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1. Introduction

The LU factorization is an important numerical algorithm for solving system of
linear equations in science and engineering and is characteristic of many dense
linear algebra computations. It has even become the de facto numerical algo-
rithm implemented within the LINPACK benchmark to rank the most powerful
supercomputers in the world, collected in the TOP500 website. In this context,
the challenge in developing new algorithms for the scientific community resides
in the combination of two goals: achieving high performance and maintaining
the accuracy of the numerical algorithm. This paper proposes a novel approach
for computing the LU factorization in parallel on multicore architectures, which
not only improves the overall performance, but also sustains the numerical qual-
ity of the standard LU factorization algorithm with partial pivoting. While the
update of the trailing submatrix is computationally intensive and highly parallel,
the inherently problematic portion of the LU factorization is the panel factoriza-
tion due to its memory-bound characteristic as well as the atomicity of selecting
the appropriate pivots.

We present a new approach to LU factorization of (narrow and tall) panel
submatrices. It uses a parallel fine-grained recursive formulation of the factoriza-
tion. It is based on conflict-free partitioning of the data and lockless synchroniza-
tion mechanisms. As a result, our implementation lets the overall computation
naturally flow without contention. Our recursive panel factorization provides
the necessary performance increase for the inherently problematic portion of the
LU factorization of square matrices. The reason is that even though the panel
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factorization is a lower order term from the computational complexity perspec-
tive [1], it still poses a problem in the parallel setting from the theoretical [2] and
practical standpoints [3]. For good performance of BLAS calls, panel width is
commonly increased. This creates tension if the panel is a sequential operation
because a larger panel width results in larger Amdahl’s fraction [4]. Our own
experiments revealed this to be a major obstacle to proper scalability of our im-
plementation of square matrix LU factorization with partial pivoting – a result
consistent with related efforts [3].

The performance results of our implementation reveal superlinear speedup
and far exceeds what can be achieved with equivalent MKL and/or LAPACK
routines.

2. Parallel Recursive LU Factorization of a Panel

This Section describes one of our most unique contributions, which is the par-
allelization of the LU factorization of a matrix panel using the recursive algo-
rithm [5].

Even though the panel factorization is a lower order term – O(N2) compared
with the global O(N3) – from the computational complexity perspective [1], it
still poses a problem in the parallel setting from the theoretical [2] and practical
standpoints [3]. To be more precise, the combined panel factorizations’ complex-
ity for the entire matrix is O(N2NB), where N is panel height (and matrix dimen-
sion) and NB is panel width. For good performance of BLAS calls, panel width
is commonly increased. This creates tension if the panel is a sequential operation
because a larger panel width results in larger Amdahl’s fraction [4]. Our own
experiments revealed this to be a major obstacle to proper scalability of our im-
plementation of tile LU factorization with partial pivoting – a result consistent
with related efforts [3].

Aside from gaining high level formulation free of low level tuning param-
eters, recursive formulation affords us to dispense of a higher level tuning pa-
rameter commonly called algorithmic blocking. There is already panel width – a
tunable value used for merging multiple panel columns together. Non-recursive
panel factorizations could potentially establish another level of tuning called
inner-blocking [6,7]. This is avoided in our implementation.

3. Scalability Results of the Parallel Recursive Panel Kernel

Figure 1 shows a scalability study on the NUMA machine Opteron-48 (an eight-
socket machine with a six-core AMD OpteronTM 8439 SE processor in each
socket) of our parallel recursive panel LU factorization with four different panel
widths: 32, 64, 128, and 256 against equivalent routines from LAPACK. We limit
our parallelism level to 16 cores because our main factorization needs the re-
maining cores for trailing matrix updates. When compared with the panel fac-
torization routine xGETF2() (mostly Level 2 BLAS), we achieve super-linear
speedup for a wide range of panel heights with the maximum achieved effi-
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Figure 1. Scalability study of the recursive parallel panel factorization with various panel widths: 32
(top left), 64 (top right), 128 (bottom left), and 256 (bottom right).

ciency exceeding 550%. In an arguably more relevant comparison against the
xGETRF() routine, which could be implemented with mostly Level 3 BLAS, we
achieve perfect scaling for 2 and 4 threads and easily exceed 50% efficiency for 8
and 16 threads. This is consistent with the results presented in the related work
section [3].
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