3.7.3 COMMUNICATION COMPLETION

The functions MPIWAIT and MPLTEST are used to complete a nonblocking
communication. The completion of a send operation indicates that the sender
s ow free to update the locatons in the send bulfer (the send ope ratiorn itself
leaves the content of the send buffer unchanged). It docs not indicare that the
message has been received, rather, it may have been buffered by the communica-
tion subsystem, However, if a synchronous mode send was used, the completion
of the send operadon indicates that a matching receive was initated, and that
the message will eventually be received by this matching receive.

The completion of a receive operation indicates thar the receive buffer eon-
tains the received message, the receiver is now free to access it, and that the
status object is set. It does not indicate that the matching send operation has
completed (but indicates, of course, that the send was initiated).

W shall use the following terminology. A null handle is 2 handle with value
MPLLREQUEST.NULL. A persistent request and the handle to it are inactive if the
request is not associated with any ongoing communication {see Section 3,9), A
handle is active il is neither null nor inactive,

MPIUWAITIFeguest, status)

IHOUT request regquest {hancdle)
OuUT slatus status ohject (Sams)

int MPI Wait(MFI_Request srequest, MPI Status sstatus)

MPI MATTCREQUEST, STATUS, IERROR)
INTEGER REQUEST, STATUS(HPI.STATU:Z.SIZE}, IERRDR

A call to MPIWAIT returns when the operation identified by request is com-
plete. If the communication object associated with this request was created by
a nonblocking send or receive call, then the object is deallocated by the call o
PAPIWAIT and the request handle is se o MPILREQUEST_NULL. MPISVAIT is &
non-local operation.

The call returns, in status, information on the completed operation. The
content of the status object for a receive operation can be accessed a5 described
in Bection 5.2.5. The status object for a send operation may be queried by a call
o MPILTEST .CANCELLED isce Scction 3.8).

One is allowed o call MPIWAIT with a null or inactive request argument.
In this case the operadon returns immediately. The status arpument s set 1o
return tag = MPILANY _TAG, source = MPILANY_SOLIRCE, and 15 also internally
configured so that calls to MPILLGET_COUNT and MPI.GET ELEMENTS return
count = 0,

Rationale, This makes MPIWAIT functionally equivalent to MPILWAITALL

with a list of length one and adds some elegance, Status is set in this way
50 a5 o prevent errors due e accesses of stale information.

Successful remrn of MPIWAIT after a MPLIBSEMD implies that the
user send buffer can be revsed—i.e., data has been sent out or copied into
a buffer attached with MPI_BUFFER_ATTACH. MNote that, at this point, we
can no longer cancel the send (see Section 5.8). IFa matching receive is
never posted, then the buffer cannot be freed. This runs somewhat counter
to the stated goal of MPILLCANCEL {always being able to free program space
that was committed 1o the communication subsystem), {Emd of raffonate)

Advige foimplermenitors, Inamuli-threaded environment. a call to MPIWAIT
should block only the calling thread, allowing the thread scheduler o
schedule another thread for excoution. (End of advice fo tmplementtors,)

MPI_TEZTirequest, flag, status)

IMEMTT regquest communication request {handle)
OUT f|ag Irue i‘l'nr_m'l:uri-e:-n 4'n|:|1p'|:=|4'-:l [!ngi-:::l]]
LT status st olect (Sranas)

int. MPI Test{MPl Haquest srequest, int +flag, MPT Status sstatus)

MPI_TESTCREQUEST, FLAG, STATIS, IERROR)
LDGICAL FLAG
IKTEGEE REDUEST, STATUS(MPISTATUS.SIZE), IERRDR

A call to MPITEST returns flag = true il the operation identified by request
is complete. In such a case, the status object is set to contain information on
the completed operation; if the communication object was created by a non-
blocking send or receive, then it 15 deallocated and the request handle is get 1o
PMFIREQUEST WULL, The call returns flag = false, otherwise. In this case, the
value of the statms object is undefined. MPITEST is a local operation,

The return stats ohject for a receive operation carries information that can
he accessed as described in Secton 3.2.5, The status olject for a send operation
carries information that can be accessed by a call to MPLLTEST_CANCELLED (sce
Section 3.8).

One s allowed 1o call MPLTEST with a null or inactive reguest argument.
[n such a case the operation returns flag = false,

The functions MPLWAIT and MPITEST can be used to complete both sends
and receives.

Adwice o weevs, The use of the nonblocking MPLTEST call allows the
uzer 1o schedule alternative activities within a single thread of execution.
An event-driven thread scheduler can be emulated with pericdic calls to
PPLTEST. (Fndd of advice o users.)

Example 5,10 Simple usape of nonblocking operations and MPLWAIT.

CALL MPI_COHH_MANE(comm, rank, ierr)

IF(rank.E].0) THEN
CALL HPI_ISENDCa(1}, 10, MPI_REEL, 1, tag, comm, request, ferr)
whdd do Soma computation To mask].E.E'EII.G}' b
GALL HPI_'ﬁ.ﬁITI:rI:;.]utst. status, igrr)

ELEE
CALL MPI_IRECN(a{l}, 15, MPI_REAL, O, tag, comm, raquest, 1err)
k= o Goma computation To @ask la.l:ﬁl‘.'lﬂ:f LA L]
CALL MPI_WAIT(regquest, status, ierc)

EKD IF

A request object can be deallocated without waiting for the assocated com-
munication o complete, by using the following operarion.

MPI_REQUEST FREE(request)

[NOUT reguest communication request (handle)

int MPI Requast fraa(HPI Fequest *reguest]

HPI_REQUEST FREE(REQUEST, IERKOR}
INTEGER REQUEST, IERROR

Mark the request object for deallocation and el request to MPI_REQUEST.
MULL. An ongoing communication that is associated with the request will he
allowed to complete. The request will be deallocated anly after is completion.

fotionale, The MPILREQUEST_FREE mechanism is provided for reasons
af pr_'rfmm:mc:r angl convenienoe on the ﬁer‘i-ﬂiug sile, [Fad q,l’m!a'-:r:zm'r.]

Advice to ueers. Onee a request is freed by a call o MPILREQUEST_FREE.
itis not possible o check for the successful completion of the associated
communication with calls 1o MPLWAIT ar MPLTEST. Also, if an ermor oc-
curs subsequently during the communication, an crror code cannot be
returned o the vser—such an error must be reated as faal, Questions
arise as 1o how one knows when the operations have completed when using
MPI_REQUEST_FREE. Depending on the program lagic, there may be other
ways in which the program knows that cerain operations have completed
and this makes usage of MPI_REQUEST_FREE practical. For example, an
active send request could be freed when the logic of the program is such
that the receiver sends a reply to the message sent—ihe arrival of the reply
informs the sender that the send has completed and the send baffer can
bz rensed. An active receive request should never he freed as the receiver
will have no way 1o verily that the receive has completed and the receive
buffer can be reused. (End of adwice to wsers.)

Example 3.11 An example vsing MPI.REQUEST_FREE.

CALL HPI_COMM_RARK{MPI_COMM_WORLD, ranlh
IF{rank,E}.0) THEK
00 i=1, o
CALL WPI_ISEMD owrval, 1, MFI_REAL, 1, 0, req, iezc)
ChlL HPI_REQUEST_FREE(req, iarrl
CALL HPI_TRECY (inwal, 1, MPI_REAL, 1, 0, req, isrch
CHLL HPI_WAITi{reg, status, ierr)
EKD L
ELSE | rapk.EJ.1
CALL MPI_TRECV(inwal, 1, MFI_REAL, O, 0, req, ierr}
CALL HPI_WAIT(req, status}
DO I=1, n-1
CALL MPI_ISEND{sutwval, 1, MPI_RE&L, 0O, &, rag, iarrl
CALL HP]’_F:EI}URE—'I'_:—'PJ—_:I;:['I;'ML, 1Err]
CALL MPI_IRECY{inwval, 1, MPI_REAL, 0, &, reg, iarr)
CALL MPI_MAIT{raq, status, ierr]
END DO
CHLL MPI_ISEHD(eutwal, 1, MPI_REAL, O, &, req, lerr)
CALL HPI_WAIT(req, status)
END IF

3.7.4 SEMANTICS OF NONBLOCKING COMMUMICATIONS

The semantics of nonblocking communication is defined by suitably extending
the definitions in Section 5.5.

Order Nonblocking communication operations are ordered according 1o the
execution order of the calls that initiate the communication. The non-over-
taking requirement of Section 3.5 is extended to nonblocking communication,
with this definition of order heing uscd.

Example 3.12 Message ordering for nonblocking operations.

