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INTRODUCTION

EISPACK is a collection of Fortran subroutines that compute the eigen-
values and eigenvectors of matrices and matrix systems. The package can deter-
mine the eigensystem of complex general, complex Hermitian, real general, real
symmetric, real symmetric band, real symmetric tridiagonal, and special real tridi-
agonal matrices, and generalized real and generalized real symmetric matrix sys-
tems. In addition, there are two routines that compute the singular value decom-
position, useful in solving certain least squares problems.

The subroutines are based mainly on the Algol procedures published in
the Handbook series of Springer-Verlag by Wilkinson and Reinsch [1971] and the
QZ algorithm of Moler and Stewart [1973]. The algorithms have been adapted to
Fortran and thoroughly tested on a wide range of different computers. The
software has been certified and is supported by the developers.

The software for EISPACK can be obtained from either
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National Energy Software Center (NESC)
Argonne National Laboratory

9700 South Cass Avenue

Argonne, Illinois 60439

(Phone: 312-972-7250)

Cost: Determined by NESC policy.
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Requesters in European Organization for Economic Cooperation and Develop-

ment (OECD) countries may obtain the software from

NEA Data Bank

B.P. No. 9 (Bat. 45)
F-91191 Gif-sur-Yvette
France

Cost: Free.

The documentation for the codes is contained in the following books:

B.T. Smith, J.M. Boyle, J.J. Dongarra, B.S. Garbow,

Y. Ikebe, V.C. Klema, and C.B. Moler.
Matrix Eigensystem Routines — EISPACK Guide,
Lecture Notes in Computer Science, Volume 6, 2nd Edition,
Springer-Verlag (1976) "
Price: $21.00

B.S. Garbow, J.M. Boyle, J.J. Dongarra, and C.B. Moler.
Mairix Eigensystem Routines-EISPACK Guide Extension,
Lecture Notes in Computer Science, Volume 51,
Springer-Verlag (1977)

Price: $20.00.

HISTORY

EISPACK is primarily based on Algol procedures developed in the 1960’s
by nineteen different authors and published in the journal Numerische Mathema-
tik. J. H. Wilkinson and C. Reinsch edited a collection of these procedures,
together with some background material, into a volume entitled Linear Algebra in
the Handbook for Automatic Computation series. This volume was not designed to
cover every possible method of solution. Algorithms were chosen on the basis of

their generality, elegance, accuracy, speed, or economy of storage.
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Prior to the actual publication of the Handbook, as the Wilkinson-Reinsch
collection has come to be known, Virginia Klema and others at Argonne National
Laboratory had begun translating many of the Algol procedures into Fortran.

In early 1970 a group of researchers from Argonne, the University of
Texas, and Stanford University proposed to the National Science Foundation
(NSF) a project to “‘explore the methodology, costs, and resources required to
produce, test, and disseminate high-quality mathematical software and to test,
certify, disseminate, and support packages of mathematical software in certain
problem areas.”” The project, funded by NSF in 1971, came to be known as the
NATS project. The initials originally stood for NSF, Argonne, Texas, and Stan-
ford, but later for the National Activity to Test Software.

The participants decided very early in the project not to produce a
comprehensive library of mathematical software but to concentrate on certain
fundamental areas. The two areas that were selected — matrix eigensystems and
functional approximation — were natural to the participating individuals and
organizations (see Chapters 1 and 3).

During 1971 at a University of Michigan Summer Conference, Wilkinson
presented material on the methods used to carry out the calculations involved in
the eigenvalue problem, and Cleve Moler discussed the actual implementation of
the algorithms into software. By this time the NATS project had developed For-
tran versions of selected Algol procedures from the Handbook. These Fortran
routines were sent to people who had an interest in this kind of software and had
agreed to test the programs.

There were about 20 test sites representing universities, industrial organi-
zations, and government laboratories and covering a wide range of computers
and operating systems. The test sites were responsible for compiling and testing
the EISPACK routines and making them available to site users. Reports on per-
formance were sent to Argonne, which served as the NATS project center.

