm. Procedure calls were considered

a well-understood mechanism and provided clean and simple semantics. Around that time,

RPC was also being investigated in the context of distributed operating systems. In a critique

of RPC as a general communications model for arbitrary applications [3], it is argued (among

other things) that since true transparency is impossible, it may be better to design a partially

transparent mechanism. If the system is transparent to the point that the programmers really

do not know if their calls will be executed locally or remotely, then there could be serious

performance implications (e.g. if a sorting routine called a comparison procedure thousands

of times unaware that it would be executed remotely). Most modern RPC-like systems are

not aiming for that level of transparency, but the critique raises issues that are still relevant

today. In this chapter, we will touch on these and other RPC transparency issues in the

context of a Grid-based RPC implementation.

The RPC model has several benefits, but the main concern from the perspective of high-
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performance computing is efficiency. If the user’s local machine is slow, but remote resources

are fast, RPC can provide an overall reduction in execution time, even including the cost

of data marshalling. However, traditional RPC only allows for synchronous calls. That is,

once the procedure is invoked, the client program must sit idle until it completes, even if

it had other useful computations it could be doing. The synchronous model also prevents

submitting multiple parallel RPC requests, which could provide for even better overall per-

formance. Another limitation of the traditional RPC model is that the mapping of RPC

request to server is very simplistic, often requiring the use of a specific machine. Intelligent

selection of servers could drastically improve the performance. Also the use of client-side

stubs requires language-specific generators for all client language bindings. Furthermore,

consider the implications of this compilation requirement on interactive computing environ-

ments like Matlab or Octave. In those cases, the user cannot be expected to compile stubs

just to make use of a remote procedure.

RPC remains a useful mechanism due to its elegance and simplicity, but the aforemen-

tioned limitations have prompted several extensions to the model, including asynchronous

calls, task parallel calls, real-time resource scheduling, fault tolerance, security, and stubless

operation. We will be discussing GridRPC, a recent specification of an API for Grid-based

RPC, as well as a complete implementation of this API within the GridSolve system.

1.2 The GridRPC API

As mentioned in the previous section, the difficulty of using most programming models

is a hindrance to the widespread adoption of grid computing. One particular programming

model that has proven to be viable is an RPC mechanism tailored for the grid, or “GridRPC”.

Although at a very high level view the programming model provided by GridRPC is that

of standard RPC plus asynchronous coarse-grained parallel tasking, in practice there are a

variety of features that will largely hide the dynamicity, insecurity, and instability of the grid

from the programmers. As such, GridRPC allows not only enabling individual applications

to be distributed, but also can serve as the basis for even higher-level software substrates
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such as distributed, scientific components on the grid.

The GridRPC API [4] represents ongoing work to standardize and implement a portable

and simple remote procedure call mechanism for grid computing. This standardization effort

is being pursued through the Open Grid Forum (previously Global Grid Forum) Research

Group on Advanced Programming Models [5].

In this section, we informally describe the GridRPC model and the functions that comprise

the API. A detailed listing of the GridRPC function prototypes can be found in the GridSolve

Users’ Guide [6].

Function Handles and Session IDs Two fundamental objects in the GridRPC model

are function handles and session IDs. The function handle represents a mapping from a

function name to an instance of that function on a particular server. The GridRPC API

does not dictate the mechanics of resource discovery since different underlying GridRPC

implementations may use vastly different protocols. Once a particular function-to-server

mapping has been established by initializing a function handle, all RPC calls using that

function handle will be executed on the server specified in that binding. A session ID is an

identifier representing a particular non-blocking RPC call. The session ID is used throughout

the API to allow users to obtain the status of a previously submitted non-blocking call, to

wait for a call to complete, to cancel a call, or to check the error code of a call.

Initializing and Finalizing Functions The initialize and finalize functions are similar

to the MPI initialize and finalize calls. Client GridRPC calls before initialization or after

finalization will fail.

• grpc initialize reads the configuration file and initializes the required modules.

• grpc finalize releases any resources being used by GridRPC.

Remote Function Handle Management Functions The function handle management

group of functions allows creating and destroying function handles.
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• grpc function handle default creates a new function handle using the default server.

This could be a pre-determined server name or it could be a server that is dynamically

chosen by the resource discovery mechanisms of the underlying GridRPC implementa-

tion, such as the GridSolve agent.

• grpc function handle init creates a new function handle with a server explicitly

specified by the user.