CALL MFI_COMM_RANE(comm, rank, ierr)
IF (WANE.ED.O} THER
CARLL WMFI_ISEND{a, 1, MPI_REAL, 1, O, comm, ri, ierr)
CALL MPI_ISEND{b, 1, MPI_REAL, 1, 0, comm, T2, iarr)
ELSE ! rank.EQ.1
CALL MPI_IRECV{a, 1, MPI_REAL, O, HPI_ANY_TAG, comm, rl, ierr)
CALL MPI_IREGV{b, 1, MFI_REAL, 0, D, ¢opn, ¥Z, ierr)
END IF
CALL HPI_WAIT(rl,status)
THLL HPI_WAIT(rZ,etatus)

|

The lirst send of process zero will match the frst receive of process one, even if
both messages are sent before process one executes either receive.

Frogress A call to MPLLWAIT that completes a receive will eventually terminate
and return if @ matching send has een siared, unless the send is satisfied Ty
another receive. In particular, if the matching send is nonblocking, then the
receive should complete even il no call is executed by the sender o complate the
send, Similarly, a call to MPLWAIT that completes a send will eventually return
il & matching receive has been staried, unless the receive is satished by another
gend, and even if no call is executed w complete the receive.

Example 3.13 An illustration of progress semantics,

CALL MPI_COMM_RANK(comm, rank, iarr)

IF (RANX.EQ.D) THEMN
CALL WPI_SSENDCA, 1, MPI_REAL, I, O, comm, iarrd
CALL MPI_3ENDC(b, 1, WPI_REAL, 1, 1, <omm, ierr)

ELSE ! rank.Ej.1
CALL MPI_IRECY(a, 1, HPFI_REAL, O, @, c¢omm, r, ierr}
CALL MPI_RECY(b, 1, MPI_REAL, 0, 1, comm, ierr)
CHELL MWPI_WAIT(r, status, ierr)

END TF

Thiz coxle should not deadlock in a correct MPI implementation. The hrs
synchronous send of process zero must complete after process one posts the
matching (nonblocking) receive even if process ane has not yet reached the
completing wait call. Thus, process zero will continue and execute the second
send, allowing process one to compleie execition.

It an MPI_TEST that completes a receive is repeatedly called with the same
arguments, and a matching send has been started, then the call will eventu-
ally return flag = true, unless the send is satisficd by another receive. It an
MPILTEST that completes a send is repeatedly called with the same arguments,
and a matching receive has been sarted, then the call will evenmally retarn flag
= true, unless the receive 15 satizhed by another send,

3.7.5 MULTIPLE COMPLETIONS

It is convenicnt to be able to wait for the completon of any, some, or all the
operations in a list, rather than having o wait for a specific message. A call

to MPIUWAITANY or MPLLTESTANY can he used 1o wait for the completion of

one oul of several operations, A call w MP_WAITALL or MPLTESTALL can be
used to wait for all pending operations in a list. A call 1o MPIWAITS0OME or
MPITESTSOME can be used 1o complete all enabled operations in a lis,

= "'3'_."«.‘.5;?;’!-'3‘:?".'-

2l | I oy
e

MPIWAITANY {count, array_of_requests, index, status)

I count list length {inoeger)

INOUT array of requests array of recpeests (acray of handles]

LT index inelex of handle for eperticn that completed
[inwgl'r]

QurT status Al ahject (Sats)

int MPI Waitany(int count, MFI Requost +array of requasts, int *ipdex,
MPI Statuos *sbatugl

MPT_WAITAHY (COUNT, ARRAY_DF_REQUVESTS, IKDEX, STATUS, IEREORD
INTEGER COUKT, AREAY OF REQUESTS{+), IKDEX, STATUSCHFI STATUS SIZE],
IERRDOR

Blocks until ane of the operations associated with the active requests in the
arrav hias completed. If more then one operation is enabled and can terminate,
one is arbitrarily chosen. Retwrns in index the index of that request in the array
and returns in status the status of the completing communication, (The array is
indexed from zero in G, and from one in Fortran.) If the reguest was allocated by
a nonblocking communication operation, then itis deallocated and the request
handle is ser o MPLREQUEST MUILL,

The array_of requests list may contain null or inactive handles. [the list
contains no active handles (list has length zero or all entries are null or inactve),
then the call returns immediately with index = MPLUNDEFINED.

The execntion of MPLWAITANY{count, array_of_requasts, index, status) has
the same effect as the execution of MPLWAIT(array_of requestsli], status),
where i i the value returned by index. MPLWAITANY with an array containing
o active entry s equivalent o MPLWAIT,

MPI_TESTANY |count, array_of requests, index, flag, status)

I count lise length (integer)

I=OUT array._of requesis arvay of regquests (array of handles)

QuT index index of ppertion that completed, or MPLUN-
DEFIMED af none completed (integer)

ouT flag trug if one of the operatons s complene {logacal)

OUT status status ofqect (H1anas)

int MPI_Teatany{int count, MPI_Request *array.of requests, int =index,
int #flag, MPI Status wpEaLna)

MPI_TESTANY(COUNT, ARRAY_OF REQUESTS, INDEX, FLAG, STATUZ, IERROR)
LIGICAL FLAG
IKTEGER COUNT, ARRAY.OF REQUESTZ(=), IKDEX, STATUS(HPISTATUS SIZE},
IERROR

Tests tor completion of either one or none of the operalions associaled
with active handles, In the former case, it returns flag = true, retwrns in indes
the index of this request in the array, and remrns in status the stams of thar
operation; if the request was allocated by a nonblocking communication call
then the request iz deallocated and the handle is set i MPLEEQUEST MULL, {The
array 15 indexed from zero in C, and from one in Fortran.) In the latier case,
it returns flag = false, returns a value of MPLUNDEFINED in index andd status is
undefined, The array may contain null or inactive handles. If the array contains
o active handles then the call returns immediately with flag = false, index =
MPIUNDEFINED, and status andefined,

The execution of MPLTESTAMY [count, array_of_requests, index, status) has
the same elfect as the execution of MPILTESTiGarray_of requests|i], flag, status],
fori=0, 1,..., count-1, in some arbitrary order, until one call returns flag = true,
or all fail, In the former case, index 1z sel o the last value of §, and o the later
clse, it is set to MPLUNDEFINED. MPITESTANY with an array containing one
active entry i equivalent o MPITEST,

MPIWAITALLL count, array_of requests, array_of_statuses)

I Uit Lists length {(teger)
I[N array of reguests :|r.r:|:.'nF TeguUess [a rr:|_','4_'|F'Is.'m|:I'I(':-;]
ouT array_of_staluses awrray ol siatus oljects Garcay of Seams)

iot MPI_Waitall(int count, MFI Rm‘unst =array._of TRgUAsTE,
HPI_Statue #array of statuges)

HPI_WAITALL{COUNT, ARRAY_OF_REQUESTS. ARRAY_OF_STATUSES, IERROR)
INTEGERE COUNT, ARRAY.DF.BEQUESTH(=)
INTEGER ARRAY_OF_STATUSES(MPI_STATWS_SIZE,+). IERROR

Blocks untl all communication operations associated with active handles in
the list complete, and retivn the stats of all these operations (this includes the
case where no handle in the list is active}. Both arravs have the same number
of valid entries. The ith eniry in array_of_statuses is set 1o the retrn stans
of the ikth operation. Bequests that were created by nonblocking communi-
cation operations are deallocated and the corresponding handles in the array
are 2el [MPLREQUEST MULL, The Lzt may contam nall or inactive handles.
The call returns in the status of cach such entry tag = MPLLANY_TAG, source
= MPLANY SOURCE, and each stas entry 15 also configured =0 that calls 1o
MPLGET_COUNT and MPILGET_ELEMENTS retmurn count = 0.

The execution of MPIWAITALLicount, array_of_requests, array_of_statuses)
has the same effect as the execution of MPLWAIT Barray_of _request(i], Barray_of
statuses[i]), lori=0 ..., count-1, in some arbirary order, MPUWAITALL with an
array of length one is equivalent o MPIWAIT.

MPI_TESTALL{count, array_of requests, flag, array_of_statuses)

™ count lists length (integer)

[HOUT array_of reguests array ofF requests {array of handles)
T flag (logical)

OUT array_of statuses array nf status oljects (array of St

int MPI Testalll{int count, MPI Request #array of requests, iot +Ilag,
MPI_Status =array of statuses)

HPI_TESTALL(COUNT, ARRRY_OF _HEQUESTS, FLAG, ARRAY_OF_STATUSES, TERROR)
LOGICAL FLAG
IKNTEGER COUNT, ARRAY.OF REQUESTS(=),
ARRAY_OF STATUSES(HPI STATUS.SIZE,»), IERROR

Returns flag = true if all communications asseciated with active handles in
the array have completed {this includes the case where ne handle in the listis ac-
tive). 1n this case, each status entry that corresponds 1o an active handle request
is set 1o the stats of the corresponding communication; if the request was allo-
cated by anonblocking communication call then itz deallocated, and the handle
i set 1o MPLREQUEST NULL. Each status entry that corresponds to 2 null or inac-
tive handle is set 1o return tag = MPLANY TAG, source = MPILANY _SOURCE,
and is also configured so that calls w MPLGET_COUNT and MPLGET ELEMENTS
return count = 0,

Onherwise, flag = false is returned, no request is modified and the values of
the status entries are undelined. This s a local operaion.