By May 1972 the collection of Fortran routines was ready for public use.
Arrangements were made with the Argonne Code Center (now called the
National Energy Software Center) to distribute the collection. The package was
available in five versions: IBM 370-360, CDC 6600-7600, Univac 1108,
Honeywell 635, and PDP-10. The package was said to be certified in the sense
that information on testing was available and reports of poor or incorrect perfor-
mance on the machines and operating systems it was tested on ‘‘would gain
immediate attention from the developers.”
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In early 1974 the documentation for the first release of the software was
completed. This documentation describes the usage of the various routines and
gives detailed timing information on a wide variety of computers. In addition,
the user guide describes in detail the alternative paths a user can choose to gain
the most efficient solution for various problems.

Work had already started on extensions to the package in 1972. By 1976
the extensions had been tested and were ready for public distribution. The new
package, which consisted of 70 routines, offered the capability of handling the
generalized eigenvalue problem directly. An additional user guide was subse-
quently prepared and published to cover the new material in the second release
of EISPACK, and the previous guide was updated.

To simplify the solution of the standard and generalized eigenproblems,
the control program EISPAC was created. EISPAC is a program written in For-
tran and IBM OS 360/370 assembly language and developed to aid users on IBM
machines in solving their eigenvalue problems. The control program proved to
be valuable for users on IBM machines during the first release of the package.
But, because of the highly machine-dependent nature of the program and the
addition of driver subroutines to EISPACK, interest in the program has dimin-
ished.

Since EISPACK was first made available in 1972, over 1000 copies of the
collection have been distributed worldwide.

Recently (1983) some minor changes have been made to eliminate
machine-dependent constants, reduce the possibilities of overflow and underflow,
and incorporate the modifications of the Algol procedures recommended by
Hammarling er a/. [1981]. This new version, called Edition 3, is described at the
end of this chapter.

The cost of developing the package is hard to measure. There are many
facets of the project that cannot be assigned precise dollar values. The following
figures give very rough estimates of costs [Cowell and Fosdick, 1977]:

1110 AR

EISPACK Edition 1
Size: 34 routines with 6,000 source cards
Duration: 34 months

Total effort: 112 man-months
Cost: $528,000

EISPACK Edition 2
Size: 70 routines with 11,130 source cards
Duration: 41 months (16 months simultaneously with Edition 1)



72 EISPACK — A Package for Solving Matrix Eigenvalue Problems

Total effort: 92 man-months
Cost: $371,000

EISPACK Edition 3
Size: 78 routines with 11,769 source cards
Duration: 12 months

Total effort: 10 man-months
Cost: $100,000.

By these estimates, the total cost of EISPACK is about one million dollars.
ORGANIZATION

The organization of EISPACK can be described from several different
points of view. The simplest is that of a ‘“‘casual” user — someone encountering
EISPACK for the first time or someone wanting a quick and easy solution to a
matrix eigenvalue problem. Such a user can concentrate on the driver subrou-
tines.

There are 13 drivers, intended for matrices of different forms. Twelve of
the drivers provide two options: compute all eigenvalues, or compute all eigen-
values and eigenvectors. One of the drivers provides for all the eigenvalues and
some of the eigenvectors of a symmetric matrix. Seven of the drivers are for the
‘““standard’’ eigenvalue problem involving a single real matrix, 4, of various
forms:

Driver Problem Matrix 4

RG Ax =Ax general

RS Ax = Ax symmetric

RSM Ax = Ax  symmetric; all values, some vectors
RSB Ax = Ax symmetric band

RSP Ax = Ax  symmetric, packed*

RST Ax = Ax  symmetric tridiagonal

RT Ax = \x sign-symmetric tridiagonal’

Two of the drivers solve the standard eigenvalue problem for complex matrices:

* A packed array stores the lower triangle of an n X » real symmetric or complex Hermitian
matrix in a one-dimensional array with only n(n+1)/2 elements.