• grpc function handle destruct releases the memory associated with the specified

function handle.

• grpc get handle returns the function handle corresponding to the given session ID

(that is, corresponding to that particular non-blocking request).

GridRPC Call Functions A GridRPC may be either blocking (synchronous) or non-

blocking (asynchronous) and it accepts a variable number of arguments (like printf) de-

pending on the calling sequence of the particular routine being called.

• grpc call makes a blocking remote procedure call with a variable number of arguments.

• grpc call async makes a non-blocking remote procedure call with a variable number

of arguments.

Asynchronous GridRPC Control Functions The following functions apply only to

previously submitted non-blocking requests.

• grpc probe checks whether the asynchronous GridRPC call has completed.

• grpc probe or checks whether any of the previously issued non-blocking calls in a given

set have completed.

• grpc cancel cancels the specified asynchronous GridRPC call.

• grpc cancel all cancels all previously issued calls.
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Asynchronous GridRPC Wait Functions The following five functions apply only to

previously submitted non-blocking requests. These calls allow an application to express de-

sired non-deterministic completion semantics to the underlying system, rather than repeat-

edly polling on a set of sessions IDs. (From an implementation standpoint, such information

could be conveyed to the OS scheduler to reduce cycles wasted on polling.)

• grpc wait blocks until the specified non-blocking requests to complete.

• grpc wait and blocks until all of the specified non-blocking requests in a given set have

completed.

• grpc wait or blocks until any of the specified non-blocking requests in a given set has

completed.

• grpc wait all blocks until all previously issued non-blocking requests have completed.

• grpc wait any blocks until any previously issued non-blocking request has completed.

Error Reporting Functions Of course it is possible that some GridRPC calls can fail,

so we need to provide the ability to check the error code of previously submitted requests.

The following error reporting functions provide error codes and human-readable error de-

scriptions.

• grpc error string returns the error description string, given a numeric error code.

• grpc get error returns the error code associated with a given non-blocking request.

• grpc get failed sessionid returns the session ID of the last invoked GridRPC call

that caused a failure.

Related Work on Network Enabled Servers Several Network Enabled Servers (NES)

provide mechanisms for transparent access to remote resources and software. Ninf-G [7] is an

implementation of the GridRPC API that can function on top of a variety of Grid middleware

environments such as Globus, Condor and SSH (as of version 5). Ninf-G provides an interface
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definition language that allows services to be easily added, and client APIs are provided in

C and Java. Security, scheduling and resource management are generally left up to the

underlying middleware.

The DIET (Distributed Interactive Engineering Toolbox) project [8] is a client-agent-

server RPC architecture which uses the GridRPC API as its primary interface. A CORBA

Naming Service handles the resource registration and lookup, and a hierarchy of agents

handles the scheduling of services on the resources. An API is provided for generating

service profiles and adding new services, and a C client API exists.

NEOS [9] is a network-enabled problem-solving environment designed as a generic appli-

cation service provider (ASP). Any application that can be changed to read its inputs from

files, and write its output to a single file can be integrated into NEOS. The NEOS Server

acts as an intermediary for all communication. The client data files go to the NEOS server,

which sends the data to the solver resources, collects the results and then returns the results

to the client. Clients can use email, web, sockets based tools and CORBA interfaces.

Other projects are related to various aspects of GridSolve. For example, task farming

style computation is provided by the Apples Parameter Sweep Template (APST) project

[10], the Condor Master Worker (MW) project [11], and the Nimrod-G project [12]. Request

sequencing and workflow management is handled by projects like Condor DAGman [13].

1.3 GridSolve: A GridRPC Implementation

GridSolve is a GridRPC-compliant distributed computing system that provides an efficient

and easy-to-use programming model for using remote computational resources. Remote

resources can provide access to specialized hardware or highly tuned software with the per-

formance and features desired by a computational scientist. The basic goal of GridSolve is to

provide a easy to use, uniform, portable and efficient way to access computational resources

over a network.
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1.3.1 Overview and Architecture

The GridSolve system is comprised of a set of loosely connected machines. By loosely con-

nected, we mean that these machines are on the same local, wide or global area network, and

may be administrated by different institutions and organizations. Moreover, the GridSolve

system is able to support these interactions in a heterogeneous environment, i.e. machines of

different architectures, operating systems and internal data representations can participate

in the system at the same time.

