
Trace-based Performance Analysis for the

Petascale Simulation Code FLASH

Heike Jagode, Jack Dongarra
The University of Tennessee, USA
[jagode | dongarra]@eecs.utk.edu

Andreas Knüpfer, Matthias Jurenz,
Matthias S. Müller, Wolfgang E. Nagel
Technische Universität Dresden, Germany

[andreas.knuepfer | matthias.jurenz |
matthias.mueller | wolfgang.nagel]@tu-dresden.de

September 17, 2009

Abstract

Performance analysis of applications on modern high-end Petascale
systems is increasingly challenging due to the rising complexity and quan-
tity of the computing units. This paper presents a performance analysis
study with the Vampir performance analysis tool suite that examines the
application behavior as well as the fundamental system properties.

The study is done on the ORNL’s Cray XT4 system Jaguar consisting
of more than 30,000 CPU cores. We analyze the FLASH simulation code
that is designed to scale towards tens of thousands of CPU cores. This
situation makes it very complex to apply existing performance analysis
tools. Yet, the study reveals two classes of performance problems that
become relevant with very high CPU counts: MPI communication and
scalable I/O. For both, solutions are presented and verified. Finally, the
paper proposes improvements and extensions for event tracing tools in
order to allow scalability of the tools towards higher degrees of parallelism.

1 Introduction and Background

Estimating achievable performance and scaling efficiencies in modern Petas-
cale systems is a complex task. Many of the scientific applications running on
those high-end computing platforms are highly communication- as well as data-
intensive. As an example, the FLASH application is a highly parallel simulation
code containing complex performance characteristics.

The performance analysis tool suite Vampir is used to gain deeper insight
into performance and scalability problems of the application. It uses event trac-

ing and post-mortem analysis to survey the runtime behavior for performance
problems. This makes it challenging for highly parallel situations because it
produces huge amounts of performance measurement data [1, 2].

This performance evaluation of the FLASH software exposes two classes of
performance issues that become relevant for very high CPU counts. The first
class is related to inter-process communication and can be summarized with
the common headline “overly strict coupling of processes”. The second class
refers to massive and scalable I/O within the checkpointing mechanism where
the interplay of the Lustre file system and the parallel I/O produces unnecessary
delays. For both types of performance problems, solutions are presented that
require only local modifications, not affecting the general structure of the code.

The remaining paper is organized as follows: First we provide a brief de-
scription of the target system’s features. This is followed by a summary of the
applied performance analysis tool suite Vampir. A brief outline of the FLASH
code is provided at the end of the introduction and background section. In
section 2 and 3 we provide extensive performance measurement and analysis re-
sults that are collected on the Cray XT4 system, followed by a discussion of the
detected performance issues, the proposed optimizations and their outcomes.
Section 4 is dedicated to experiences with the highly parallel application of the
Vampir tools as well as to future adaptations for such scenarios. The paper ends
with the conclusions and an outlook to future work.

1.1 The Cray XT4 System Jaguar

We start with a short description of the key features - most relevant for this
study - of the Jaguar system that had the following characteristics in December
2008. The Jaguar system at Oak Ridge National Laboratory (ORNL) is based
on Cray XT4 hardware. It utilizes 7,832 quad-core AMD Opteron processors
with a clock frequency of 2.1 GHz and 8 GBytes of main memory (2 GBytes
per core). Jaguar offers a theoretical peak performance of 260.2 Tflops/s and a
sustained performance of 205 Tflops/s on Linpack [3]. The nodes are arranged
in a three-dimensional torus topology of size 21× 16× 24 with SeaStar2.

Jaguar has three Lustre file systems of which two have 72 Object Storage
Targets (OST) and one has 144 OSTs [16]. All three of these file systems share
72 physical Object Storage Server (OSS). The theoretical peak performance of
I/O bandwidth is ∼50 GB/s across all OSSes.

1.2 The Vampir Performance Analysis Suite

Before we show detailed performance analysis results, we will briefly introduce
the main features of the used performance analysis suite Vampir (Visualization
and Analysis of MPI Resources) that are relevant for this paper.

The Vampir suite consists of the VampirTrace part for instrumentation,
monitoring and recording as well as the VampirServer part for visualization
and analysis [4, 5, 1]. The event traces are stored in the Open Trace Format
(OTF) [6]. The VampirTrace part supports a variety of performance aspects,

2

for example MPI communication events, subroutine calls from user code, hard-
ware performance counters, I/O events, memory allocation and more [4, 7]. The
VampirServer part implements a client/server model with a distributed server,
which allows a very scalable interactive visualization for traces with over thou-
sand processes and an uncompressed size of up to one hundred GBytes [7, 1].