Ta sign-symmetric matrix is a real tridiagonal matrix whose offdiagonal elements have matching
signs; that is, for all i, sign(a; ;+1) = sign(a,4; ;).
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Driver Problem  Matrix 4

cG Ax = Ax general
CH Ax = Ax  Hermitian

Four of the drivers solve the ‘‘generalized”’ eigenvalue problem involving two
real matrices, 4 and B, without directly inverting either matrix:

Driver Problem Matrix 4 Matrix B

RGG Ax = ABx general general

RSG Ax = ABx symmetric positive definite
RSGAB ABx =\Ax symmetric positive definite
RSGBA BAx =Ax symmetric positive definite

The driver subroutines provide easy access to many of EISPACK’s capa-
bilities. The user who is satisfied with these capabilities, and whose problems do
not make heavy demands on computer time or storage, need not be concerned
with any further details of EISPACK organization.

The drivers are actually just ‘‘shell”” subroutines which call from one to
five other EISPACK subroutines to do the computations. Several of these other
subroutines are used by more than one driver. For example, TQLRAT — a sub-
routine that computes all the eigenvalues of a real, symmetric, tridiagonal matrix
— is used by several of the drivers. On the other hand, there are some subrou-
tines that are not used by any of the drivers. These routines provide alternative
methods for doing some of the computations, as well as specialized capabilities
not covered by the drivers.

In addition to the drivers, there are 58 subroutines in EISPACK. This
modular organization greatly reduces the amount of both source and object code
that must be handled. It also provides opportunities for using EISPACK facilities
in computations not envisioned during the original development. But it means
that the user who desires to access these facilities is faced with a formidable list
of subroutines. Since most of EISPACK consists of Fortran translations of the
Wilkinson-Rensch collection, the names of these subroutines are the ones chosen
by the original authors of the Algol procedures.

The efficient and accurate solution of a matrix eigenvalue problem usually
involves at least two of the following steps:
Initial scaling: An operation known as

“balancing’ that is applied to
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nonsymmetric matrices to reduce the roundoff errors in subsequent calcula-
tions.

Reduction: Similarity transformation to a matrix with zeros below the subdiago-
nal. The reduced matrix is known as a Hessenberg matrix. A Hessenberg
matrix that is also symmetric has zeros above the first superdiagonal and
thus is tridiagonal.

Eigenvalue iteration: Any of several iterative processes to compute the eigen-
values of the reduced matrix (which are the eigenvalues of the original

matrix).

Eigenvector calculation: Any of several different methods to find eigenvectors of
the reduced matrix.

Back transformation: Application of the inverse of the original reduction
transformation to the matrix of eigenvectors.

Back scaling: Application of the inverse of the balancing transformation to the

matrix of eigenvectors.

Table I summarizes the capabilities of the 58 EISPACK subroutines that
are not drivers. The table is not intended to be a complete description, just a
brief overview.
Table I

EISPACK Subroutines r

Subroutine  Matrix form Capability
BAKVEC sign-symmetric back transformation
BALANC real scaling

BALBAK real back scaling
BANDR symmetric band reduction

BANDV symmetric band some eigenvectors
BISECT symmetric tridiagonal  some eigenvalues
BQR symmetric band some eigenvalues
CBABK2 complex back scaling

CBAL complex scaling

CINVIT complex Hessenberg some eigenvectors
COMBAK complex back transformation

COMHES complex reduction



COMLR
COMLR2
COMQR
COMQR2
CORTB
CORTH
ELMBAK
ELMHES
ELTRAN
FIGI
FIGI2
HQR
HQR2
HTRIB3
HTRIBK
HTRID3
HTRIDI
IMTQL1
IMTQL2
IMTQLV
INVIT
MINFIT
ORTBAK
ORTHES
ORTRAN
QZHES
QZIT
QZVAL °
QZVEC
RATQR
REBAK
REBAKB
REDUC
REDUC2
SVD
TINVIT
TQLI
TQL2
TQLRAT
TRBAK]
TRBAK3
TRED1
TRED?2
TRED3
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complex Hessenberg
complex Hessenberg
complex Hessenberg
complex Hessenberg
complex

complex

real

real

real

sign-symmetric
sign-symmetric

real Hessenberg

real Hessenberg
Hermitian packed
Hermitian

Hermitian packed
Hermitian

symmetric tridiagonal
symmetric tridiagonal
symmetric tridiagonal
real Hessenberg

real

real

real

real

generalized
generalized
generalized
generalized

symmetric tridiagonal
symmetric generalized
symmetric generalized
symmetric generalized
symmetric generalized
real

