
Hash functions for datatype signatures in MPI

Julien Langou, George Bosilca, Graham Fagg, and Jack Dongarra

Dept. of Computer Science, The University of Tennessee, Knoxville, TN 37996

Abstract. Detecting misuse of datatypes in an application code is a
desirable feature for an MPI library. To support this goal we investigate
the class of hash functions based on checksums to encode the type signa-
tures of MPI datatype. The quality of these hash functions is assessed in
terms of hashing, timing and comparing to other functions published for
this particular problem (Gropp, 7th European PVM/MPI Users’ Group
Meeting, 2000) or for other applications (CRCs). In particular hash func-
tions based on Galois Field enables good hashing, computation of the
signature of unidatatype in O(1) and computation of the concatenation
of two datatypes in O(1) additionally.

1 Introduction

MPI datatypes are error prone. Detecting such errors in the user application
code is a desirable feature for an MPI library and can potentially provide an
interesting feedback to the user. Our goal is to detect when the type signature
from the sender and the receiver do not respect the MPI standard. The cost of
doing so should be negligible with respect to the cost of the communication.

The idea was previously mentioned by Gropp [3] and we merely agree with
his solution and specifications that we recall in Section 2. In Section 3, we give a
more general framework to his study that enables us to rederive his solution but
also create new solutions. In particular, our hash functions have the property
of being O(1) time to solution for computing the signature of an unidatatype.
We conclude with some experimental results that assess the quality of our hash
functions in term of hashing and timing. The codes to reproduce the experiments
are available online [7].

2 Specifications of the problem

The MPI standard [1,2] provides a full set of functions to manipulate datatypes.
Using the basic datatypes predefined by the standard, these functions allow
the programmer to describe most of the datatypes used in parallel applications
from regular distributions in memory (i.e. contiguous, vector, indexed) to more
complex patterns (i.e. structures and distributed arrays). The type signature of a
datatype is defined as the (unique) decomposition of a datatype in a succession
of basic datatypes. From the MPI standard point of view, a communication
is correct if and only if the type signature of the sender exactly matches the



beginning of the type signature of the receiver. For the remaining of this paper
we consider that the type signature of the sent datatype exactly matches the type
signature of the received datatype (in its whole). (The case of a type signature
of the datatype of the receiver longer than the one of the sender is dealt in the
last paragraph of the paper.)

In the framework developed by Gropp [3], a hash function is used to create a
signature for the type signature of the datatype of the sender, the receiver then
checks whether the signature of the sender matches the signature of the type
signature of its datatype. Note that some errors might still be unnoticed when
two type signatures have the same hash value.

At this point of the specification, any hash functions existing in the literature
would be adequate. However, the fact that MPI datatypes can be combined to-
gether implies that we would like to be able to efficiently determine the signature
of the concatenatenation of two datatypes. (Note that this is not only a desirable
feature but also mandatory since we want to check the datatype when the count
of the sender and the receiver mismatch.) The datatype signature function σ
shall be such that the signature of the concatenation of two datatypes can be
obtained from the signatures of the two datatypes, we therefore need an operator
� such that:

σ([α1, α2]) = σ(α1)� σ(α2).

If there exists such a � for σ, we call σ assossiative.
We call unidatatype a derived datatype made of just one datatype (derived

or not). This type or class of datatype is fairly frequent in user application codes
and we therefore also would like to be able to efficiently compute their signature.

3 Some associative hash functions

3.1 Properties of checksum-based hash functions

Considering a set of elements, E, and two binary operations in E, ⊕ (the ad-
dition, required to be associative) and ⊗ (the multiplication), the checksum of
X = (xi)i=1,...,n ∈ En is defined as

f(X) = f((xi)i=1,...,n) =
n⊕

i=1

(xi ⊗ αi), (1)

where αi are predefined constants in E.
Let us define the type signature of the datatype X, σ(X), as the tuple

σ(X) = (f(X), n). (2)

In this case, we can state the following theorem.



Theorem 1. Given (E,⊕,⊗) and an α ∈ E, defining the checksum function,
f , as in Equation (1), and the type signature σ as in Equation (2) and providing
that

⊕ and ⊗ are associative , (3)

the αi are chosen such that αi =
⊗

j=1,...,i

α = αi, (4)

for any x, y ∈ E, (x⊗ α)⊕ (y ⊗ α) = (x⊕ y)⊗ α, (5)

then the concatenation datatype operator, �, is defined as

σ(X)� σ(Y ) = ((f(X)⊗ αm)⊕ f(Y ), n + m), (6)

and satisfies
σ([X, Y ]) = σ(X)� σ(Y ). (7)

for any X ∈ En and Y ∈ Em.