MPLWAITSOME [incount, array_of requests, outcount, array_of_indices, array.
of statusas)

[M incount lemath af army of_ regquests {(ineger)

[NOUT array_of_reguests arraty of requests (array of handles)

OuT autcount number of completed regquests (integer]

ouT array ol indices armty of indices of operations thit completed
(array of integers)

QLT array_of statuses arnvy of stalus objects for operations that

cormpleied [wrmn ot alus)

int ¥PI Waitsone{int incount, HPL Roqueet sarray.of raquesis, int ssubsount,
int *array_of_indices, MFI Status *array ol statuses)

HPI_WAITSOMELINCOUKNT, ARRAY OF REQUESTS, OUTCOUKT, ARRAY.OF_INDICES,
KREAY OF_STATUSES, IERRDR)
INTEGER INCOUNT, ARRAY_OF REQUESTS(=), OUTCOUNT, ARRAY_OF_IKDICES(=),
ARRAY_OF STATUSES(MPI_STATUS.SIZE,+}, IERROR

Waits until at least one al the aperations asseciated with active bandles in the
list have completed, Returns in outcount the number of requests from the list
array_of_requests that have completed. Returns in the first outcount loecatons
of the army array_ofindices the indices of these operations (index within the
array array_of requests; the array is indexed from zero in C and from one in
Fortan). Returns in the first outcount locations of the array array_of status the
status for these completed operations. 10a request that completed was allocated
by & nonblocking communication call, then it is deallocated, and the associated
handle is set to MPLREQUEST MULL.

If the list containg no active handles, then the call returns immediately with
outcount = 0.

MPITESTSOME incount, array_of requests, outcount, array_of.indices, array
of statuses)

[incaunt lengrih of army.of regquests (integer)

IMNCIT array_of requests arvay ol requests (arsay of handles)

QuT outeéount mumber of completed requests (integer)

ouT array_of indices arvay of indices of operations that completed
l::|:r|.-..1:.'-::-l'i.|11-::gm1-.:|

ouT array of_statuses arvay of stas abjecis for aperatbons that

cormpdleted Gurry of Stais)

int HPI Testscme{int inceunt, HPI Eequest =array_of requests, int ssubcount,

int sarray of indices, MPI_Ztatus *array.of statuses)

MPI_TESTSOHE (IRCOUNT, ARRAY_DF _REQUESTS, DUTCOUNT, ARRAY OF IKDICES,
ARRRY OF_STATUSES, TERROE)
INTEGER INCOUKT, ARRAY.OF REQUESTS(+), DUTCOUNT, ARRAY OF. IKDICES(=),
ARRAY . DF _STATUSER(MPI STATUS SIZE,«)}, IERRDR

Behaves like MPLWAITSOME, except that it returns immediately. If no
aperation has completed it returns outeount = 0.

MFLTESTSOME is a local operation, which returns i|r|_|:|;u:-|_|_i_314_'|:|', whiereas
MPWAITSOME will block until a communication completes, if it was passed a
list that contains at least one active handle, Both calls fulfil a fairness require-
ment: IF a request for a receive repeatedly appears in a list of requesis passed
1 MPIWAITSOME or MPLTESTSOME, and a |'|'|:'|.I:-;_"|'|i|1g send has been PUE“I":"‘L
then the receive will eventually succeed, unless the send is satisfied by another
receive; and similarly for send requests,

Advice to users. The use of MPLLTESTSOME is likelv 1o be more efficient
than the wse of MPLTESTANY, The former retumns mformation on all
completed communications, with the latter, a new call is required for each
comminication that compleles,

A server with multiple clients can use MPLWAITSOME 50 as nal 1o
starve any chient. Clients send messages 1o the server with service requesis.
The server calls MPLWAITSOME with one receive request for each client,
and then handles all recetves that complered. 10 @ call 1o MPUWAITANY
is used instead, then one client could starve while requests from ancther
client always sneak in first. {(fnd of edvice to users,)

Advice o imflementors. MPLTESTSOME should complete as many pending
communications as possible. (Eed of advice (o imlemenios.)

Example 3,14 Clientserver code (starvation can ocour).

CALL MPI_COMM_SIZE(comm, size, ierr)
GELL MFI_COMM_RANE(comm, rank, derr)
IF (rank > 0} THEN | client cods
£} MHILE{.TEUE.}
CALL MPI_ISEMD(a, n, MPI_KEAL, 0, tag, comm, reguest, ierr)
CALL HF;_HﬁIT{:uquust. status, igrr)
END DD
ELSE I ranx=0 -=- garver caoda
DD i=1, siza-1
CALL MPFI_IRETW{a(i,i}, n, HPI_REEL, 0, tag,
come, request listl(i), Lere}
END DD
00 WHILE(.THUE.)
CALL HPI_WAITAHY (size=1, requoest_list, index, statue, iers)
CALL DO_ZERVICE(a{l,ipdex}} | handle ope message
CALL MPI_IRECN(a{l, icdex}, o, MPI_REAL, O, tag,
comm, request_listiindex), ferr)
END 0
END IF

Example 3.15 Same code. using MPLLWAITSOME,

CALL MPI_{DMM_SIZE(comm, siza, lerrd
CALL HPI_COMM_RANK(comm, renk, ierr)
IF{rank > Q) THEN I fliant coda
00 WHILEC.TRUE,)
ChLL HPI_IZEND(=2, n, MPI_REAL, 0, tag, comm, reguest, ierr)
CALL HPI_WAIT(reguest, status, ierc)
EKD D0
ELSE | rani=0 -- saerver code

OO i=1, egize=1

CALL MEI_IRECV(all,i}, n, HPI_REAL, ©, tag,
comm, request_lisc(i), ierr)
END DD
D0 WHILEY{.TERUE.}
CALL MPI_WAITEOME(sime, request_list, nuoodone,
iedex_list, status_list, ierr)
b0 i=1, ouexmdona
CALL DO_SEAVICE(a{l, imdex_listi(il}}]
CALL HPI_IRECY(a{l, ipdex_list(i}}, n, WPI_RELL, O, tag,
comm, request listlil}, ierr)
ERD L0
END DD
EKL IF

3.2 Probe and Cancel

The MPILPROBE and MPLIPROEE operations allow incoming messages 1o be
checked for, without actually receiving them. The user can then decide how o
receive them, based on the information returned by the probe (basically, the
information returned by status). In particular. the user may allocate memory
for the receive buller, according o the length of the probed message.

The MPILCANCEL operation allows pending communications to by canceled,
This is required [or cleanup. Posting a send or & receive lies up Wser resoiroes
(zend or receive butfers). and a cancel may be needed to free these resources
gracelilly.

MPILIFROBEscurce, tag, camm, flag, stalus)

™ SOUNe source rank, or MPLANY _S0URCE (ineger)
In tag it valoe ar MPLANY TAG (nweger)

M SO communicaror (handle)

QT flag (logical)

OUT status starus object [hrans)

int HPI.:p:n'bu{:i.nt- gource, int tag, MPI_Comm coom, int =flag,
HPI_Status ®statuzl

MPI_IPROBE(SMACE, TaG, COHMM, FLAG, STATIUS, IERROR)
LOGICAL FLAG
INTEGER SDUVRCE, TAG, COMM, STATUS(MFILSTATUS SIZE), IERRIR

MPIIPROBE(source, tag, comm, flag, status) returns flag = true if there is
a message that can be received and that matches the pattern specified by the
arguments source, 1ag, and comm, The call maches the same message that
would have been received by a call to MPILRECV(. . ., source, tag, comm, status)
executed an the zame point in the progeam, and retorns in staius the same value

that would have been returned by MPILRECV{). Otherwise, the call returns flag
= false, and leaves status undefined

[f MPIIFROBE retumns flag = true, then the content of the stams object can
be subsequently accessed as described in Section 3.2.5 1o find the source, tag
and length of the probed message.

A subsequent receive execuled with the same context, and the source and
tag retwrned in status by MPILIFROBE will receive the message that was matched
by the probe, if no other intervening receive ocours afier the probe, IF the
receiving process is multi-threaded, it is the user’s responsibility to ensure that
the last condition haolds,

The source argument of MPI_FROBE can be MPLANY_SOURCE. and the tag
argument can e MPLANY TAG, 20 that one can probe o messages [rom an ar-
hitrary source and /or with an arbitrary tag. However, a specific communication
contexl must be provided with the comm argument,

It is not necessary to receive a message immediately after it has been probed
for, and the same message may be probed for several times before it is received.