1.3 The FLASH Application

The FLASH application is a modular, parallel AMR (Adaptive Mesh Refine-
ment) simulation code which computes general compressible flow problems for
a large range of scenarios [8]. FLASH is a set of independent code units, put to-
gether with a Python language setup tool to create various applications. Most of
the code is written in Fortran 90 and uses the Message-Passing Interface (MPI)
library for inter-process communication. The PARAMESH library [9] is uti-
lized for adaptive grids, placing resolution elements only where they are needed
most. The Hierarchical Data Format 5 (HDF5) is used as I/O library offering
parallel I/O via MPI-IO [10]. For this study, the I/O due to checkpointing is
most relevant, because it frequently writes huge amounts of data.

The investigated three-dimensional simulation test case WD_Def is a defla-
gration phase of the gravitationally confined detonation mechanism for Type Ia
supernovae, a crucial astrophysical problem that has been extensively discussed
in [11]. The WD_Def test case is generated as a weak scaling problem for up to
15,812 processors where the number of blocks remain approximately constant
per computational thread.

2 MPI Performance Problems

The communication layer is a typical spot to look at for performance problems in
parallel codes. Although communication enables the parallel solution, it is not
directly contributing to the solution of the original problem. A substantial por-
tion of communication in the overall runtime is an indication of a performance
problem. Most of the time, this is due to waiting for communication peers and
usually this becomes more severe as the degree of parallelism increases.

This symptom is indeed present in the FLASH application. Of course, it
can easily be diagnosed on the basis of profiling. However, a detailed analysis
pointing to a possible solution can only by achieved by a more detailed event
tracing approach, as described below.

In the following, three different performance problems are discussed that
can be summarized with the headline “overly strict coupling of processes”. The
problems found are hotspots of MPI Sendreceive replace operations, hotspots
of MPI Allreduce operations, and unnecessary MPI Barrier operations.

3

Figure 1: Original communication pattern of successive MPI Sendrecv replace
calls. Message delays are propagated along the communication chain of consec-
utive ranks. See Figure 3 for an optimized alternative.

2.1 Hotspots of MPI Sendrecv replace Calls

The first case is a hotspot of MPI Sendrecv replace operations. It uses six
successive calls, sending small to moderate amounts of data. Therefore the
single communication operations are latency bound and not bandwidth bound.
Interestingly, it propagates delays between connected ranks, see Figure 1.

In the given implementation, the successive messages cause a cognizable
accumulation of the latency values. A convenient local solution is to replace
this hotspot pattern with non-blocking communication calls. As there is no
non-blocking version of MPI Sendrecv replace one can emulate the same be-
havior by non-blocking point-to-point communication operations MPI Irecv,
MPI Ssend and a final MPI Waitall call. This would not produce a large bene-
fit for a single MPI Sendrecv replace call but it will for a series of such calls,
because for overlapping messages the latency values are no longer accumulated.
Of course, it requires additional temporary storage, although this is uncritical
for small and moderate data volumes.

The actual performance gain from this optimization is negligible at 1 to 2%
at first. But together with the optimization described in Section 2.3 this will
contribute a notable performance improvement.

2.2 Hotspots of MPI Allreduce Calls

The most severe performance issue in the MPI communication used in FLASH is
a hotspot of MPI Allreduce operations. Again, there is a series of MPI Allreduce
operations with small to moderate data volumes for all MPI ranks. Like above,
the communication is latency bound instead of bandwidth bound.

In theory, one could also replace this section with a pattern of non-blocking
point-to-point operations similar to the solution presented above. However,
with MPI Allreduce or with collective MPI operations in general, the number
of point-to-point messages would grow with the number of ranks. This would
make any replacement scheme more complicated. Furthermore, it would reduce

4

performance portability since there is a high potential producing severe perfor-
mance disadvantages. This is due to two reasons: Decent MPI implementations
introduce optimized communication patterns, for example tree-based reduction
schemes and communication patterns adapted to the network topology. Imi-
tating such behavior with point-to-point messages is very complicated or even
impossible, because a specially adapted solution will not be generic and a generic
solution will hardly be optimized for a given topology.