Figure 1.2 shows the global conceptual picture of the GridSolve system. In this figure,

we can see the three major components of the system: the client, the agent, and the servers

(computational or software resources). GridSolve and systems like it are often referred to

as Grid Middleware. GridSolve acts as a glue layer that brings the application or user

together with the hardware and/or software needed to complete useful tasks. At the top

tier, the GridSolve client library is linked in with the user’s application. The application then

makes calls to GridSolve’s application programming interface (GridRPC) for specific services.

Through the GridRPC API, GridSolve client-users gain access to aggregate resources without

needing to know anything about distributed computing or maintaining software libraries .

In fact, the user does not even have to know remote resources are involved. The GridSolve

agent maintains a database of GridSolve servers along with their capabilities (hardware

performance and allocated software) and dynamic usage statistics. It uses this information

to allocate server resources for client requests. The agent finds servers that will service

requests the quickest, balances the load amongst its servers and keeps track of failed ones.

The GridSolve server is a daemon process that awaits client requests. The server can run on

single workstations, clusters of workstations, symmetric multi-processors or machines with

massively parallel processors. A key component of the GridSolve server is a source code

generator which parses a GridSolve Interface Definition Language (gsIDL) file. This gsIDL

file contains information that allows the GridSolve system to create new service modules and

incorporate new functionalities. In essence, the gsIDL defines a interface and wrapper that

GridSolve uses to call functions being incorporated. The (hidden) semantics of a GridSolve

request are:
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1. Client contacts the agent with a service request description

2. Agent returns a brokered decision containing a list of capable servers

3. Client contacts server and sends input data

4. Server receives the data and runs appropriate service

5. Client receives the output results or error status from the server

From the user’s perspective, the call to GridSolve acts very much like the call to the original

function. The GridSolve calls can also be made in an asynchronous fashion, so that the

client can either perform other tasks during the RPC call, or the client can submit multiple

parallel RPC service requests and then probe for their completion.

1.3.2 Transparency and Ease of Use

In addition to the standard GridRPC API, GridSolve provides a number of features that

make it easier to use and provide a substantial benefit. These features are intended to make

it easier for the service provider to add services, and easier for the user to take advantage of

these services.

Stubless Clients GridSolve is designed so that the clients do not require client-side stubs

to be generated and compiled in order to call remote procedures. This is in contrast with

many other RPC systems, where a client-stub needs to be generated and bound for each

remote function. Several dynamically reconfigurable languages such as Java and Python

allow clients to incorporate new functionality on-the-fly, but traditional languages such as

C and Fortran cannot easily do so. GridSolve accomplishes this by using generalized mar-

shalling routines on the client and the server. Using a stubless client in GridSolve enables

it to make new server functionality available to its clients without requiring any changes at

the client-side. The drawback of this approach is that type checking cannot be done at the

time of calling the GridSolve API. However, this stubless approach fits well with the goal of
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making GridSolve easy to use. After a client is deployed, no additional changes are required

for client to access new functions deployed at any server.

Scientific Computing Environments GridSolve has a strong focus on ease-of-use, since

this is still perceived to be a substantial barrier to the general adoption of distributed and

grid computing services. As such, in addition to C and Fortran client interfaces, GridSolve

provides client bindings to several high-level SCEs (scientific computing environments) such

as Matlab, Octave and IDL (Interactive Data Language). In this way it becomes possible

to combine high-performance distributed grid resources with the flexibility, familiarity and

productivity of SCEs. The SCE bindings allow the user to make calls to remote functions in

a natural way, and the GridSolve client handles all the details of converting data from the

SCEs internal representations to GridSolve data representations. Then the GridSolve client

submits the RPC request to the GridSolve server, and when the remote reply is received,

the client converts it back to the natural format for the SCE. This smooth integration with

SCEs is one of the most successful features of GridSolve.

Server Administration We have implemented a simple technique for adding arbitrary

services to a running server. First, the new service should be built as a library or object

file. Then the user writes a specification of the service parameters in a gsIDL (GridSolve

Interface Definition Language) file. The GridSolve service compiler processes the gsIDL and

generates a wrapper which is automatically compiled and linked with the service library or

object files. The services are compiled as external executables with interfaces to the server

described in a standard format. The server re-examines its own configuration and installed

services periodically to detect new services. In this way it becomes aware of the additional

services without re-compilation or restarting of the server itself.