symmetric tridiagonal
symmetric tridiagonal
symmetric tridiagonal
symmetric tridiagonal
symmetric

packed symmetric
symmetric

symmetric
packed symmetric

all eigenvalues

all eigenvalues and vectors
all eigenvalues

all eigenvalues and vectors
back transformation
reduction

back transformation
reduction

reduction

reduction

reduction

all eigenvalues

all eigenvalues and vectors
back transformation

back transformation
reduction

reduction

all eigenvalues

all eigenvalues and vectors
all eigenvalues

some eigenvectors
singular value decomposition
back transformation
reduction

reduction

reduction

reduction

all eigenvalues

all eigenvectors

some eigenvalues

back transformation

back transformation
reduction

reduction

singular value decomposition
some eigenvectors

all eigenvalues

all eigenvalues and vectors
all eigenvalues

back transformation

back transformation
reduction

reduction
reduction
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Any matrix can be triangularized by a unitary similarity transformation.

Most of the techniques employed in EISPACK are constructive realiza-
tions of variants of Schur’s theorem. It is usually not possible to compute
Schur’s transformation with a finite number of rational arithmetic operations.
Instead, the algorithms employ a potentially infinite sequence of similarity
transformations

A= S AS,

for which A,,; approaches an upper triangular matrix. The sequence is ter-
minated when all of the subdiagonal elements of a particular 4, are less than
the roundoff errors involved in the computation. These elements can then be set
to zero without introducing any more perturbations in the eigenvalues than have
already been caused by the previous transformations. The diagonal elements of
the resulting A, are then the desired approximations to the eigenvalues of the
original matrix. The corresponding eigenvectors can be readily computed if they
have been requested.

It is important for several reasons to have special algorithms that deal with
real symmetric matrices:

® Many of the eigenvalue problems encountered in practice involve sym-
metric matrices.

® The eigenvalues of a symmetric matrix are real.

® The eigenvectors of a symmetric matrix can be chosen to be orthogo-
nal.

® The eigenvalues of symmetric matrices are usually less sensitive to
perturbation.

® Algorithms designed specifically for symmetric matrices have better
convergence properties.

® Algorithms for symmetric matrices usually require less computer time
and storage.

The only similarity transformations that also preserve symmetry are those
based on orthogonal matrices. The following example outlines the basic steps
used in the algorithms employed by EISPACK’s driver subroutine RS, which
computes all the eigenvalues and optionally all the eigenvectors of a real sym-
metric matrix. The input matrix is
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Any matrix can be triangularized by a unitary similarity transformation.

Most of the techniques employed in EISPACK are constructive realiza-
tions of variants of Schur’s theorem. It is usually not possible to compute
Schur’s transformation with a finite number of rational arithmetic operations.
Instead, the algorithms employ a potentially infinite sequence of similarity
transformations

A1 =S4 S,

for which A,.,; approaches an upper triangular matrix. The sequence is ter-
minated when all of the subdiagonal elements of a particular A4, are less than
the roundoff errors involved in the computation. These elements can then be set
to zero without introducing any more perturbations in the eigenvalues than have
already been caused by the previous transformations. The diagonal elements of
the resulting A,., are then the desired approximations to the eigenvalues of the
original matrix. The corresponding eigenvectors can be readily computed if they
have been requested.

It is important for several reasons to have special algorithms that deal with
real symmetric matrices:

® Many of the eigenvalue problems encountered in practice involve sym-
metric matrices.

® The eigenvalues of a symmetric matrix are real.

® The eigenvectors of a symmetric matrix can be chosen to be orthogo-
nal.

® The eigenvalues of symmetric matrices are usually less sensitive to
perturbation.

® Algorithms designed specifically for symmetric matrices have better
convergence properties.

® Algorithms for symmetric matrices usually require less computer time
and storage.