On this account, the general advice to MPI users is to rely on collective
communication whenever possible [12]. Unfortunately, there are no non-blocking
collective operations in the MPI standard. So it is impossible to combine a non-
blocking scheme with a collective one, at least for now [12].

However, this fundamental lack of functionality has already been identified
by the MPI Forum, the standardization organization for MPI. As the long term
solution to the dilemma of non-blocking vs. collective, the upcoming MPI 3.0
standard will most likely contain a form of non-blocking collective operations.
Currently, this topic is under discussion in the MPI Forum [13].

As a temporary solution for this problem, the libNBC can be used [12]. It
provides an implementation of non-blocking collective operations as an extension
to the MPI 2.0 standard with an MPI-like interface. For the actual communi-
cation functionality, libNBC relies on non-blocking point-to-point operations of
the platform’s existing MPI library [12, 14]. Therefore, it is able to incorporate
improved communication patterns but currently does not directly adapt to the
underlying network topology (compare above).

Still, the FLASH application accomplishes a notable performance improve-
ment with this approach. This is mainly due to the overlapping technique
of the successive NBC Iallreduce operations (from libNBC) while multiple
MPI Allreduce operations are strictly successively executed.

In Figure 2, two corresponding allreduce patterns 1 are compared. The
original communication pattern spends almost 3s in MPI Allreduce calls, see
Figure 2 (top). The replacement needs only 0.38s, consisting mainly of NBC Wait
calls because the NBC Iallreduce calls are too small to notice with the given
zoom level, compare Figure 2 (bottom). This provides an acceleration of more
than factor 7 for the communication patterns only. It achieves a total runtime
reduction of up to 30% (excluding initialization of the application).

2.3 Unnecessary Barriers

Another MPI operation consuming a high runtime share is MPI_Barrier. For
256 to 15,812 cores, about 18% of the total execution time is spent there.

Detailed investigations with the Vampir tools reveal typical situations where
barriers are placed. Again, this would be invisible to pure profiling tools. It
turns out, most barriers are unnecessary for the correct execution of the code.
Like shown in Figure 3 (top) such barriers are placed before communication

1Event tracing allows to identify exactly corresponding occurrences for compatible test
runs. In this example both are at the middle of the total runtime.

5

Figure 2: Corresponding communication patterns of MPI Allreduce in the orig-
inal code (top) and NBC Iallreduce plus NBC Wait in the optimized version
(bottom). The latter is more than seven times faster.

phases, probably in order to achieve strict temporal synchronization, i.e. com-
munication phases starting almost simultaneously.

A priori this is neither beneficial nor harmful. Often, the time spent in the
barrier would be spent waiting in the beginning of the next MPI operation when
the barrier is removed. This is true for example for the MPI Sendrecv replace
operation. Yet, for some other MPI operations the situation is completely dif-
ferent. Removing the barrier will save almost the total barrier time. This can
be found for example for MPI Irecv, which starts without initial waiting time
once the barrier is removed. Here, unnecessary barriers are most harmful.

Now, reconsidering the hotspots of MPI Sendrecv replace calls discussed
in Section 2.1, this situation has been changed from the former case to the
latter. Therefore, the earlier optimization allows another improvement when
removing the unnecessary MPI Barrier calls. Figure 3 (bottom) shows the
result of this combined modification. According to the runtime profile (not
shown) the aggregated runtime of MPI Barrier is almost completely saved.

Besides the unnecessary barriers, there are also some useful ones. They are
mostly part of an internal measurement in the FLASH code which is aggregating
coarse statistics about total runtime consumptions of certain components.

By eliminating the unnecessary barriers, the runtime share of MPI Barrier

6

Figure 3: Typical communication pattern in the FLASH code. An MPI Barrier
call before a communication phase ensures a synchronized start of the communi-
cation calls (top). When removing the barrier there is an un-synchronized start
(bottom). Yet, this imposes no additional time on the following MPI operations,
the runtime per communication phase is reduced by approx. 1/3.

is reduced by 33%. This reduces the total share of MPI by 13% while the
runtime of all non-MPI code remains constant. This results in an overall runtime
improvement of 8.7%.