Server administrators may specify arbitrary server attributes in a configuration file. These

attributes are used to enable filtering or criteria matching in the selection of resources. For

example, the server could have attributes describing the machine’s architecture or amount

of memory. These attributes are sent to the agent and stored in its database so that clients

can make complex requests (e.g. only give me x86 servers with more than 2 GB of memory).
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The agent can very quickly filter service requests using these attributes to find matches with

the appropriate servers.

Server administrators can also add restrictions in the configuration file. This allows

restricting access to the server under certain conditions, such as during peak times or when

there are already a certain number of jobs already running.

1.3.3 Scheduling in GridSolve

Scheduling is essential for achieving an efficient and responsive distributed system. In a

distributed, heterogeneous environment like the Grid, services can achieve very different

performance depending on many factors, including the network conditions, the server speeds,

the temporary load on the server, and the efficiency of installed software. These factors need

to be accounted for when scheduling service requests onto servers. GridSolve has several

alternative scheduling methods available, and the topic of scheduling remain a active research

area within GridSolve.

Agent Scheduling In agent based scheduling, the agent uses knowledge of the requested

service, information about the parameters of the service request from the client, and the

current state of the resources to score the possible servers and return the servers in sorted

order.

When a service is started, the server informs the agent about services that it provides

and the computational complexity of those services. This complexity is expressed using

two integer constants a and b and is evaluated as aN b, where N is the problem size. At

startup, the server notifies the agent about its computational speed (approximate MFlops

from a simple benchmark) and it continually updates the agent with information about its

workload. When an agent receives a request for a service with a particular problem size,

it uses the service complexity and the server status information to estimate the time to

completion on each server providing that service. It orders the servers in terms of time to

completion, and then returns the list of servers to the client. The client then sends the
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service request to the fastest server. If that fails for some reason, the client can resubmit the

service request to the next fastest service, thus providing a basic level of fault tolerance. This

scheduling heuristic, summarized in Figure 1.3 is known as Minimum Completion Time. It

is simple to implement and works well in many practical cases. Each service request should

be assigned to the server that would complete the service in the minimum time, assuming

that the currently known loads on the servers will remain constant during the execution and

the communication costs between the client and all the servers are the same.

However, the Minimum Completion Time heuristic does not try to maximize the through-

put when servers are allowed to run multiple services and there are many more requested

services than available servers. Since an estimate of the execution time for currently execut-

ing service is available, this knowledge could be used to schedule new service requests more

intelligently. Some explorations of alternative scheduling heuristics using historical execution

trace information in are described in [14].

Server Performance Prediction The server also plays an important role in helping the

agent-based scheduling to work effectively. To efficiently schedule an application requires

being able to accurately predict the duration of the requests that compose the application.

However, predicting the duration of a request is a difficult task. Indeed, the duration might

depend on the data (size and values), on the machine where the application is run, and on

the implementation of the service. Even when the duration of a service does not depend on

the data values (as is the case with many linear algebra kernels), predicting this duration is

hard. In GridSolve, the duration of the task is described in the gsIDL (GridSolve Interface

Description Language) file using the highest degree of the complexity polynomial, which

gives an approximation of the number of operations the service has to perform when the

inputs are known. The server’s speed (number of operations per second) is computed by

running a simple benchmark when the server is launched. The server periodically updates

its current workload, which is used by the agent to scale down the server’s speed. Then the

estimated duration of the task is computed at run-time by dividing the estimated number of

operations by the current speed of the server. However, computing the duration of a service

based on the complexity polynomial has several drawbacks.
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First, even though the complexity polynomial does not depend on the implementation,

different implementations of the same algorithm do not necessarily have the same speed.

Assume for instance that the service is the matrix multiply routine of the BLAS (Basic

Linear Algebra Subroutines). There are a lot of different implementations of the same

BLAS API, ranging from reference BLAS (a non-optimized Fortran version), to automatically

tuned libraries such as ATLAS [15] and up to specific implementations optimized for a

precise version of a certain CPU such as the goto BLAS) [16]. The complexity of these

implementations is always the same (O(N3) for multiplying matrices of order N), but the

execution time might be completely different (for instance the reference BLAS are about 6

times slower than the vendor optimized version on some CPUs). This effect is not taken into

account by the standard Minimum Completion Time scheduling heuristic in GridSolve.