Proof. The proof is as follows, let us define X = (xi)i=1,...,n, Y = (yi)i=1,...,m

and Z = [X, Y ] = (zi)i=1,...,n+m, then

f(Z) =
n+m⊕
i=1

(zi ⊗ αi) = (
n⊕

i=1

xi ⊗ αm+i)⊕ (
m⊕

i=1

yi ⊗ αi)

= (
n⊕

i=1

(
(xi ⊗ αi)⊗ αm

)
)⊕ (

m⊕
i=1

yi ⊗ αi)

= (

(
n⊕

i=1

(xi ⊗ αi)

)
⊗ αm)⊕ (

m⊕
i=1

yi ⊗ αi)

= (f(X)⊗ αm)⊕ f(Y )

The equality of the first line is the consequence of the associativity of ⊕ (3), the
second line is the consequence of the associativity of ⊗ (3) and the definition of
the αi (4), the third line is the consequence of the distributivity of ⊕ versus ⊗
(5).

In our context, E is included in the set of the integers ranging from 0 to
2w − 1 (i.e. E represents a subset of the integers that we can be encoded with
w bits). In the next three sections we give operators, ⊕ and ⊗ that verifies (3),
(4) and (5) over E.

Any binary operations over E, ⊕ and ⊗, such that (E,⊕,⊗) is a ring verifies
the necessary properties (3), (4) and (5), therefore our study will focus on rings
over E.

3.2 Checksum mmm-bs1

Given any integer a, (E,⊕,⊗) where E is the set of integer modulo a, ⊕ the
integer addition modulo a and ⊗ the integer multiplication modulo a defines a
ring. (Even a field iff a is prime.)



A natural choice for α and a is α = 2 and a = 2w − 1 which defines the
signature mmm-bs1.

The multiplication of integers in E by power of 2 modulo 2w−1 corresponds
to a circular leftshift over w bits, �c,w. This operation as well as the modulo
2w − 1 operation can both be efficiently implemented on a modern CPU.

Remark 1. Note that the type signature is encoded on w bits but only 2w − 1
values are taken.

Remark 2. The computation of the signature of a unidatatype, X, that is com-
posed of n identical datatypes x, costs as much as a single evaluation thanks to
the formula:

f(X) = f([x, .., x]) = (x⊗ 20)⊕ ...⊕ (x⊗ 2n−1) = x⊗ (2n 	 1) (8)

The evaluation of 2n in formula (6) is efficiently computed thanks to 1 �c,w n.

Remark 3. In [3], ⊕ is set to the integer addition modulo 2w and ⊗ is set to
the circular leftshift over w bits (that is the integer multiplication by power of 2
modulo 2w−1 for numbers between 0 to 2w−2 and the identity for 2w−1). This
mix of the moduli breaks the ring property of (E,⊕,⊗), (the distributivity rela-
tion (5) is not anymore true,) and consequently the Equation (6) is not true. We
definitely do not recommend this choice since it fails to meet the concatenation
requirement.

3.3 Checksum xor-bs1

Gropp [3] proposed to use the xor operation, ∧, for the addition and a circular
leftshift over w bits by one, �c,w, for the multiplication operation. E represents
here the integers modulo 2w. The condition of the Theorem 1 holds and thus
this represents a valid choice for (E,⊕,⊗).

Note that in this case, we can not evaluate in O(1) time the checksum of
unidatatype datatype. (See [3, §3.1], for a O(log(n)) solution.)

3.4 Checksum gfd

Another ring to consider on the integers modulo 2w is the Galois field GF(2w).
(A comprehensive introduction to Galois field can be found in [4].)

The addition in GF(2w) is xor. The multiplication in GF(2w) is performed
thanks to two tables corresponding to the logarithms, gflog, and the inverse
logarithms, gfilog in the Galois Field thus

a⊗ b = gfilog(gflog[a] + gflog[b]).

where + is the addition modulo 2w. This requires to store the two tables gflog
and gfilog of 2w words of length w bits.

Since (E,⊕,⊗) is a ring, the Theorem1 applies and thus the signature of the
concatenation of two datatypes can be computed thanks to formula (6). Note



that the value 2n in the formula (6) is directly accessed from the table of the
inverse logarithms since 2n = gfilog[n− 1] (see [4]).

Finally since we have a field, we can compute type signatures of unidatatype
in O(1) time via

x⊗ 20 ⊕ . . .⊕ x⊗ 2n = x⊗ (2n+1 	 1)� (2	 1) = x⊗ (2n+1 	 1)� (3). (9)

gfd needs to store two tables of 2w word each of length w therefore we do
not want w to be large. (A typical value would be w = 8.) In this case to encode
the derived datatype on 32 bits, we would use m = 4 checksums in GF(2w=8).

3.5 Cyclic redundancy check crc

Since we are considering hash functions, we also want to compare to at least one
class of hash functions that are known to be efficient in term of computation
time and quality. We choose to compare with the cyclic redundancy check.