3 I/O Performance Problems

The second important aspect for the overall performance of the FLASH code is
the I/O behavior, which is mainly due to the integrated checkpointing mecha-
nism. We collect I/O data from FLASH on Jaguar for jobs ranging from 256
to 15,812 cores. From this weak-scaling study it is apparent that time spent in
I/O routines began dramatically to dominate as the number of cores increased.
A runtime breakdown over trials with increasing number of cores, shown in
Figure 4, illustrates this behavior2. More precisely, Figure 4 (a) depicts the
evolution of a selection of FLASH function groups without I/O where the corre-
sponding runtimes grow not more than 1.5-fold3. The same situation but with
checkpointing in Figure 4 (b) shows a 22-fold runtime for 8,192 cores which
clearly indicates a scalability problem.

2Because of the great complexity of FLASH, it has been focused on those FLASH function
groups that show poor scaling behavior and imply I/O function calls.

3As compared to the 256 core case. With ideal weak-scaling it should be constant

7

(a) (b)

initialization

evo
luti

on

initialization
evolution

Figure 4: Weak-scaling study for FLASH: (a) Scalability without I/O and (b)
break-down of scalability due to checkpointing

In the following three sections, multiple tests are performed with the goal of
tuning and optimizing I/O performance for the parallel file system so that the
overall performance of FLASH can be significantly improved.

3.1 Collective I/O via HDF5

For the FLASH investigation described in this section, the Hierarchical Data
Format 5 (HDF5) is used as I/O library. HDF5 is not only a data format but
also a software library for storing scientific data. It is based on a generic data
model and provides a flexible and efficient I/O API [10]. By default, the parallel
mode of HDF5 uses an independent access pattern for writing datasets without
extra communication between processes [8].

But parallel HDF5 can also perform an aggregated mode, writing the data
from multiple processes in a single chunk. This involves network communica-
tions among processes. Still, combining I/O requests from different processes in
a single contiguous operation can yield a significant speedup [10]. This mode is
still experimental in the FLASH code. However, the considerable benefits may
encourage the FLASH application team to implement it permanently.

Figure 5 (a) summarizes the weak-scaling study results of the FLASH sim-
ulation code for various I/O options. It can be observed that collective I/O
yields a performance improvement of 10% for small core counts while for large
core counts the code runs faster up to a factor of 2.5. However, despite the im-
provements so far, the scaling results are still non-satisfying for a weak-scaling
benchmark.

3.2 File Striping in Lustre FS

Lustre is a parallel file system that provides high aggregated I/O bandwidth by
striping files across many storage devices [15]. The parallel I/O implementation
of FLASH creates a single file and every process writes its data to this file
simultaneously via HDF5 and MPI-IO [8]. The size of such a checkpoint file
grows linearly with the number of cores. As an example, in the 15,812 core case
the size of the checkpoint file is approximately 260 GByte.

8

(b)(a)

Figure 5: (a) FLASH scaling study with various I/O options (b) I/O analysis
of writing data to a single file versus multiple files.

By default, files on Jaguar are striped across 4 OSTs. As mentioned in
section 1.1, Jaguar consists of three file systems of which two have 72 OSTs
and one has 144 OSTs. Hence, by increasing the default stripe size, the single
checkpoint file may take advantage of the parallel file system which should
improve performance. Striping pattern parameters can be specified on a per-file
or per-directory basis [15]. For the investigation described in this section, the
parent directory has been striped across all the OSTs on Jaguar, which is also
suggested in [16]. More precisely, depending on what file system is used, the
Object Storage Client (OSC) communicates via a total of 72 OSSes - which are
shared between all three file systems - to either 72 or 144 OSTs.

From the results presented in Figure 5 (a), it is apparent that using parallel
collective I/O in combination with striping the output file over all OSTs is
highly beneficial. More precisely, the results show a further improvement of
a factor of 2 for midsize and large core counts by performing collective I/O
with file striping compared to the collective I/O results. This yields an overall
improvement of a factor of 4.6 when compared to the results from the näıve
parallel I/O implementation.

This substantial improvement can be verified by the trace-based analysis of
the I/O performance counters for a single checkpoint phase, shown in Figure 6.
It reveals that utilizing efficient collective I/O in combination with file striping
(right) results in a faster as well as more uniform write speed, while the näıve
parallel I/O implementation (left) behaves slow and rather irregular.