Moreover, obtaining the speed of the machine with a benchmark assumes that the flop-rate

of each service is the same as the benchmark. In practice this is not true because compute-

intensive services achieve higher flop rates than data-intensive services. In GridSolve, the

server’s speed is estimated by running a Linpack benchmark, which performs close to the

peak flop rate of the processor. This is appropriate when the requested service is a compute-

intensive one such as for a linear algebra kernel. However, if the service is I/O bound (such as

database access) or memory constrained (such as an out-of-core computation), the estimated

runtime is likely to be a huge underestimation of the actual runtime.

Finally, for a given service a slight change of a parameter may lead to a different algorithm

and a different time to execute the service. For instance the matrix-matrix multiply routine

of the BLAS (dgemm) performs C ← αAB + βC, where A, B and C are matrices. It is easy

to see that the case α = 1, β = 0 is completely different from the case α = 0 and β = 1.

However, in the current GridSolve model, since the values of α and β are not related to the

size of data they do not appear in the complexity model for the dgemm service.

To solve the problems described above, we propose using a complexity template model

for each service that is instantiated on each server for each different use case of the service.

This template model consists of a polynomial of the parameters of the problem and a set of

category variables. The polynomial describes the behavior of the service and has coefficients
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that will be assigned by GridSolve based on the prior execution performance history. The

use of categories differentiates the separate performance classes which cannot be modeled as

a continuous complexity function.

GridSolve uses a parametric regression system to compute or update the coefficients for

the complexity templates at runtime. Each time the server runs the service it updates the

coefficients of the model using this run and the previous ones. A certain number of previous

runs are stored on the server’s local disk, which can be reused if the server has to be stopped

and restarted. The server periodically sends updates of the coefficients to the agent, which

evaluates the expressions at runtime to get an accurate prediction of the execution time

of the service. The detailed complexity parameters that the agent receives from the server

allow more accurate scheduling decisions to be made.

Scheduling using Proxies for Computational Resources In this server based ap-

proach to scheduling, GridSolve creates server-proxies to delegate the scheduling to special-

ized scheduling and execution services such as batch systems, Condor or LFC (LAPACK for

Clusters). The GridSolve agent sees the server-proxy as a single server entity, even though

the server-proxy can represent a large number of actual resources, and so the proxy handles

the scheduling for these resources rather than the GridSolve agent.

The GridSolve agent can decide to assign the service request to a server-proxy based on

several factors (e.g., the proxy can register itself with the agent as a virtual server with a large

amount of processing power). The server-proxy will delegate the request to the specialized

service (e.g. Condor), which schedules and executes the request. The server-proxy then

returns the results back to the client.

Client Scheduling Scheduling based purely on computation cost may give poor results

because the communication cost can be a very large factor in the overall RPC cost, especially

in a WAN environment. While choosing the fastest server may minimize the execution time,

if that server is on a distant network, the communication cost can easily overshadow the

savings in execution time.
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To eliminate this weakness, we need an estimate of the network performance between

the client and the servers that could possibly execute the service. This can be difficult to

know ahead of time given the dynamic nature of the system, so we gather the information

empirically at the time the call is made. When the client gets a list of servers from the

agent, it is sorted based only on the estimate of the computational cost. Normally the client

would simply submit the service request to the first server on the list, but instead we first

measure the bandwidth from the client to the top few servers using a simple 32 KB ping-

bong benchmark. Given the total data size and the network speed, we compute an estimate

of the total communication and computation RPC time for the servers and reorder the list

of servers.

There is some cost associated with performing these measurements, but our expectation

is that the reduction in total RPC time will compensate for the overhead. Nevertheless, we

try to keep the measurement overhead to a minimum. The time required to do the mea-

surement will depend on the number of servers which have the requested problem and the

bandwidth and latency from the client to those servers. When the data size is relatively

small, the measurements are not performed because it would take less time to send the data

than it would take to do the measurements. Also, since a given service may be available on

many servers, the cost of measuring the network speed to all of them could be prohibitive.

Therefore, the number of servers to be measured is limited to those with the highest com-

putational performance. The exact number of measurements is configurable by the client.

Once the measurements have been made, they can be cached for a certain amount of time

so that subsequent calls on that client do not have to repeat the same measurement. The

lifetime of the cached measurements is configurable by the user.