Stating briefly if we want to have a w-bit CRC of the datatype X, we interpret
X as a binary polynomial and choose another binary polynomial C of degree
exactly equal to w (thus representing a number between 2w and 2w+1 − 1). The
CRC, R, is the polynomial X × xw modulo C, that is to say:

X.xw = Q.C + R.

For a more detailed explanations we refer to [5]. Various choices for C are given
in the literature, we consider in this paper some standard value, for more about
the choice of C, we referred to [6].

The concatenation operation is possible with CRC signatures. If X = (xi)i=1,...,n

and Y = (yi)i=1,...,m are two datatypes and we have computed their signatures
σ(X) = (RX , n) σ(Y ) = (RY ,m), then

σ([X, Y ]) = (RZ , n + m)

where RZ is RXxm + RY modulo Q.
Even though it is possible given the signatures of two datatypes to compute

the signature of the concatenation, the cost of this operation is proportional to
the size of the second data-type (in our case m). This is an important drawback
in comparison with the checksum where the cost of a concatenation is O(1).
Although, it is not possible to compute quickly the signatures of a datatype
composed of all the same datatype.

4 Experimental validation of the hash functions to
encode MPI datatype

4.1 Software available

Our software is available on the web [7]. We believe it is high quality in the sense
of efficiency, robustness and ease of use. It is provided with a comprehensive set of



testing routines, timing routines and hash function quality assessment routines.
The experimental results presented thereafter are based on this software and
thus are meant to be easily reproducible. We can also verify the correctness of
the theoretical results in part 3 through the software.

4.2 Quality of the hash functions

To evaluate the quality of a hash function we consider a sample of datatypes
and check how often collisions appear. (Note, that since the number of values
taken by the hash function is finite (encoded on 16 or 32 bits) and the number of
datatypes is infinite, collisions in the value of the hash functions are unavoidable.)
Considering the fact that we are interested in the quality of the hash function
when applied to MPI datatypes, it makes sense to have a sample that reflects
what an MPI library might encounter in an application code. In this respect, we
follow the experimental method of Gropp [3]. In our experiments, we consider
6994 datatypes that are made of wg = 13 different pre-defined datatypes. (We
refer to [7] for the exact description of the datatypes.)

The results of the hash functions are given in Table 4.2. Two quantities are
givens: the percentage of collisions and the percentage of duplicates. A collision is
when a type signature has its hash value already taken by another type signature
in the sample. A duplicate is a hash value that has strictly more than one type
signature that maps to it in the sample.

Since we are mapping 6994 words on 216 value, it is possible to give a perfect
hash function for our sample example. (That is to say a function where no
collision happens.) However this is not the goal. We recall the fact that if we
apply a random mapping to m out of n possible states. Then we expect that
this mapping will produce about

n/(n/m + (1/2) +O(m/n)) (10)

distinct results providing
√

n < m. Thus, a random mapping from m = 6994
to n = 216 shall give about 5.07% collisions. This number is representative of a
good hash functions.

We considered three different CRCs (namely 16-bit CRC/CCITT,XMODEM
and ARC) but only report the one of CRC/CCITT that is best suited to the
considered panel.

From Table 4.2, gfd performs fairly well, it is as good as 16-bit CRC-CCITT
or a random mapping (5.07%). To have a better hash function, one can simply
increase the number of bits on which the data is encoded. In Table 4.2, we also
give the percentage of collisions and duplications for 32-bit signatures, we obtain
a perfect hash function for gfd and CRC-04C11DB7. In conclusion, gfd has the
same quality of hashing as some well known CRCs on our sample and is much
better than xor-bs1 and mmm-bs1.

4.3 Timing results for the hash functions

We present timing results of optimized routine for crc and gfd. The code
is compiled with GNU C compiler with -O3 flag and run on two architec-



16 bit type signature 32 bit type signature

Collisions Duplicates Collisions Duplicates

16-bit CRC/CCITT 4.76 % 4.88 % CRC-04C11DB7 0.00 % 0.00 %
xor-bs1 (w=16,m= 1) 61.10 % 26.75 % xor-bs1 (w=16,m= 2) 37.32 % 15.76 %
mmm-bs1 (w=16,m= 1) 52.03 % 19.67 % mmm-bs1 (w=16,m= 2) 23.29 % 11.48 %
gfd (w=16,m= 1) 12.65 % 8.48 % gfd (w=16,m= 2) 0.00 % 0.00 %
xor-bs1 (w= 8,m= 2) 64.40 % 23.04 % xor-bs1 (w= 8,m= 4) 60.71 % 13.65 %
mmm-bs1 (w= 8,m= 2) 51.44 % 27.47 % mmm-bs1 (w= 8,m= 4) 30.08 % 14.91 %
gfd (w= 8,m= 2) 3.73 % 3.77 % gfd (w= 8,m= 4) 0.00 % 0.00 %