The only similarity transformations that also preserve symmetry are those
based on orthogonal matrices. The following example outlines the basic steps
used in the algorithms employed by EISPACK’s driver subroutine RS, which
computes all the eigenvalues and optionally all the eigenvectors of a real sym-
metric matrix. The input matrix is
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The initial orthogonal similarity transformations are carried out by subrou-
tine TRED1 or TRED2. An n X n matrix requires n—2 transformations, each
of which introduces zeros into a particular row and column of the matrix, while
preserving symmetry and preserving the zeros introduced by previous transfor-
mations. In the case of our 5 X 5 example, the result of the first transformation
is a matrix that has three zeros in the last row and column. The next transfor-
mation introduces two more zeros in the fourth row and column. The final
transformation places one more zero in the third row and column:

0.6594 —0.1438 O 0 0
—0.1438 0.9687 0.5678 0 0
0 0.5678 5.3052 4.4192 0

0 0 4.4192 13.0667 —5.4772

0 0 0 —5.4772 5.0000

Since the result of the initial reduction is a symmetric tridiagonal matrix, it can
be stored in just two vectors: one with n components for the diagonal and one
with n—1 components for the offdiagonal. Subroutine TRED1 returns these two
vectors only. Subroutine TRED2 also returns the orthogonal matrix that
transforms the original matrix to this tridiagonal matrix.

EISPACK includes several routines for computing the eigenvalues of a
real, symmetric tridiagonal matrix. Many, but not all, of these routines are vari-
ants of the QR algorithm, originally published by J. G. F. Francis in 1961 and
perfected by Wilkinson, Reinsch, Dubrulle, and other authors of chapters in the
Handbook. The driver RS uses two variants of the QR algorithm: subroutine
TQLRAT if the eigenvectors are not requested and subroutine TQL2 if they are.
(For technical reasons associated with the scaling of so-called ‘‘graded’’ matrices,
the indexing within the algorithm is carried out in the opposite order from the
original Francis algorithm; and the resulting version is the QL, rather than the
OR, algorithm. The subroutine names thus reflect details that are of interest to
the numerical analysts who were the intended audience of the papers in Numer-
ische Mathematik, but that are not important to most users of EISPACK.)
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The symmetric, tridiagonal QR algorithm produces a sequence of similar
matrices whose offdiagonal elements are decreasing in magnitude and whose
diagonal elements are approaching the desired eigenvalues. With the QL variant,
the shift calculation is intended to reduce the first offdiagonal element most
rapidly. The first three iterates are

0.5667 0.0609 0 0 0
0.0609 0.7645 0.0989 0 0
0 0.0989 1.3832 0.7501 0
0 0 07501 7.0326 —4.4112
0 0 0 —4.4112 15.2530
0.5484 —0.0003 0 0 0
—0.0003 0.7655 0.0285 0 0
0 0.0285 1.2751 0.1085 0
0 0 0.1085 5.4084 —1.4364
0 0 0 —1.4364 17.0025
% 0.5484 0.0000 O 0 0
0.0000 0.7641 0.0085 0 0
0 0.0085 1.2737 0.0167 0
| 0 0 0.0167 5.2501 —0.4103
0 0 0 —0.4103 17.1637

Notice that all the offdiagonal elements have generally decreased with each itera-
tion and that the first offdiagonal element has decreased a great deal. Indeed, the
first offdiagonal element has now reached a size that is comparable to the
roundoff errors made during the calculation. Thus, setting it to zero can be
regarded as simply another roundoff error. The first diagonal element is now an
accurate approximation to one of the eigenvalues of the original matrix.

The next two iterations affect only the lower 4 X 4 submatrix:
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0.5484 0 0 0 0
0 0.7639 —0.0000 0 0
0 —0.0000 1.2738 0.0003 0
0 0 0.0003 52362 —0.0315
0 0 0 -0.0315 17.1777

The second offdiagonal element is now negligible, and the second diagonal ele-
ment approximates another eigenvalue. Three more iterations, which we do not
show, are needed to reduce the remaining offdiagonal elements to roundoff level.
The final diagonal matrix is

05484 0 0 0 0
0 07639 0 0 0
0

0 0 12738 0
0 0 0 5.2361 0
0 0 0 0 17.1778

In this example, a total of 11 similarity transformations were required, 3
for the initial reduction and 8 for the QR iterations. The later transformations
involved considerably less arithmetic than the earlier ones because they were
done on submatrices of decreasing order. Let S denote the product of all the
orthogonal similarity transformations that are required, and let D denote the final
diagonal matrix. Then

S'4S = D,
and hence
AS = SD.