There are many other projects that monitor grid performance, see [17] or [18] for a

review. For example, the Network Weather Service (NWS) [19], is a popular general system

service that can monitor the performance of network bandwidth and latency (as well as

other measures) and provide a statistical forecast for future performance. However, for the

GridSolve system, most of the existing systems are inappropriate because clients enter and

leave GridSolve dynamically, making it difficult to measure and retain the communication

costs between the clients and the full set of servers. Moreover, NWS is required to be
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configured on each end, which necessitates some expertise that we do not assume. Hence, we

have chosen to implement low overhead probes as a way of building up the communication

cost matrix between a client and the servers relevant to that client.

Task Graph Scheduling There are two deficiencies associated with the standard RPC-

based model when a computational problem essentially forms a workflow consisting of a

sequence of tasks, among which there exist data dependencies. First, intermediate results

are passed among tasks by first returning to the client, resulting in additional data transport

between the client and the servers, which is pure overhead. Second, since the execution of

each individual task is a separate RPC session, it is difficult to explore the potential paral-

lelism among tasks where there is no immediate data dependency. Our previous approach to

request sequencing partially solves the problem of unnecessary data transport by clustering

a sequence of tasks based upon the dependency among them and scheduling them to run

collectively. This approach has two limitations. First, the only mode of execution it supports

is on a single server. Second, it prevents the potential parallelism among tasks from being

explored. Recent work on GridSolve has focused on creating an enhanced request sequenc-

ing technique that eliminates those limitations and solves the above problems. The core

features of this work include direct inter-server data transfer and the capability of parallel

task execution. The objective of this work is to simplify the parallel execution of data-driven

workflow applications in GridSolve.

In GridSolve request sequencing, a request is defined as a single GridRPC call to an avail-

able GridSolve service. A data-driven workflow application is constructed as a sequence of

requests, among which there may exist data dependencies. For each workflow application,

the sequence of requests is scanned, and the data dependency between the requests is an-

alyzed. The output of the analysis is a DAG representing the workflow: tasks within the

workflow are represented as nodes, and data dependencies among tasks are represented as

edges. The workflow scheduler then schedules the DAG to run on the available servers. A

set of tasks can potentially be executed concurrently if their dependencies permit it.

In order to eliminate unnecessary data transport when tasks are run on multiple servers,

the standard RPC-based computational model of GridSolve has been extended to support
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direct data transfer among servers. Specifically, in order to avoid the case that intermediate

results are passed among tasks via the client, servers must be able to pass intermediate

results among each other, without the client being involved.

Recent experiments [20] demonstrated promising benefit from eliminating unnecessary

data transfer and exploiting the parallelism found by automatically constructing and an-

alyzing the task graph. The algorithm for workflow scheduling and execution currently

used in GridSolve request sequencing is primitive in that it does not take into consideration

the differences among tasks and does not consider the overall mutual impact between task

clustering and network communication. We are planning to substitute a more advanced

algorithm for this primitive one. Additionally, we are currently working on providing sup-

port for advanced workflow patterns such as conditional branches and loops, which are not

supported in the current implementation.

1.4 RPC Transparency Issues

As we mentioned in the introduction, there are some non-trivial issues to deal with when

aiming for a transparent RPC implementation. In this section, we discuss some of these

issues within the context of the GridRPC specification and our GridSolve implementation.

Parameter Passing In local procedure calls, arguments are passed by value or by refer-

ence. Pass-by-value means that the actual value of the argument is passed to the procedure

(e.g. if x has the value 5 and x is passed by value, then the procedure is given the value 5). In

contrast, pass-by-reference means that a pointer is passed to the procedure, which must be

dereferenced to obtain the actual values (e.g. if the value pointed to by x is stored in memory

address 0x100, then the procedure is given the value 0x100). Pass-by-reference is useful in

a couple of scenarios. First, it allows the procedure to modify the value of an argument,

which is not possible in a pass-by-value situation. Also, it is more efficient for passing large

data structures like matrices because only one address needs to be passed instead of all the

values.
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In the context of RPC, the problem with pass-by-reference is that the remote machine

is in a different address space, so any pointers from the client machine will be meaningless.

This could be handled by making requests back to the client when data from the remote

pointer is accessed, but that would be very inefficient. The typical approach (and the

one implemented in GridSolve) is to pass a copy of the data referenced by the pointer

and then restore any modifications to the data upon completion of the RPC. However, in

an asynchronous situation, the user needs to be careful because any modifications to the

referenced data made after the call but before the results from the RPC are restored would

be lost.