MPI_PROBE(scurce, tag, comm, status)

[SOUrCE source rank, or MPLANY SOURCE (integer)
[tang tag value, or RMPLANY _TAG (integer)

[Comim cennamenicitkor {fandle)

OuT status status abject {Srams)

int MPFI.Prebaiint source, int tag, MPI Coor comm, MPI_3tatus wntatus)

HPI_PEOBE(R0URCE, TAG, COMM, STATUS, IERRORY
INTEGER SO0URCE, Tad, COMM, STATUS{MPI_STATUS_SIZE), IERROR

MPI_PROBE hehaves like MPLIPROBE except that it is a blocking call that
returns only after a matching message has been found,

The MPlimplementation of MPILPROBE and MPIIFROBE needs to guaran-
tee progress: if a call 1o MPILPROEBE has been issued by a process, and & send
that matches the probe has becn initiated by some process, then the call to
MPI_PROBE will return, unless the message is received by another concurrent
receive operation (that is cxecuted by another thread at the probing process).
Simmalarly, if a process busy wails with MPLIFROBE and a matching message has
been issued, then the call to MPLIPROBE will eventually return flag = true unless
the messape is received by another concurrent receive operation.

Example 316 Use Dlocking probe too wail for an incoming message.

CALL MPI COMY ReNK(comm, rank, ierx)
IF {rank.EQ.0) THEH
CALL MPI_SEND(i, 1, WPI_INTEGER, 2, O, coam, isrrc)

ELSE IF{rank.EQ.1) THEK
CALL MPI_SEMD(x, 1, MPI_REAL, 2, 0, comm, ierr)
ELSE ! rapk.EQ.2
Do oi=1, 2
CALL HPI_PROBE(MPI_ANY_SDURCE, O,
COME, Status, ierr)
IF {status{MPI_SOURCE) = 0} THEHW

a0 CALL MPI_RECW(i, 1, MPI_INTEGER, 0, O, statue, ferr)
ELZE
200 CALL MFI_RECY(x, 1, MPI_REAL, 1, 0, status, ierr)
END IF
END Ty
END IF

Each message is received with the right type.

Example 3.17 A similar program to the previous example, but now it has a
prablem.

CALL MPI_COMM_RANK{comm, renk, ierr}
IF {rank.E0.(d) THEK
CALL MPI_SERD{i, 1, HPI_INTEGER, 2, 0, comn, iecrr)
ELSE IF(rank.EQ.i) THEN
CALL MFI_SERD(x, 1, HPI_RERL, %, O, comm, iarr)
ELSE
D0 i=1, 2
CALL MrI_PEOBE(MPI_AKY_20URCE, <,
CORE, Status, ierT)
IF (status(MPI_S0UECE} = 0) THENW
100 CALL HPI_RECVCE, 1, MPI_IKTEGER, MPI_AHY_SOURCE,
0, status, ierr)

ELSE
200 CALL HPI_RECV(z, 1, MPI_REAL, HPI_ANWY_SOURCE,
0, status, isrr)
END IF
EKT L0

END IF

We slightly modified example 3,16, using MPLANY_SOURCE as the SOUrce -
gument in the two receive calls in statements labeled 100 and 200, The program
5 now incorrect; the receive operation may receive a message that is distinet
from the message probed by the preceding call w MPI_PROBE.

Advice to tmplementors. A call 1o MPLPROBE(sourcs, tag, camm, status) will
match the message that would have been received by a call .o MPLRECV(. . .,
source, tag, comm, status) executed ar the same point. Suppose that this

T P

sfﬁiﬁﬁﬂﬂﬁﬂﬁxb AL

. L
e

message has source 5, tag tand communicator ¢ If the ag argument in
the probe call has valiie MPLANY TAG then the message probed will be the
earliest pending message from source s with communicator ¢ and any tag;
in any case, the message probed will be the earliest pending message from
source § with tag tand communicator ¢ (this is the message that would have
been received, sooas o preserve message order). Thizs message continues as
the earliest pending message from source $ with tag tand communicator ¢,
until it is received. A receive operation subsequent (0 the probe that uses
the same communicator as the prabe and uses the g and source values
returned by the probe, must receive this message, unless it has already been
received by anather receive operation. (End of adwece fo implementors,)

MPICAMCEL|request)

1M request COMMIMIRiCALiGn el [hamdie)

int HPI Cancel (NPl _Request srequest)

i

CANCEL (REQUEST, IERAORD
INTEGER REDUEZT, IERRIR

Accall te MPILUCANCEL marks for cancellation a pending, nonblocking com-
munication aperation (zend or receive)., The cancel call s local, It returns
immediately. possibly before the communication is actually canceled. It is still
necessary 1o complete a communication that has been marked for cancellaion,
using a call o MPI_LREQUEST_FREE, MPLWAIT or MPLTEST {or any of the de-
rived operations),

If 2 communication is marked for cancellation, then a MPIWAIT call for char
communication is puaranteed 1w retuen, ircespective of the acuvites of other
processes (Le, MPLWAIT behaves as a local funcdon); similarly if MPLLTEST
is repeatedly called in a busy wait loop lor a canceled communication, then
MPI_TEST will eventually be successful.

MPILCAMCEL can be used 1o cancel a communication that uses a persistent
request (see Section 3.9), in the same way it is used for nonpersistent requests.
Asuccessiul cancellation cancels the active commumication, bul not the reguest
iself, After the call o MPILCANCEL and the subsequent call to MPILWAIT or
MPI_TEST, the request hecomes inactive and can be activated for a new commu-
nication,

The successiul cancellaton of & bulfered send [rees the buller space occu-
pied by the pending messapge,

Either the cancellation succeeds, or the communication sucoeeds, bur nol
both, If a send is marked for cancellation, then it must be the case that either
the send compleies normally, in which case the message sent was received an the
destination process, or that the send is successfully canceled, in which case no
part of the message was received an the destination. Then, any matching receive
has 1o be sasfied by another send, Ifa receive is marked for cancellation, then

it must be the case that either the receive completes normally, or that the receive
is successfully canceled, in which case no part of the receive buffer iz altered.
Then, any matching send has 1o be satisfied by another receive,

If the operation has been canceled, then information to that effect will be
returned in the stats argument of the operation that completes the communi-
CALIOTL.

MPI TEST CANCELLED{status, flag)

™ status stanus clyject (Hains)
T flag (logical)

int MFI Test cancelled(MPI Status *statuz, int +flagh

MPI_TEET-CARCELLEDCETATIUS, FLAG, IERROR)
LOGICAL FLAG
IKTEGER STATUSCHPI STATUS_SIZE), IERROR

Returns flag = true if the communication associated with the status ohjeet
was canceled successfully, Insuch a case, all other Belds aof status (such as count
ortag) are undefined. Rewrns flag = false, otherwise, I a receive Dperation
might be canceled then one should call MPLTEST CANCELLED first, 1o check
whether the operation was canceled, helfore chec king on the other fields of the
Tl SELLE,

Advice to users. Cancel can be an expensive aperation that should be used
only exceptionally. (End of advice ta wers,)

Adviee bo implementors. I send operation uses an "eager” protocal {data is
transferred (o the receiver belore a matching receive is paosted), then the
cancellation of this send may require communication with the intended re-
ceiver in order e free allocared buffers. On some systems Lthis may require
an interrupt to the intended receiver. Note that, while communication may
be needed to implement MPLCANCEL, this is stll a lacal opPeration, since
its completion does not depend on the code executed by other processes.
If processing s required on another process, this should he Lransparent
e the application (hence the need for an mterrupt and an interrupt han-
dler), (Fnd af aduice fo frfaleetors,)

3.9 Perszistent Communication Requests

Olien a communication with the same argument list is repeatedly executed
within the inner loop of a parallel computation, In such a situation, it Ay he
possible w optimize the communication by binding the list of communication
Arguments (o a persistent communication request once and, then, repeatedly
using the request to initate and complete messages. The persistent request thus
ereated can be thought of as a communication port or a *halfchannel.” 1t does

| ST

nat provide the full funcionality of a conventional channel, since there s no
binding of the send port to the receive port, This construct allows reduction
of the overhead for communication between the process and communication
comtroller, but not of the overbead for communication between one comm-
mication controller and another, It is not necessary that messages sent with a
persistent request he received by a receive aperation using a persistent request,
ar Vice Yersd.

A persisient communication request is created using one of the four follow-
ing calls. These calls invelve no communication.

MPI_SEND IMIT(buf, count, datatype, dest, tag, comm, request]

I buf initizl ackdress of send buffer {choice)
| Count nurnher of clemenis sent (inleger)
I clatatype oype of each element (handle)

N dest vank of destinaton (integer)

I 1ag messAEe by (inleger)

[GO conmmumnicator (handle)

OUT request communication request Chandle)

int ¥PI Send init(void+ buf, int count, MFI_Datatype datatype, iot dest,
int tag, WPI.Coam comm, MPI Recusst sreguast)

HPI.SEND_INIT(EUF, COUKT, DATATYFE, DEST, TAG, C2{, REOVEST, IERROR)
“typer BUF(=)
INTEGER REGUEST, COUNT, DATATYPE, DEST, TAG, COMH, REGUEST, 1ERROR

Creates a persistent communication request for a standard mode send op-
eration, and binds o it all the arguments of a send operation.