This relation shows that the columns of S are the eigenvectors of 4. Moreover,
since S is the product of orthogonal matrices, it must also be orthogonal. Sub-
routines TRED2 and TQL2 accumulate eigenvectors S as a by-product of the ori-
ginal reduction and eigenvalue iteration. Since S is a full matrix, most of the
execution time is used in its calculation. If only the eigenvalues are desired,
then S need not be computed, and TRED1 and TQLRAT could be used instead.

Several of the papers and Algol procedures in the Handbook resulted from
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research that refined and perfected the QR algorithm. A paper by Reinsch, which
was published after the Handbook was completed, describes the fastest routine,
TQLRAT. Many of these procedures were taken over to EISPACK, so that
there are 10 different subroutines like TQLRAT and TQL2 which compute the
eigenvalues of a symmetric tridiagonal matrix. Eight of the ten are variants of
the QR algorithm; the other two employ bisection algorithms based on Sturm
sequences. Ten or fifteen years ago, it was not clear which of these alternative
approaches was preferable. Today, experience gained with EISPACK allows us to
make such decisions.

Nonsymmetric matrices involve somewhat different techniques, although
the general approach of an initial reduction followed by some QOR-type iteration
is still followed. Since there is no symmetry to be preserved, similarity transfor-
mations can be based on nonorthogonal matrices. Algorithms that employ elimi-
nation methods require less arithmetic and, hence, are potentially faster than
those that use orthogonal transformations. However, such algorithms may pro-
duce somewhat less accurate results and, in extreme examples, may be com-
pletely unstable because of element growth. Deciding between the two classes of
algorithms involves comparing execution speed with numerical reliability. When
designing a general-purpose library, such decisions are very difficult to make.

The following example illustrates the usual behavior of the ‘‘real, general”
driver RG. The input matrix is

N ~J 00 O Wn
~] C0 \O W »
oo O W» bW
O W AW
wn AW N -

Subroutine ELMHES uses nonorthogonal elimination methods to produce the
following Hessenberg matrix:

5.0000 8.8889 4.0174 4.6055 2.0000
9.0000 12.2222 6.2902 6.4082  3.0000
0 16.2963 11.7891 10.9525 7.0000
0 0 —2.5925 —2.6545 —1.9705
0 0 0 1.3901 —1.3569

In this case, there has been very little growth in the size of the elements during
the initial reduction, so there has been very little roundoff error magnification.
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RG now uses subroutine HQR2 to carry out an ‘‘implicit, double-step, Hessen-
berg’® QR iteration. The shift calculations are designed to reduce the size of the
last subdiagonal element. After two iterations we have:

24.8549 109746 3.7663 —13.3527 6.1188
—0.2000 3.5305 —1.7923 5.3528 —5.6901
0 0.0538 —1.2472 -1.7953 0.0899
0 0 0.9872 —0.5516 —2.6015
0 0 0 0.2848 —1.5867

Notice that the first two subdiagonal elements are actually decreasing more
rapidly than the last one, which is the target of the shift calculation. This is an
important property of the QR algorithm: It effectively ‘“‘works on’ all eigen-
values simultaneously. Five more iterations lead to

24.7514 —11.1821 —3.6155 12.9960 7.0641
0 3.6275 —1.3330 4.9235 6.0036
0 0 —1.2203 —1.8985 —0.4090 |.
0 0 1.2977 —0.6818 2.4406
0 0 0 0 —1.4768

Three of the eigenvalues are revealed in diagonal positions 1, 2, and 5. The
2 x 2 submatrix that includes diagonal positions 3 and 4 is the source of a pair of

complex conjugate eigenvalues
—0.9511 + 1.5463;.

The entire computation has proceeded using real arithmetic, even though the
final results are complex.