Another complication with parameter passing in RPC is that of complex or user-defined

data structures. Sun RPC uses XDR (External Data Representation) [21], which is a stan-

dard for describing and encoding arbitrary data. In GridSolve, we chose to avoid XDR for

performance reasons and because almost all of the procedures we were dealing with used

simple data structures like vectors and matrices. There are tradeoffs between transparency,

flexibility, simplicity, and efficiency. We gave up some transparency and flexibility to gain

simplicity and efficiency.

Binding to Servers RPC binding refers to locating the remote host with the procedure

to be invoked and then finding the correct server process on that host. Traditional RPC

required specifying the remote host name explicitly. When the user is expected to supply

the host names for the remote calls, the veneer of transparency begins to erode. Also, it

becomes more than just a transparency issue when asynchronous RPC is considered. In

that case, the selection of the remote host to satisfy the request can have a big effect on the

performance.

The GridRPC function handle represents a mapping from a service descriptor (in this

case a simple character string) to the remote server that will be used to execute the func-

tion. This mapping could be specified by the user or determined by the middleware using

simple resource discovery mechanisms or possibly some more sophisticated scheduling algo-

rithms. In the end, the GridRPC specification leaves the issue of binding up to the various

implementations.
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The normal GridRPC calling sequence is to first initialize the handle and bind to a server

using a call to grpc function handle default() followed by a call to grpc call() (or one

of its brethren) at some point later. In the case of the GridSolve implementation, there is a

slight problem with performing the scheduling in this scenario. GridSolve relies on having

access to the values of the arguments in grpc call() at the time the scheduling is performed

so it can estimate the execution time and communication cost of sending the data. However,

at the time grpc function handle default() is called, we do not know which values will

be used in the eventual call, so scheduling is not possible.

To deal with this issue, we allow the user to specify a special host name when initializing

the function handle. The special name signifies to the GridSolve internals that the function

handle binding should be delayed until the first time the handle is used to make a call.

Subsequent calls using that function handle will not change the binding, so the semantics of

successive GridRPC calls is not altered.

In terms of transparency, GridSolve does require the user to know the host name of the

GridSolve Agent, which performs the binding and scheduling, but the user never needs to

know any of the server details. This seems like a reasonable tradeoff because of multiple

benefits provided by the agent.

Exception Handling and Fault Tolerance Whenever communication with remote ma-

chines is involved, there is the possibility for new and subtle errors to appear. This can

destroy the sense of transparency because now the user must deal with many new failure

scenarios that would never happen with a local procedure call. The GridRPC specifica-

tion largely avoids attempting to maintain this kind of procedure-level transparency. The

GridRPC calls have their own return values and error codes that must be dealt with ap-

propriately. Any errors from the remote procedure itself must be passed back as an output

argument of the RPC.

Despite the lack of transparency in exception handling, the GridRPC specification leaves

open the possibility of implementing transparent fault tolerance. In GridSolve, if a call fails

the system will automatically find another server to resubmit the job to. This is completely
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transparent, so the user never knows that there were failures in the system. This brings up

several issues of how to detect failures. There are many failure scenarios and the handling

of each one is a bit different, but these implementation details do not really affect the user’s

perception of RPC transparency. The issue of fault tolerance also affects the issue of binding,

since when errors occur the final server handling the request might be different from the one

originally selected. GridSolve allows the user to enable or disable the fault tolerant mode in

order to match the desired GridRPC semantics.

Data Representation The internal representation of data is an important issue in RPC

because the local and remote machines may have different word lengths, floating-point for-

mats, and byte orderings. If the user has to think about their data representation or data

structures, the illusion of transparency is lost. We mentioned XDR earlier as a solution to the

issue of passing complex data structures, but XDR also handles conversion of primitive data

types between architectures by using a common intermediate representation. The GridRPC

specification says nothing about data conversion, so it is left up to the implementors to

decide. In GridSolve we implemented a receiver makes right protocol which allows the client

to send data in its native format which the receiver then converts to its own native format

if needed. This avoids having to do two separate conversions (each end converting between

native and common representations) as well as avoiding making an extra copy of the data

on the sending side. GridSolve is still limited in its support for complex data structures, but

we feel the increased efficiency in the common cases is worth making the tradeoff.

Performance While we go to great effort to ensure good performance in GridSolve, the

fact remains that extra communication overhead is inherent in any RPC. It was mentioned in

[3] that if you had a truly transparent RPC for arbitrary applications, serious performance

degradation could be inadvertently introduced. Of course, GridRPC specifies a different

API for remote calls, so users will be aware of which calls are local and which are remote.