3.3 Split Writing

By default, the parallel implementation of HDF5 for a PARAMESH [9] grid
creates a single file and every process writes its data to this file simultaneously
[8]. However, it relies on the underlying MPI-IO layer in HDF5. Since the size
of a checkpoint file grows linearly with the number of cores, I/O may perform
better if all processes write to a limited number of separate files rather than
a single file. Split file I/O can be enabled by setting the outputSplitNum

9

Figure 6: Performance counter displays for write speed of processes. The original
bandwidth utilization is slow and irregular (left). It becomes faster and more
uniform when using collective I/O in combination with file striping (right). All
counters show the aggregated per-node bandwidth of 4 processes. (The rather
slow maximum bandwith of 6MB/s corresponds to share of the total bandwidth
for 1,004 out of 31,328 cores for the scr72a file system.)

parameter to the number N of files desired [8]. Every output file will be then
broken into N subfiles. It is important to note that the use of this mode with
FLASH is still experimental and has never been used in a production run.
This study uses collective I/O operations but the file striping is set back for the
default case on Jaguar. Furthermore, it is performed for two core-cases only but
with various numbers of output files. Figure 5(b) shows the total execution time
for FLASH running on 2,178 and 8,192 cores while the number of output files
varies from 1(which is default) to 64 and 4,069 respectively. In this figure the
results from the split writing analysis are compared with those from collective
I/O investigations when data is written to a single file.

For the investigated cases, it is noticeable that writing data to multiple files
is more efficient than writing to a single file followed by striping the file across
all OSTs. This is most likely due to the overhead of the locking mechanism in
Lustre. For the 2,176 core run it appears that writing to 32 separate files delivers
best performance. Even when compared with the ’collective I/O + file striping’
trial that has a run time of ∼529 seconds, the split writing strategy decreases
the run time to ∼381 seconds which delivers a speedup of approximately 28%.
For the same comparison, the 8,192 core run saw a run time degradation from
∼1551 to ∼575 seconds when data is written to 2,048 separate files. This results
in a performance gain of nearly a factor of 2.7. A future intent is to find the
optimal file size or optimal number of files to obtain the best performance.

10

3.4 Limited I/O-Tracing Capabilities on Cray XT4

The I/O tracing capabilities of VampirTrace are very limited on the Jaguar
system, because two important features cannot be used. The first is the record-
ing of POSIX I/O calls which is deactivated because of missing shared library
support on the compute nodes. The second is the global monitoring of the
Lustre activity which would require administrative privileges. Both features are
extensively described in [4, 17].

Therefore, the only alternative was to rely on client-side Lustre statistics
which are shown in Figure 6. They represent the total I/O activity per compute
node with maximum granularity of 1/s. Therefore, 4 processes show the same
behavior with only minor deviation due to non-simultaneous sampling.

This compromise solution is sufficient for a coarse analysis of the checkpoint
phases and the I/O speed. It allows to observe the I/O rate over time, the
load balance across all I/O clients for each individual checkpoint stage, and in
general to observe the distributions of I/O among the processes. Yet, more
detailed insight into the behavior of the HDF5 library would be desirable, e.g.
concerning block sizes and scheduling of low-level I/O activities. A system
monitoring as described in [17] would also allow to observe the activities on the
metadata server, the OSSes and the RAID systems.

4 Experiences with Tracing and Future Plans

Event tracing for highly scalable applications is a challenging task, in particular
due to the huge amount of generated data. For this problem some existing and
future approaches are discussed.

The default configuration of VampirTrace is limited to record not more than
10,000 calls per subroutine and rank (MPI process) and to 32 MB of total un-
compressed trace size per rank. This avoids excessively huge trace files and
allows to generate a custom filter specification for successive trace runs. These
filters reduce frequent subroutine calls completely and keeps high-level subrou-
tines untouched. Usually, this results in an acceptable trace size per process and
a total trace size growing linearly with the number of parallel processes. Filter-
ing everything except MPI calls is a typical alternative method if the analysis
focuses on MPI only. With the FLASH code, the filtering approach works well
in order to create reasonably sized traces. As one exception, additional filtering
for the MPI function MPI Comm rank is necessary, because it is called hundreds
of thousands of times per rank.