MPI_BSEND_IMIT{uf, count, datatype, dest, tag, comm, request)

1Y buf irmatial addres of send buffer (chaice)
™ count number of clements sent (inleger)
I datatype typee of each element (handle)

™ dast rank of destination (integer)

I 1@y mesEAg e L (inneEer)

™ COMmIm cormmunicatnT {hnclle]

OUT recuest communication request (handle)

int MPI Bsend init(void+ buf, int count, HPI Datatype datatype, int dest,
int tag, MPI.Comm comn, MPI Reguest =reguast)

MPI_BSEKD_INIT{BUF, COUNT, DATATYRE, DEST, TAG, COMM, REQUEST, IERROR)
Lhypa BIF{=*)
INTEGER REQUEST, GMNT, DATATYPE, DEST, TAG, COHH, REJUEST, TERROR

Creates a persistent communication request for a buffered mode send,

MPILESSEMD INITIbuL, count, datatype, dest, tag, comm, request)

[}
[
it
[
L
[
ouT

bl
count
datatype
dest

tag
cormim
reduest

itz adedress of send bufler (choace)
number of clements sent {inmeger]
By ot @nch element (luomdle)

rank ol destination {integer)

mesnge Ly {intejer]

commumnicator handle)
communication request (landle)

int MPI Ssand_init(veid+ buf, int count, WPI.Datatype datatypa, int dast,

int tag, MPFI_Comr comm, MPI_Rlequast *r\eq_uuut-}

HFI_SSEND_INIT{BUF, ©DUNT, DATATYFE, DEST, TAG, COHM, REQUEST, IEREDR}
<typar BUF(=)
INTEZER COUNT, DATATYFE, DEST, ThG, COMM, REOUEST, IERMOA

Creates a persistent communication object for a smchronous mode send

OPeTALIG.

MPI_RSEMD_IMIT{buf, count, datatype, dest, tag, comm, raquast)

™
I
™
I
]
I
o

buf

count

datatype
dast

tag
COMIm
request

initial addrese of send buffer (chokee)
number of elemaenis sent |fi:||.|4'g|::r:|
type ol cach element (handle)

mnk of destinetion |fi:||.||'g-:'r]
MCSsAEe tag (integer)

conmmnicator [hamdle)

communication request {handle)

int MPI_Beend init{void* buf, imt count, MPI_Datatype datatype, int dest,

int Tag, MPIComm comm, HPI Request sragquest)

MPI_RSEND_INIT(EUF, COUNT, DATATYFE, DEST, TAG, COMM, REQUEST, IERROR)
ceypar BUF(#)
INTEGER COUNT, DATATYRE, DEST, TAG, OOMM, REQUEST, IERROR

Creates a persistent communication object for a ready mode send operation,

MPIRECY _INITibuf, count, datatype, source, tag, comm, reqguest)

ouT
I
I
I

buf
count

datatype

s0Urce

izl address of recelve buffer (cliolee)
numher of elements received (in H_'gq:r:l

wvpe of cach clement (handle)

rank of source or MPLANY SOURCE -;i1:||:r'gvur]

[Lag message g or MPLANY TAG (intepger]
I COmm romrmunteatar | handle)
QOuT request communication request Chandle]

int MFI Recv.init{woid*® btumf, int count, MPI Datatype datatype, int s¢urea,
int cag, HPFI_Comm ¢opm, MFI_KEesuast "Tﬂf!_'llﬂﬂt.:'

MPI_RECW_INITCEUF, COUKT, DATATYERE, SOURCE, TAG, COMM, REQUEST, IEREOR)
<tymar BUF{+)
INTEGER CUUNT, DATATYFE, S0URCE, Tad, COMM, REQUEST, IERROR

Creates a persistent communication request for a receive operation. The
argument buf is marked as OUT because the user gives permission 1o write on
the receive buffer by passing the argument o MPILRECY_INIT.

A persistent communication request is inactive after itwas created—no active
communication is attached o the request.

A communication {send or receive) that uses a persistent request is initiared
by the funcuon MPLSTART,

MPLSTARTrequest)

IHOUT rEguest communication requast {handles)

int HPI.Start{¥PI Request *r\cq_ucst}

AFI_STARTCREQUEST, IERROR)
INTEGER REOUEZT, IERRUR

The argument, request, is 2 handle returmed by ane of the previous five calls.
The associated request should be inactive. The request becomes active once the
call is made,

[f the request is for a send with ready mode, then a matching receive should
be posted before the call is made, The communication buffer should not be
accessed afier the call, and until the operation completes.

The call 15 local, wath simalar semantics 1o the nonblocking communicalion
operations described in Secton 5.5, That is, a call w MPLETART with a request
created by MPILSEMD_INIT staris a communication in the same manner as a call
to MPILISEND; a call to MPILSTART with a request created by MPLBSENDUINIT
starts i conmunication in the same manner as & call 1o MPLIBSEMND: and so on.

MPLETARTALLIcount, array_of_reguests)

1M count lis lengeh {ineger]
IMNOUT array _of requests arvay o recpuests (accay of handle)

int MPI_Startall{int count, HPL_Ragqueat ‘--EIIIB.;’-I:II-T'EI'-IURE-CE}

HPI_STARTALL(COUKT, ARRAY_OF REQUESTS, IERRIR)
[NTEGER COUNT, ARRKY OF REQUESTS(+}, IERRDOR

Start all communications associated with requests in array_of_requests, A
call o MPILSTARTALLIcount, array_of requests) has the same effect as calls o
MPI_START (&array_of requesis|i]}. executed fori=0 ..., count-1, in same arkbi-
trary order.

A communication started with a call w MPLSTART or MPISTARTALL is
completed by a call o MPLWAIT, MPLTEST, or one of the derived functions
described in Section 3.7.5. The request becomes inactive after successful com-
pletion of such call. The request is not deallocated and it can b sctivated anew
b an MPLETART or MPLLSTARTALL call,

A persistent request is deallocated by a call o MPI.REQUEST_FREE (Sec-
o 7).

The call 1o MPI.REQLUEST FREE can occur at any point in the program after
the persisent request was created. However, the reguest will be deallocated only
after it becomes inactive, Active receive requests should not be freed, Otherwise,
it will not be possible to check that the receive has completed. 1eis preferable,
in peneral, 1o free requests when they are inactive. [f this rule is followed, then
the functions described in this section will be invoked in a sequence of the form,
Create (Start Complete)” Free , where # indicates zero or more repetiions, 10
the same communication object is used in several concurrent threads, it is the
wser's responsibility 1o coordinate calls so that the correct sequence is obeyed,

Asend operation initiated with MPILSTART can be matched with any receive
operation and, likewise, a receive operation initiated with MPLSTART can receive
messages generated by any send operation,

3.10 Send-receive

The send-receive operations combine in one call the sending of a message o one
degtination and the receiving of another message, from another process, The
twor (source and destination) are possibly the same. A send-receive operation is
very uselul for execuring a shift operation across a chain of processes, [Fhlocking
sends and receives are used for such a shift, then one needs 1o order the sends
and receives correctly (for example, even processes send, then receive, odd
processes receive Az, then send) so as 1o prevent cyclic dependencies that may
lead 1o deadlock. When a send-receive operaton is used, the communication
subsystem takes care of these issues. The send-receive operation can be used
in conjunction with the functions described in Chapter & in order 1o perform
shifts on various logical wopologies. Also, a send-receive operation is useful for
implementing remote procedure calls.

A messape sent by 2 send-receive operation can be received by a regular
receive operation or probed by a probe operation; a send-receive operation can
recewve a message sent by a regular send operation.

R —
A L e I T
1 B

e
2
" =

_1??32"'!"7‘!7’5"'"\"__:",-5_"' e

gz s

MPI_SEMDRECV[sendbuf, sendoount, sendiype, dest, sendtag, recvbuf, recw-
caunt, recviype, Source, recylag, comm, status)

1 sendbuf
I sandeount
™ sendtype
I dest

[} sendtag
OUT recybuf
1) recyoount
™ recyiype
(I RDUrce

M recvitag
(Y camm
ouT status

imitin] mdelress of send baller (chaice)
number of elements in send buffer (integer]
tvpe of elements insend bullfer (handle)
rank ol destination {interer)

seracl L fimbeger)

initial address of receive buffer (chaoice)
mmber of elements in reccive buller {integer]
pe of elemenis in receive buifer [handle)
rank ol source finweger)

receive (BT [inle:gl*r;l

communicatar {handle)

SRAT1LS nhj{'rl {Siatus)

int MPI fBendracv(void =sendbuf, int sendcount, HPLI Datatype sandiyps,
int deat, int sendiag, void *recvbuf, int recvcount,

HPI Datatyps recyiyps, int ssurca, MFI_Datatype racviag,

HPI _Corm comm, MPI Status *status)

MPI_SERDRECY (SENDEUF, SENDOJUNT, SENDTYPE, DEST, SENDTAG, RECVELF,
RECVOIUNT, RECVTYPE, S0URCE, RECVTAG, COMM, STATUS, IERROR)

Styper SERDEUF (), RECVEUF{+]

INTEGER SENDCOUNT, SENWDTYFE, DEST, 3ENDTAG, RECVCOUNT, RECWTYPE, S0URCE,
RECVTAG, COMM, STATUSCHPISTATUS. SIZE}, IERROR

Execute a blocking send and receive operation. Both send and receive use
the same communicator, b possibly ditferent tags. The send buffer and receive
buffers must be digjoint, and may have different lengths and datatypes.