NUMERICAL PROPERTIES

The algorithms used by EISPACK that are based on orthogonal transfor-
mations are always numerically stable in the sense that they produce the exact
answer to an eigenvalue problem involving a matrix 4 + E, which is a small per-
turbation of the given matrix 4. The norm of the perturbation E is roughly the
size of roundoff error when compared to the norm of 4. The same can be said
for the algorithms based on nonorthogonal transformations if no exceptional
growth in the size of the matrix elements occurs during the computation.
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One immediate consequence of this numerical stability is that the com-
puted results will produce small residuals. If A and x are a computed eigenvalue
and eigenvector of a given matrix A4, then 4x will always be close to Ax. More
precisely, the size of the relative residual

|Ax — A x|
Al 1x]]

can always be expected to be roughly equal to the relative accuracy of floating
point arithmetic on the computer being used.

But what about accuracy? How close are the computed eigenvalues to the
exact eigenvalues? The answers to these questions depend more on the matrix
involved than on the particular EISPACK subroutine used to do the computa-
tion. To see why, assume that 4 has a complete, linearly independent set of
eigenvectors X, and let D denote the diagonal matrix of eigenvalues. Then

X '4X = D.

Suppose that 4 is perturbed somehow, either by errors in its initial formation or
by roundoff errors generated by EISPACK. Then

X' A4+ E)X=D+ X 'EX

The resulting perturbation to D is not diagonal, but this equation makes it plausi-
ble that the damage done by E to the eigenvalues in D could be as large as
[IX~'|| ||E|| ||X]], rather than merely || E||. The quantity

k(X)) = [1XI] 11X,

which is the condition number of X, occurs in the perturbation analysis for sys-
tems of simultaneous equations. Note that here with the eigenvalue problem, it
is the condition of X — the matrix of eigenvectors — and not the condition of A4
itself that is relevant. If the eigenvector matrix is nearly singular, then the
eigenvalues are potentially sensitive to perturbation.

If 4 is real and symmetric — or more generally, if 4 commutes with its
complex conjugate transpose — then X can be taken to be unitary and x(X)
(with respect to the 2-norm) is 1. In this case, a small change in the matrix
causes a correspondingly small change in the eigenvalues. In other words, the
eigenvalues of such matrices are always well-conditioned.

In the extreme case where 4 does not have a full set of eigenvectors, so
that its Jordan Canonical Form is not diagonal, then k (X) should be regarded as
infinite. The eigenvalues are infinitely sensitive to perturbation in the sense that
they are no longer analytic functions of that perturbation.

With EISPACK, the consequences of this perturbation theory are the fol-
lowing:
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For real symmetric matrices and for complex Hermitian matrices, the
eigenvalues are always computed with an accuracy that corresponds to a few units
of roundoff error in the largest eigenvalue of the matrix. The small eigenvalues
of such matrices will not necessarily be computed to high accuracy relative to
themselves, but they will be computed to full accuracy relative to the norm of
the matrix. For such matrices, the presence of multiple eigenvalues has little
effect on the accuracy of the computed results.

For general, nonsymmetric matrices, the effect of roundoff errors on the
computed eigenvalues will increase as the condition number of the eigenvector
matrix increases. If a nonsymmetric matrix has multiple eigenvalues or is close
to a matrix with multiple eigenvalues, and if its eigenvector matrix has a large
condition number, then the computed eigenvalues may be accurate to less than
full precision.

As an example, consider the following matrix:

—64 82 21
=| 144 —178 —46
—771 962 248

This matrix was constructed in such a way that its exact eigenvalues happen to be
1, 2, and 3 . When the eigenvalues are computed using EISPACK subroutines
on a computer with a 24-bit floating point fraction, the results are

1.00195
2.00113
2.99736 .

Such a computer has a relative floating point accuracy of better than 107, so the
computed eigenvalues have lost half the available figures.

The difficulties lie with the matrix itself, not with EISPACK. The matrix
of computed eigenvectors, renormalized so that the last component of each vec-
tor is one, is

0.090922 0.075114 0.111016
X =]-0.181810 —0.196554 —0.166741
1.000000 1.000000 1.000000

The condition number of X is greater than 10°. Thus a single roundoff error in
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A, which on this computer affects the sixth significant figure, could cause
changes in the third significant figure of the eigenvalues. EISPACK has com-
puted the eigenvalues as accurately as is possible using floating point arithmetic
of this precision.