The growth of the trace size is typically not linear with respect to the run-
time or the number of iterations. Instead, there are high event rates during
initialization with many different small and irregular activities. Afterwards,
there is a slow linear growth proportional to the number of iterations. This can
be described coarsely by the following relation

trace size = 6 MB/rank + 0.1 MB/iteration/rank (1)

11

(in compressed OTF format) where the first part relates to initialization.
On the analysis and visualization side, VampirServer provides very good

scalability by its client/server architecture with a distributed server. It is able to
handle 1 to n trace processes by one analysis process and requires approximately
the uncompressed trace file size as distributed main memory. This combined
approach is feasible up to a number of several hundred to few thousand processes
but not for tens of thousands because of the following reasons:

1. the total data volume that grows to hundreds of GBytes,
2. the distributed memory consumption for analysis, and
3. limited screen size and limited human visual perception.

For the three problems, there are different solutions. The general method for
this paper was to do trace runs with medium scale parallelism (some hundred to
few thousand ranks). Then identify and investigate interesting situations based
on this experiments, interpolating the behavior for even larger rank counts. This
successfully reveals certain performance problems and allows to design solutions.
Yet, it is not sufficient for detecting performance problems that emerge only for
even higher degrees of parallelism.

Some of the current investigations are also based on analyzing partial traces
where all processes are recorded but only a (manual4) selection is loaded by
VampirServer. This results in few warnings about incomplete data, yet the re-
maining analysis works like before. As a future solution we propose a new partial
tracing method as the result of the presented study. It will apply different lev-
els of filtering, based on the assumption that (most) processes in SPMD (Single
Program Multiple Data) applications behave very similar. Only a selected set
of processes is considered for normal tracing including normal filerting. For an-
other set, there will be a reduced tracing, that collects only events corresponding
to the first set, e.g. communication with peers in the first set. All remaining
processes will refrain from recording any events.

The follwing step for future development should be an automatic detection
of uniform sections in an event trace. Based on this, the visualization could
provide an easy overview about regular areas of a trace run and, at the same
time, provide detailed insight into a single instance. This has already been
proposed in [18, 19] and can be combined with data compression.

5 Conclusions

This paper presents a performance analysis study of the parallel simulation
software FLASH, that examines the application behavior as well as the funda-
mental high-end Petascale system hierarchies. The approach is performed using
the scalable performance analysis tool suite called Vampir on the ORNL’s Cray
XT4 Jaguar system. The trace-based evaluation provides important insight
into performance and scalability problems and allows us to identify two major
bottlenecks that are of importance for very high CPU counts.

4by modifying the anchor file of an OTF trace.

12

The use of the Vampir suite allows not only to detect severe hotspots in
some of the communication patterns used in the FLASH application but is
also auxiliary by pointing to feasible solutions. Consequently, a speedup of
the total runtime of up to 30% can be achieved by replacing multiple, strictly
successive MPI Allreduce operations by non-blocking NBC Iallreduce opera-
tions (from libNBC) that permit overlapping of messages. Furthermore, an-
other MPI-related bottleneck could be eliminated by substituting the latency
bound MPI Sendrecv replace operations together with removing of unneces-
sary MPI Barrier calls. This reduces the total portion of MPI in FLASH by
13% while the runtime of all non-MPI code remains constant.

A deeper investigation of the derivation of time spent in FLASH routines
shows in particular that time spent in I/O routines began dramatically to dom-
inate as the number of CPU cores increase. A trace-based analysis of the I/O
behavior allows a better understanding of the complex performance characteris-
tics of the parallel Lustre file system. Using various techniques like aggregating
write operations, allowing the data from multiple processes to be written to
disk in a single path, in combination with file striping across all OSTs yields a
significant performance improvement of a factor of 2 for midsize CPU counts
and approximately 4.6 for large CPU counts for the entire FLASH application.
Furthermore, writing data to multiple files instead of a single file delivers an
additional performance gain of nearly a factor of 2.7 for 8,192 cores as an exam-
ple. Since the size of the output file grows linearly with the number of cores, it
is a future intent to find the optimal file size or optimal number of output files
to obtain best performance for various core cases.

Acknowledgements

The authors would like to thank the FLASH application team, in particular
Chris Daley for his continuous support with the application. Furthermore, Jeff
Larkin (Cray) is greatly acknowledged for providing valuable insights on the
Lustre file system on Jaguar. The authors also would like to thank David Cronk
(UTK) for appreciated discussions about various MPI I/O implementations.

This research was sponsored by the Office of Mathematical, Information,
and Computational Sciences of the Office of Science, U.S. Department of En-
ergy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. This
work used resources of the National Center for Computational Sciences at Oak
Ridge National Laboratory, which is supported by the Office of Science of the
Department of Energy under Contract DE-AC05-00OR22725. This resource
was made available via the Performance Evaluation and Analysis Consortium
End Station, a Department of Energy INCITE project.