MPI_SEMDRECY _REFLACE(buf, count, datatype, dest, sendtay, source, recviag,

comm, status)

(MNOUT buf

I count

™ datatypsa
I~ dest

[~ sendiag
™ SOUrce
[recvtag
™ Comim
OuT StaEtLS

initial address of send and receive baller (choice)
nuamber of elements tn send and receive buffer
[inmg{'r]

rype of elements in send and receive buffer (han-
dll)

vank of destination {integer)

sl MESEAEE HLT {inmge::r]

vank of souwree {integer)

receive ImCssAre g I;il:ll!!l:?ll.'l':l

communicator (handle)

stats nhjr't:l [Hrias)

int MPI_Sendrecv replace{voids buf, int count, MPI Datatype datatype,
int deat, int sandtag, Int Sgurge, 1nt recviag,

HPI Comm cann, MPI Status =ptatus)

MPI_ZENDRECV _REPLACE(EUF, COUNT, DATATYPE, DEST, 3SENDTAT, SOURCE, RECWTAG,
COMM, STATUS, IERKOR)
ey BUF{*]
INTECER CUUMT, DATATYPE, DEST, SENDTRAG, SOURCE, RECVTAG, CQMH,
ETATUS(MPI_STATUS_SIZE), IERROR

Execute a blocking send and receive. The same buffer is used both for the
send and for the receive, so that the message sent is replaced by the message
received,

The semantics of a send-receive operation is what would be obtained if the
caller forked two concurrent threads, one to excoute the send, and one o exe-
cute the receive, followed by a join of these two threads.

Adwice o dndlereerdors, Additional intermediate bulfering is needed for the
“replace” varant. (fnd of advice to imblementors.)

3.11 Null Processes

In many instances, it is convenient to specify a *dummy”™ source or destination
for communication. This simplifies the code that is needed for dealing with
boundarics, for example, in the case of 2 non-circular shift done with calls o
send-receive,

The special value MPIPROC_MNULL can be used instead of & rank wherever a
source o A destination argument iz required in 3 call, A communication with
process MPILPROCMULL has no effect. A send to MPILPROC_NULL succecds and
relurns as soon as possible, A receive from MPLPROC.MNULL succeeds and returms
as zoon as possible with no modifications to the receive buffer. When a receive
with source = MPLPROC MULL iz executed then the status olject relurns source
= MPI_PROC_NULL, tag = MPILANY_TAG and count = 0.

3.12 Derived Datatypes

Up to here, all point-to-point communications have involved only contiguous
buffers containing a sequence of elements of the same wype. This is wo con-
straining on two accounts. One often wants to pass messages that contain values
with different datatypes (e.g,, an integer count, followed by a sequence of real
numbers); and one often wants to send noncontiguous data (e.g., a sub-block
of a matrix), One solution is o pack noncontiguous data into a contiguous
buffer at the sender site and unpack it back at the receiver sive. This has the dis-
advantage of requiring additional memory-toanemaory copy operations at both
sites, even when the communication subsystem has scatter-gather capabilities.

'.?}u‘._

S AT
| essco

=

=
[
e S

IO
}%ﬂﬂ'ﬁw b

it

[nstead. MPl provides mechanisms o specily more general, mixed, and non-
contiguous communication buffers. It 15 up to the implementation 1o decide
whether data should Be ficst packed in a contignous bulfer hefore being trans-
mirted, or whether it can be collected directly from where it resides,

The general mechanisms provided here allow one to transter directly, with-
ot copying, abjects of various shape and size. It is not assumed that the MPI
library is cognizant of the abjecis declared in the host language. Thus, if one
wanis 1o transfer a siructure, or an array secton, it will be necessary 1o provide
in MPIl a definition of a communication bulfer that mimics the definition of the
struciure or array scction in question. These facilities can be vsed by library de-
signers w define communication funcdons that can transfer ohjects defined in
the host language—by decoding their definitions as available in a symbol table
or a dope vector. Such higherlevel communication functions are not part of
WP

More general communication buffers are specified by replacing the basic
datarypes that have been used so far with dervived damatypes that are constrocted
from basic dataypes using the constructors described in this section. These
methods of constructing derived datatvpes can be applied recursively.

A peneral datatype is an opaque object that specifies two things:

s A sequence of basic datavpes
o Asequence of integer (byte) displacements

The displacements are not required 1o be positive, distince, or in increasing
arder. Therefore, the order of items need not comncide with their order in stare,
and an item may appear more than once, We call such a pair of scquences {or
sequence of pairs) a oype map. The sequence of basic dattvpes (displacements
ignored) is the type signature of the datanpe.

L.t

Tyhemap = {(typey. dispa). ... (tpey_y . disfy_y 1]
b such a tvpe map, where iy are basic types, and disty are displacements, Let

Typesig = {tyen, . - .. Dye,_]

be the associated ype signatire. This tvpe map, together with a base address
fatf, specifics a communication buffer: the communication buffer that consisis
of ® entries, where the ith entrv is at address Suf < dispy and has type fype. A
message assembled from such a communication bufTer will consist of -« values,
of the wypes delined by Pplesiz.

We can use a handle toa general datatype as an argument in a send or receive
operation, instead of a basic datanpe argument. The operation MPILLSEN Dibuf,
1, datatype,. ..) will use the send buffer defined by the base address buf and
the peneral datarype associated with datatype; it will generate a message with
the type signature determinged by the datatype argument. MPLRECV(buf, 1,

datatype,. ..) will use the receive buffer defined by the base address buf and the
peneral datatvpe associated with datatype.

Creneral datarvpes can be wused in all send and receive operations, We discuss,
in Section 3.12.5, the case where the second argument count has value = L.

The basic datarypes presented in Section 3,22 are particular cases of a gen-
eral datatype, and are predefined. Thus, MPLINT is a predefined handle 1o a
datatype with type map {{int, 1], with one entry of vpe int and displacement
zero, The other basic datatypes are similar

The extent of a datarype is defined 1o be the span from the fivse byvte 1o the
lazt bvte accupied by entries in this dataype, rounded up to satisfy alignment
requircments. Thae is, if

Typemat = {(tybeq. dispy), (pe,_y. disfy_y}].

then
T ypemapy = min dis,
I
ub(Typemap) = max(dish + sizeaf (fpe;)), and
extend{ Typewiall = wbl Typemap) — 10 Tylemah) + ¢ (3,13

IE iyfor; requires alignment 1o a bvie address thart is is a muliple of &, then € is
the least nonnegative increment needed to round extent{ Typemap) o the next
miliple of max; k.

Example 3.18 Assume that Type = {{double. 0). (char.)} {a double at displace-
ment zero, ollowed by a char ar dizplacement eight), Assume, locthermore,
that doubles have to be stricty aligned at addresses that are multiples of cight.
Then, the extent of this datarype is 16 {9 rounded (o the nexo multiple of 8), A
datatype that consists of a character immediately followed by a double will also
have an extent of 16,

Hationale, The definition of extent is motivared by the assumption that
the amount of padding added at the end of each structure in an array of
structures is the least needed o fulfill alignment constraints. More explici
control of the extent iz provided in Secion 3,12.3, Such explicit contral is
needed in cases where the assumption does not hold, for example, where
union types are used. (End of retionale)

3.12.1 DATATYPE CONMSTRUCTORS
Contiguous The simplest datatype constmctor is MPI_TYPE_CONTIGUOUS

which allows replication of a datatvpe into contigiouws locations.

MPITYPE.COMTIGUOUS [count, aldtype, newlype)

I Count replication count inonnegative integer]
] aldtyps obd datawype (handle)
T newtype new datarype (handle)

int HPI. Type.contiguous(int coumt, MPI Datatype oldiype,
MFI Datatype snawtypal

MPI_TYFE-CONTIGUOUS{COUNT, OLOTYPE, MEMTYPE, IERROR)
INTEGER COUKT, OLDTYPE, HEWTYFE, IERROR

newtype is the datatype obiained by concatenating count copies of oldtype.
Concatenation is defined using extend as the sive of the concatenated copies.