Nevertheless, to achieve the best performance in an RPC-based application, the developers

should carefully consider the ratio of computation time to communication time (since proces-

sor power has been increasing faster than communication speed, this issue gets more serious
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every year). Take matrix multiplication as an example. We compute C ← αAB +βC where

A, B, and C are matrices. For the sake of simplicity, assume they are all square matrices of

size N ×N . The communication costs will be on the order of:

Cinput = 3×
N2
× elementsize

bandwidth

Coutput =
N2
× elementsize

bandwidth
Ctotal = Cinput + Coutput

Where elementsize is the size of each matrix element in bytes and bandwidth is the number

of bytes per second for the network. Assuming a local network bandwidth of 11 MByte/s

and an element size of 8 bytes, the communication cost for N = 3000 is around 25 seconds.

The computational costs will be on the order of:

P = (
2

3
N3)/Mp

Where Mp is the performance of the machine in floating point operations per second. At

N = 3000 and local machine performance of Mp = 800 Mflop/s, the local computation cost

would be roughly 22.5 seconds. So, it costs more to send the data (not counting remote

execution time) than it would to just do the computation locally. Since the computation

cost is growing faster than the communication cost, there will eventually be a crossover

point where it makes sense to do the RPC, but it depends on the performance of the remote

machine relative to the local machine as well as the network speed (WANs are often much

worse than our 11 MByte/s LAN example).

While this example might be discouraging, there are still many favorable scenarios for

RPC especially when taking into account task parallelism. One example is in parameter

sweep problems, where the data being distributed is relatively small, and many servers can

be used asynchronously and simultaneously to evaluate different input data with the output

being collated in some way. Tasks that are suited to RPC computation include Evolutionary

Algorithms (genetic algorithms, etc.) and Monte Carlo style algorithms and optimization

algorithms.
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Security Unlike with local procedures, when executing a remote procedure the data is

exposed on the network and therefore susceptible to snooping. Security is another area that

is not addressed by the GridRPC specification, but the various implementations choose their

own strategies. We have not implemented any data encryption methods in GridSolve. It is

an important issue, but most of our users are running the entire GridSolve infrastructure

on their local networks (e.g. behind firewalls). Because of that, there has not been a huge

demand for encryption in GridSolve, but it should be straightforward to add since we have

already implemented a transparent data compression module, and encryption could be added

to that module at the data transport level.

Transparency Trying to achieve total transparency (if it is even possible) would result

in unexpected behavior and unacceptable performance degradation. As it was mentioned

earlier, from a design standpoint total transparency might not be the ideal anyway. We

have attempted to design a system that is transparent in the sense of shielding users from

unnecessary details and allowing for relatively painless conversion of code to a distributed

implementation. The user still retains control over their application in deciding which func-

tions are appropriate for remote processing. But the user does not need to know which server

will be used, how the data will be converted, whether the job was resubmitted to another

server due to failures, etc. This level of partial transparency allows the GridSolve system

to provide better overall performance for the users while leaving the user in control of their

application.

1.5 Summary

Using distributed grid resources in an simple and effective manner is difficult, though there

are multiple programming models that are attempting to meet this challenge. The GridRPC

API is a simple and portable programming model providing a standardized mechanism for

accessing grid resources. GridSolve provides an implementation of GridRPC and adds a

substantial list of features that are designed to make access to grid resources transparent and

easier to accomplish. Client bindings for commonly used Scientific Computing Environments
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(e.g., Matlab, Octave, IDL) make it easy for a computational scientist to use grid resources

from within their preferred tools. Transparent scheduling via the GridSolve agent relieves the

user from having to know the details of the servers and service providers. Service level fault

tolerance provides a simple and usable mode for failure recovery. Task graph scheduling

allows the composition of sequences of tasks into a inferred workflow, without requiring

additional input from the user. Using all these techniques and more, GridSolve has been

working to make the grid easier to use, and further research on this goal continues.
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Figure 1.1: Client-server interaction in standard RPC
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Figure 1.2: GridSolve architecture showing interactions between client, agent and servers

for all servers Si that can provide the desired service
T1(Si) = estimated amount of time for computation on Si

T2(Si) = estimated time for communicating input and output data
T (Si) = T1(Si) + T2(Si) estimated total time using Si

select the server Sm which has the minimum time, where T (Sm) = min T (Si)∀i

Figure 1.3: Minimum Completion Time algorithm