Table 1. Percentage of collisions and duplications for some 16-bit and 32-bit
hash functions. We have used the panel of 6994 type-signatures described in [7].

tures: torc5.cs.utk.edu a Pentium III 547 MHz and earth.cs.utk.edu an Intel
Xeon 2.3 GHz, both machines are running Linux OS. Results are presented
in Table 4.3. signature represent the time to encode a word of length nx,
concatsignature represents the time to encode the concatenation of two words
of size nx/2, unisignature represents the time to encode a word of length nx
with all the same datatype (basic or derived). Either for crc or for gfd, the com-
putation of a signature lasts O(n) time. The O(1) time for the concatsignature
and unisignature is an obvious advantage of gfd over crc.

Pentium III (547 MHz)

nx = 100 nx = 1000

gfd crc gfd crc

signature 17.80µs 11.68µs signature 176.88µs 114.87µs
concatsignature 0.30µs 5.95µs concatsignature 0.34µs 57.48µs
unisignature 0.36µs 11.68µs unisignature 0.37µs 114.87µs

nx = 100 Intel Xeon 2.392 GHz

nx = 100 nx = 1000

gfd crc gfd crc

signature 4.60µs 2.04µs signature 48.26µs 20.21µs
concatsignature 0.09µs 1.12µs concatsignature 0.10µs 10.07µs
unisignature 0.09µs 2.04µs unisignature 0.10µs 20.21µs

Table 2. Time in µs to compute the datatype signatures of different MPI
datatype type signatures. for gfd(w = 8,m = 2) and w = 16 for crc(w = 16).

Notes and Comments. The MPI standard requires the type signature (datatype,count)
of the sender to fit in the first elements of the type signature (datatype,count) of
the receiver. When the number of basic datatypes in the (datatype,count) of the
receiver is longer than the number of basic datatypes in the (datatype,count) of
the sender, the receiver needs to look inside the structure of its datatype to find



the point when the number of basic datatypes is the same as the one sent. The
MPI correctness of the communication can then be assessed by checking if the
signature of this part of the datatype matches the signature of the sender.

Special care has to be taken for the datatypes MPI PACKED and MPI BYTE
(see Gropp [3]).

More information theory could have been exploited, for example, gfd(w =
8,m = 2) guarantees that any swap between two basic datatypes is detected
as long as there is less than 253 basic datatypes in the two derived datatypes
considered.

References

1. Message Passing Interface Forum: MPI: A message-passing interface standard.
http://www.mpi-forum.org

2. Message Passing Interface Forum: MPI: A message-passing interface standard. In-
ternational Journal of Supercomputer Applications 8 (1994) 165–414

3. Gropp, W.D.: Runtime checking of datatype signatures in MPI. In Dongarra,
J., Kacsuk, P., Podhorszki, N., eds.: Recent Advances in Parallel Virtual Machine
and Message Passing Interface. Number 1908 in Springer Lecture Notes in Com-
puter Science (2000) 160–167. 7th European PVM/MPI Users’ Group Meeting,
http://www-unix.mcs.anl.gov/~gropp/bib/papers/2000/datatype.ps

4. Plank, J.S.: A tutorial on Reed-Solomon coding for fault-tolerance in
RAID-like systems. Software – Practice & Experience 27 (1997) 995–1012.
http://www.cs.utk.edu/~plank/plank/papers/CS-96-332.html

5. Knuth, D.E.: The Art of Computer Programming, 2nd Ed. (Addison-Wesley Series
in Computer Science and Information). Addison-Wesley Longman Publishing Co.,
Inc. (1978)

6. Koopman, P., Chakravarty, T.: Cyclic redundancy code (CRC) polynomial selec-
tion for embedded networks. IEEE Conference Proceeding (2004) 145–154. 2004
International Conference on Dependable Systems and Networks (DSN’04)

7. Langou, J., Bosilca, G., Fagg, G., Dongarra, J.: TGZ for hash functions of MPI
datatypes (2004)
http://www.cs.utk.edu/~langou/articles/LBFD:05/LBFD:05.html

http://www.mpi-forum.org
http://www-unix.mcs.anl.gov/~gropp/bib/papers/2000/datatype.ps
http://www.cs.utk.edu/~plank/plank/papers/CS-96-332.html
http://www.cs.utk.edu/~langou/articles/LBFD:05/LBFD:05.html

	Hash functions for datatype signatures in MPI
	 Julien Langou (University of Tennessee) George Bosilca (University of Tennessee), Graham Fagg (University of Tennessee), Jack Dongarra (University of Tennessee), 