Example 3.19 Let oldtype have type map {(double, 0), (char, 8)}, with extent 16,
and let count = 3. The type map of the datarvpe returned by newtype is

{idouble, 0, {char, 8}, (double, 16}, (char, 24), (double, 32}, (char, 40}];

L., alternating deuble and char elements, with displacements 0, 8, 16, 24, 32,
4.

In general, assume that the type map of oldtype is

{(typry, disha). .- -, {tpe,—y . dighe_))],

with extent ex. Then newtype has a type map with count « nentries defined by;

{Civtea, distral oo (=, disi-), (tpiea, dishy + ex),
cea [iyphee_y, dispy 4+ ex), ..., (fyben, dispy + ex (count — 1)),
oo [y, digh,_; + ex - (count — 1))}

Vegtor The Munction MPILTYPEVECTOR is a more general constructor that
allows replication of a datatvpe into locations that consist of equally spaced
blacks, Each block is obiained by concatenating the same number of copies of
the old datatvpe. The spacing between blocks is 2 multple of the extent of the
old daraype.

MPITYPEVECTOR count, blocklength, stride, oldivpe, newtype)

I Colnt number of hlocks (nonnegative integer)

[} blocklength number of elements in each bleck (nonnegatve
integerh

™ stride number of elements between st of each block
(imeger)

™ aldiype old datatype (indle)

ouT newiype new datarvpe (handle)

inot]"I'F‘I.".':fpr.‘.'.'cl:t-a-r{int- count, ipt blocklength, int stride,
H[-':_f‘.‘-ntat:,mn -e:.]_dt.:,rpn, MPI Datatype *nawtypel

NPI_TYPE_VECTOR(COURNT, BLOCKLENGTE, STRIDE, (QLOTYPE, MEMTYPE, IEREOR)
INTEGEE COUNT, BLOCKLENGTH, ETRIDE, OLDTYPE, KEWIYPE, IERRDR

Example 5.20 Assume, again, that oldtype has type map [(double, 0, (char.)],
with extent 16, Acall o MPITYPEVECTORI 2, 3, 4, oldiyvpe, newtype) will creale

the datarype with tvpe map,

[{dauble, 43, (char,). (double, 16}, (char, 24). (double, 323, (char, 40),
{daouble, 64}, (char, 72}, (double, 20}, (char, 28], (double, $6),
{char, 1)},

That is, two blocks with three copies each of the old wpe, with a siride of 4
elements {4 - 16 bytes) berween the blocks.

Example 3.21 A call to MPLTYPE VECTORI3, 1, -2, oldtype, newtype} will cre-
ate the datatype,

Iidauble, 03, (char, &1, {doubls, =323, (char, —24). {doubla, —&4),
(char, =56}).

In peneral, assume that oldtype has type map,

1':.'!-:|'_|tml'll ﬂlr-"i"“'ll CICHN {I_'I::t-"f" ay 'r'rl.'s.r"u |.]j|

with extent ex. Let bl be the blocklength. The newly created datatype has a type

miap with sount - bl - » entries:

{{tipea, dishals .o, (iypea, dispe_1),

(Iyheg. digpg + ax), ..., (e, disf,_ +ex). ...,

{typeg. dispo + (01 — 1} - ex). ..., (tyhe—), disp,_y -+ (Bl — 1] - ex),
{tpeq, dishy + stride - ex), ..., (fphea_y, digh, + stride - ex), ...,
(fybeg. dishg + (stride + Bl — 1) - ex), ...,

{tyey.y, digh,_ + (stride 4 bl = 1) - £x), ...

{tyhe. dispy + stride - (count — 1) - ex), ...,

{tye, .y, digh,., + stride - (count = 1) - ex), ...

{typeq. dispn + (stride « {(count — 1) + bl — 1) - ex}, ...

{tgfren_r, disfi_y + {stride - (count — 1) + bl = 17 - ex)}.

A call o MPLTYPE_CONTIGUOLUS(count, oldtypa, newtypa) is equivalent
o oa call w MPLTYPENECTOR[count, 1, 1, oldtype, newtypel, or oo a call i
MPILTYPENVECTORIT, count, n, oldivpe, newtvpel, n arbitrary.

Hvector The function MPLTYPE_HVECTOR s idenucal w MPITYPE VECTOR,
except that stride is given in bytes, rather than in elemenis. The use for both
trpes of vectar constructors is illustrated in Section 5025, (H stands for "het-
Crogeneous’).

MPILTYPE_HVECTORI count, blocklength, stride, oldivpe, newlypel

1™ count number of blocks {nonnegative integer)

1™ Blocklength number of elemenis in each block {nonnegative
wlegery

[airicle number of bvies betweaen siart ol each block (-
leger)

I~ oldtype old datarype {handle)

OuUT newtype new dlacaype {handle)

int MFI Type bvectoriint count, int blecklength, MPI Aint stride,
HPI Datatyupe oldtype, MPI Datatyps =pewtypsal

MPI_TYPE_HYECTORCCOUNT, BLOCHLERGTH, STRIDE, OLDTYPE, WEWTYPE, IERROR)
INTEGER COUKT, BLOCHLENGTH, STRIDE, OLDTYFE, NEWTYFE, IERROR
Assume that oldtype has type map,

{Ctspey, digpg), ..., (Eyfrtgey, disfa-y}].

with extent ex, Let bl be the blocklength, The newly created datatype has a tvpe
map with count - bl - & eniries:

1CEifen, dighn), ..., (fyfren_n. disfra_1},

[Lypen, disty + ex), ..., (fypen_1. dispn_y + ex), ...

[yfen, dispg + (bl — 1) - ex). . Ciyheg g, digh, g + (bl — 17 - ex),
[iyen, dishs +stride). ..., (Iybe,_, digh,y + stride],
{ipbeg, disho +stride +dbl — 17 - ex), .. .,

(fypee_. disp,_y + stride + (bl = L) ex). ...,

[fybey, dispy + stride - (count — 1)), .. .,

[Ewfneg . disfh,_p + stride - (count — 130, ...,

{tyfen, dispg + stride - {(count — 1) + (bl — 1)« ex), ...

{tyhrey_y. digfh,_) + stride - (count = 1) + (bl = 1) - ax)].

Indexed The function MPLTYPEINDEXED allows replicaton of an old data-
vpee inie a sequence of Blocks (each block iz a concatenation al the old datvpe],
where cach block can contain a different number of copies and have a different
displacement. All black displacements are multiples of the old type exient.

MPITYPEINDEXED] count, arrayv_of_blocklengths, array_of_displacerments,
oldtype, newliypa)

I count number oF blocks = also nomber of entries in
array_of_displacerments and array_of_block-
lengths {nonneguiive integrer)

™ array_of blocklengths number of elements per Block (array of monneg-

ilive mntepers)

I array_of displacements displacement for cach block, in multiples of ald-
tWpE CXIemE |::-t|'|'.|.}' of 'il:lli!El.'I':l

™ oldtype ol datarype (handle)

OuT newtype new datarype (handle)

int MPI Type indexed(int count, int =array of blocklengths,
iot +array_of diaplacemants, MPI Datatyps oldtypa,
HPI_Datatype *nowtype)

MPI_TYPE_INDEZED(GOUNT, ARRAY OF BLOCKLENGTHS, ARRAY.OF DISPLACEMENTS,
OLDTYFE, MEWTYFE, IERRORY
IKTEGER COUKT, ARRAY OF BLOCKLEKGTHS(=), ARRAY OF DISPLACEMENTS(=},
OLDTYPE, HEWNTYFE, ILERRUR

Example 3.22 Let oldtype have type map {{double, 0), (char, 8)}, with extent 16.
Let B = (3, 1) and let D = {4, 0). A call to MPL.TYPE_INDEXED{2, B, D, oldtype,
newtype) returns a datatype with type map,

{{double, 641, (char, 721, {double, 80), (char, 88, (doubls, 96),
(char, 104}, (double, 07, {char, 8}].

That is, three copies of the old type starting at displacement 4, and one copy
starting at displacement 0.

In general, assume that oldtype has type map,
[{iwiren, dishod, . - -, (iee_y. r-!:a.'.}."-*_-._uL

with extent ex. Let B be the array_of blocklength argument and D be the

array_of displacements argument. The newly created datatype has
spaunt—| . .

n-3 o B[] entries:

{(typen, dispo + D[0] - ex). ..., (typea_y, digh,_ + DI0] - ex), ...,
(typey. digpg + (D[0] + B[0] — 1) - ex), ...,

{txpear, dispy-1 +(D[0] + B[O] = 1) - &), ...,

{typeq. dispy + D[count — 1] - ex),

(tppen—1. digf,—1 + Dlcount — 1] - exdyenn,

{tyen, dispy + (D[count = 1] + Bcount — 1] — 1) - ex).....