As another measure of accuracy, let D be the matrix whose diagonal ele-
ments are the computed eigenvalues. Then

[AX = XDI| _ 13 » 106,

1411 1X1]

In other words, the relative residuals are on the order of roundoff error, even
though the eigenvalues are ‘‘accurate’” to only three figures. For further infor-
mation on the perturbation theory for the eigenvalue problem, see Stewart
[1973] and Wilkinson [1965].

EISPACK 3

In this section we describe the latest version of the package, EISPACK 3,
a limited set of modifications to the second edition of EISPACK. The
modifications eliminate the machine-dependent constants and reduce the proba-
bility of underflow/overflow difficulties. They also may improve the execution
time of ‘a few subroutines. However, they do not introduce any new capabilities,
nor do they change any calling sequences. The resulting collection is thus readily
portable from machine to machine and somewhat more robust and efficient, but
the two EISPACK guides continue to serve as the basic documentation.

Writing or revising code is the easy part of any software project. Proper
testing, certification, and distribution were key features of the original EISPACK
activity. We have used the same procedures in testing this version as in the past.

Until the current release, there has been no “‘official”” double precision
version of EISPACK. Several of the different machine versions are single preci-
sion. The IBM version uses the nonstandard declaration REAL*8 because we
regard this as the appropriate working precision for such machines and did not
want to call it ‘““double.”” We now give in to generally accepted usage and provide
two machine-independent versions, one for single precision and one for double
precision.

Three routines which use inverse iteration to find selected eigenvectors of
symmetric matrices — BANDYV, TINVIT and TSTURM — have been modified
in a way that may reduce the size of the groups involved in the reorthogonaliza-
tion process. This should make the routines significantly faster for matrices
where the original grouping criterion produced larger groups than necessary. The
size of these groups also affects the orthogonality of the computed eigenvectors,
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but we expect that the new versions should still produce acceptable orthogonality.
These inverse iteration routines were primarily intended to find just a few
selected eigenvectors. But, particularly with this new grouping calculation, in
many cases they also provide the fastest way to find all the eigenvectors.

A new driver for real symmetric matrices, RSM, has been added to the
collection. It provides easy access to the recommended routines in the inverse
iteration path. It has an additional integer parameter M which must be less than
or equal to the order N . It computes all the eigenvalues, and the M eigenvec-
tors associated with the M smallest eigenvalues, of a real symmetric matrix. It
should be considered for use even when M = N so that all the eigenvectors are
computed. It is difficult to summarize the tradeoffs between RSM and RS, the
other real symmetric driver which computes all the eigenvectors. RSM is usually
faster, and may be up to 40% faster on some matrices. The computed eigen-
values are usually of comparable accuracy. But the computed eigenvectors pro-
vided by RS may be somewhat more accurate in two senses: the residuals may be
smaller, and the departure from orthogonality may be smaller.

Fortran standards require storage of two-dimensional arrays by column.
Many modern computer systems employ cache or paged memories where access
to columns of a matrix is much more efficient than access to rows. Most Algol
implementations store two-dimensional arrays by rows. Accordingly, the inner
loops of TRED1 and TRED2 access rows of the matrix; and an inner loop in
TRED3 contains an IF statement resulting from its one-dimensional subscripting
of a symmetric two-dimensional array.

We have rewritten TRED1, TRED2, and TRED3 so that their inner loops
involve sequential access to memory. The improvement in efficiency of the new
versions of the TREDs will be very dependent on the order of the matrix and the
nature of the computer and operating system being used. For small matrices
with conventional architecture and memory management, there will be little
change. But for large matrices that require the use of virtual memory, the
improvement can be significant.

EISPACK is now over 10 years old. It was never designed as a uniform
““package’ as we now use that term today. The overall organization, the choice
of algorithms, the subroutine names, and the structure of the code itself are all
inherited from the Algol collection in the Handbook.

We believe that it is time for a major new edition of EISPACK. A com-
plete revision should have expanded capabilities, new user interfaces, and uni-
form naming conventions. Some algorithms should be altered to take account of
vector machine architectures and paging operating systems. The programs should
be written in Fortran 77 with an eye to future versions of Fortran. Such a project
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would require careful planning and extensive resources.
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