References

[1] H. Brunst, “Integrative Concepts for Scalable Distributed Performance
Analysis and Visualization of Parallel Programs”, Ph.D. thesis, Shaker Ver-

13

lag, 2008.

[2] H. Jagode, J. Dongarra, S. Alam, J. Vetter, W. Spear, A. Malony, ”A
Holistic Approach for Performance Measurement and Analysis for Petascale
Applications,” Springer-Verlag Berlin Heidelberg 2009, ICCS 2009, Part II,
LNCS 5545, pp. 686–695, 2009.

[3] Top500 list, June 2008, http://www.top500.org/list/2008/06/100

[4] M. Jurenz, “VampirTrace Software and Documentation”, ZIH, Technische
Universität Dresden, http://www.tu-dresden.de/zih/vampirtrace

[5] “VampirServer User Guide”, http://www.vampir.eu

[6] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, W. E. Nagel, “Introducing the
Open Trace Format (OTF)”, Proceedings of the ICCS 2006, part II. pp.
526–533, Reading/U.K., 2006.

[7] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M.
Müller and W.E. Nagel, “The Vampir Performance Analysis Tool-Set”, in:
Tools for High Performance Computing, pp 139-155, Springer Verlag, 2008

[8] ASC FLASH Center University of Chicago, “FLASH Users Guide Version
3.1.1”, January 2009.

[9] P. MacNeice, K. M. Olson, C. Mobarry, R. deFainchtein, C. Packer,
“PARAMESH: A parallel adaptive mesh refinement community toolkit”,
NASA/CR-1999-209483, 1999.

[10] M. Yang, Q. Koziol, “Using collective IO inside a high performance
IO software package - HDF5”, www.hdfgroup.uiuc.edu/papers/papers/
ParallelIO/HDF5-CollectiveChunkIO.pdf

[11] G. C. Jordan, R. T. Fisher, D. M. Townsley, A. C. Calder, C. Graziani, S.
Asida, et.al., “Three-Dimensional Simulations of the Deflagration Phase of
the Gravitationally Confined Detonation Model of Type Ia Supernovae”,
The Astrophysical Journal, 681, pp. 1448–1457, July 2008.

[12] T. Hoefler, P. Kambadur, R. L. Graham, G. Shipman, and A. Lumsdaine,
“A Case for Standard Non-Blocking Collective Operations” in Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface, Eu-
roPVM/MPI 2007, Springer LNCS 4757, pp. 125–134, Oct 2007.

[13] “MPI: A Message-Passing Interface – Standard Extension: Nonblocking
Collective Operations” (draft), Message Passing Interface Forum, Jan 2009,
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/NBColl

[14] T. Hoefler, P. Gottschling, and A. Lumsdaine, “Leveraging Non-
blocking Collective Communication in High-Performance Applications.” in
SPAA’08, Proceedings of the 20’th Annual Symposium on Parallelism in
Algorithms and Architectures, Munich, Germany, ACM, pp. 113–115, 2008.

14

[15] W. Yu, J. Vetter, R. S. Canon, S. Jiang, “Exploiting Lustre File Joining
for Effective Collective IO”, Int’l Conference on Clusters Computing and
Grid (CCGrid ’07), Rio de Janeiro, Brazil, IEEE Computer Society, 2007.

[16] J. Larkin and M. Fahey, “Guidelines for Efficient Parallel I/O on the Cray
XT3/XT4”, in: Proceedings of Cray User Group, 2007

[17] H. Mickler, A. Knüpfer, M. Kluge, M. Müller, and W.E. Nagel, “Trace-
Based Analysis and Optimization for the Semtex CFD Application – Hid-
den Remote Memory Accesses and I/O Performance”, in Euro-Par 2008
Workshops - Parallel Processing, Las Palmas de Gran Canaria, pp 287-
296, Springer LNCS 5415, Aug 2008

[18] A. Knüpfer and Wolfgang E. Nagel, “Compressible Memory Data Struc-
tures for Event-Based Trace Analysis”, in: Future Generation Computer
Systems 22:3, pp. 359-368, 2006

[19] A. Knüpfer, “Advanced Memory Data Structures for Scalable Event Trace
Analysis”, Ph.D. Thesis, Technische Universität Dresden, Dec 2008.

15