(types—1. dispn_y + (D[count — 1] 4+ Bleount — 1] = 1) - &x]].

A call o MPLTYPE VECTOR{count, blocklength, stride, oldivpe, newlype) iz
equivalent 1o a call o MPLTYPE_INDEXED{count, B, I, aldtypa, newtype] where

D[j] = j-stride, j=0,...,count—1,
anid

Blj] = blocklength, j=10,...,count— 1.

Hindexed The funcuon MPLTYPE HINDEXED is identical to MPILLTYPE
INDEXED, except that block displacements in array_of displacemants are speci-
fied in bytes, rather than in multiples of the oldtype extent.

MPITYFPE_HIMDEXED count, array_of blocklengths, arrav_of displacerments,
oldtypa, newtype)

I count mumbier of blocks—also number of entries in
array ol displacements and array of block-
lengths (teger)

I array_of blocklengths number of elemenis in each Bock (arcay of non-
TREnRELIE RS)
N array_of_displace- b displacement of each block (array ol integer)
ments
N oldtype ald datatype (handle)
oUT newtype nenw clacaype {handle}

int MPI Type hindexed(int coust, int =array_ci blocklengths,
HPI_Aint *array.of displacements, HPLI Datatypa olatypsa,
HPI Datatype *nevtypal

MPI_TYPE MINDEXED{COUNT, ARRAY_OF _BLOCHLENGTHS, ARRAY.OF DISPLACEMENTS,
OLOTYFE, HEWTYFE, IERRDW)
IKTEGER COUKT, ARRAY.OF BLOCKLENGTHS(*), ARRAY OF DISPLACEMENTS(+},
OLDTYFE, NEWTYPE, IERROR

Assume that oldtype has iype map,

[Cexpen, dispn), ..., (S, dighe 1)},

with extent gx. Let B be the array_of blocklength argument and D be the
array_of displacements argument. The newly created datatype has a tvpe map
with - 320" BJi] entries:

—

[twpren, disho + D[01). ... (tphe_y. dist_y +D[0]), ...,

{fybeg, disps + D[0] + (B[O] — 1) - ex). ...

{tyhes_ 1, dispyy +D[0] + (B[O] — 1) - ex), ...,
{tybea, disfn + Dlcount — 110, .. ., (84pey, disp—y + D[eount = 1], ...,
{tyheg. dispy + D[count — 1] + (Bloount — 1] — 1) - ex), ...,

{tye,—y. disp,_) + D[count — 1] + (B[count — 1] — 10 - ex)}.

Struct MPLTYPE_STRUCT is the most general type constructor, [t further gen-
erulives the previows one in that it allows each block to consist of replications of
different datatvpes,

MPILTYPE.STRUCT{count, array_of blocklangths, array_of_displacements,
array . of types, newtypsa)

1N count number of hlocks {integer) = also number of en-
aries in s arrey of types, array_of _displage-
miEnls and array al blockla ngihs

array of_blocklangth numb=er of elemenes in each block (array of inee-
ger)
™ array of displace- Tvte ddisplacement of sach block (array of integer)
ments
1™ array of types type of elements in cach block (array of handles
1o clatanype objects)
QLT newtype mew elavatypee | handle)

inkt HPI_Type_structlint count, int =array.cf blocklangths,
MPI_Aint #array_of displacemsenls,
MPI_Dacatype =array.of_types, MPI Datatype *nowtypel

MPI_TYFE_STRUCT(COUNT, ARRAY_OF BLOCKLERGTH:, ARRAY OF DISPLACEMENTS,
ARRAY_DF_TYPEZ, MEWTYFE, IERROA}
INTEGER COUNT, ARRAY OF BLOCHLENGTHS(=), ARRAY_DF DISPLACEMENTS(+},
ARRAY OF_TYPES(=), NEWTYPE, IEREOR

Example 3.23 Let typel have tvpe map,

{rdouble. O3, ichar, 83},
with extent 16, Let B = (2, 1, 3), D = (0, 16, 26), and T = {MPI_FLOAT, type1,
MFPILCHAR]L Then a call to MPLTYPE.STRUCTII, B, D, T, newtypel returns a
datatype with type map,

[(float, O}, (float, 4), (double, 163, (char, 243, (char, 26),

{char, 2771, {char, 2H1}.

That is, two copies of MPILFLOAT starting at (., followed by one copy of typal
starting at 16, followed by three copies of MPILCHAR, siarting a1 26, (We assume
that a floal occupies four bytes.)

In general, let T be the array_of types argument, where T[i] is a handle 1o,

typemafy = {(Iybe. displ). ..., Coypey . disgl .

with extent ex;. Let B be the array_of Blocklength argument and D e the ar-
ray_of_displacements argument. Let ¢ be the count argument. Then the newly
created datarype has a tvpe map with E:;r: Eli] - #; eniries:

(Ceypel, disply + DIOT). ..., (eypel . disgl + D[OTN ...

(typel, disply + DIO] + (BIO] — 1) -). ...,

(eypel, | displ + D[0] + (B[O] — 1) - exy), ...,

(types !, disgi! + De — 1], ... (o) disgf) +D[e = 1)),
(e digg! + Dl — 1] + (Ble — 1] = 1) - exgy), ..,

(typel !y dispft |+ D[c = 1]+ (Ble — 1] = 1) - exey)).

A call o MPLTYPE HINDEXED] count, B, I, oldtype, newtvpe) iz equivalent
o a call to MPLLTYPE_STRUCT(count, B, D, T, newtype), where cach entry of T
15 equal o aldtype.

3.12.2 ADDRESS AND EXTENT FUNCTIONS

The displacements in a general datatype are relatve wo some initial buffer ad-
dress, Absolute addresses can be substinsed lor these displacements: we treal
them as displacements relative to “address zero,” the start of the address space.
Thiz initial address zero is indicated by the constant MPLEOTTOM. Thus, a daa-
tvpe can specify the absolute address of the entries in the communication buffer,
in which case the but argument is passed the value MPLBOTTOM.

The address of a locaton in memory can be found by inveking the function
WPl ADDRESS.

MPLLADDRES S| lacation, addrags)

I location location in caller memery (choice)
L audress i ress of Location (integer)

int MPI_Address{voids location, HPI_Aint =addrass)

MPI_ADDRESS(LOCATION, ADDRESS, IERRORD
<hypes LOCATION{*)
INTEGER ADDEESE, IEREOR

Renerns the (byte) address of location,
Example 5.24 Using MPI_LADDRESS [or an array.

EEAL A{100, 10071

INTEGER 11, I, DIFF

CALL MPI_ADDRESSCACL,1), Ii, TERROR}

CELL MFI_ADDRESSCACIO,10), IZ, IERROR}

DIFF = 12 = I1
| Tha walue of DIFF iz B08+sizecireal; the values of I1 and I2 are
! ipplementation depandent.

Adwvice fowsers. Cusers may be tempied toavoid the usage of MPLADDRESS
and rely on the availability of the address operator & Note, however, that
B casbexfmession i a pointer, not an address. ANSI C does not require
that the value of a pointer {or the pointer cast 1o int) be the absolute
address of the object pointed at—although this s commonly the case.
Furthermere, referencing may not have & unique definition on machines
with @ segmented address space. The use of MPLADDRESS o "reference”
C variables guarantees portability 1o such machines as well. {(End of adviee
t 1esers,)

The fallowing auxiliary functions provide vseful information on derived
datavpes.

MPI_TYFPE_EXTENTdatatype, extent)
N datatype datatype {handle)

oUT axtent chatanvpe cxtent {integer]
int MPI Type_cxtent (MPI Datatype datatype, int HPI_Aint sextent)

HPI_TYPE_EXTEKT{DATATYFE, EXTENT, IERROR)
INTEGER DATATYPE, EXTENT, IEREOR

Retarns the extent of a daanpe, where extent is as defined in Eq. 5.1 on

page 2385

'J e e ST
42 i SUPEHCONPUTER AFPL h-“F"

MPILTYPE_ZIZEIdatatype, size)

In datatype damaype (handie)
O sizE clitalype size (Inleger)

int MPI_Typa_siza(HPI Datatype datatype, int MPLAint +size}

HPI_TEFE_SIZE(DATATYPE, 2IZE, IERRORD
INTEGER DATATYPE, SI12E, IERROR

MPITYPE_SIZE returns the total size, in bytes, of the entries in the type
signature associated with datatype; ie., the total size of the data in & message
that would be created with this dataype. Entries that occur multiple times in
the datatvpe are counted with their multiplicity.

MPILTYPE_COUNTIdatatype, count

IN datatvpe ditatype (hamdle)
QLT count d:n:-sl'..'p-:: iUl Enleger)
ipt MPI_Type_count (HPI. Datatype datatype, int #count)

HPI_TYPE_COUNT (DATATYPE, COUNT, IERROR)
INTEGER DATATYPE, TOUNT, IERROR

Retrns the number of “toplevel” entries in the datatype.

