
OMPIO: A Modular Software Architecture for

MPI I/O

Mohamad Chaarawi1, Edgar Gabriel1, Rainer Keller2, Richard L. Graham3,
George Bosilca4, and Jack J. Dongarra4

1 Department of Computer Science, University of Houston, Houston, TX, USA
{mschaara,gabriel}@cs.uh.edu

2 High Performance Computing Center Stuttgart (HLRS), Stuttgart, Germany
keller@hlrs.de

3 Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA
rlgraham@ornl.gov

4 Innovative Computing Laboratory, University of Tennessee, Knoxville, TN, USA
{bosilca,dongarra}@eecs.utk.edu

Abstract. I/O is probably the most limiting factor on high-end ma-
chines for large scale parallel applications as of today. This paper intro-
duces OMPIO, a new parallel I/O architecture for OpenMPI. OMPIO
provides a highly modular approach to parallel I/O by separating I/O
functionality into smaller units (frameworks) and an arbitrary number
of modules in each framework. Furthermore, each framework has a cus-
tomized selection criteria that determines which module to use depending
on the functionality of the framework as well as external parameters.

1 Introduction and Motivation

Amdahl’s law stipulates that the scalability of a parallel application is limited
by its least scalable section. For many scientific applications, the scalability lim-
itation comes from the performance of I/O operations. MPI [12], the most pop-
ular parallel programming paradigm on clusters today introduced the notion of
parallel I/O in version two of the specification. Although its adoption by the
end-users has been modest, it has been shown, that in combination with par-
allel file systems, MPI I/O can significantly improve the performance of I/O
operations [7, 14] compared to sequential I/O.

Switching from the sequential Fortran or C I/O routines to MPI I/O poten-
tially requires significant work by application developers, due to the fact that
many MPI I/O features do not have counterparts in other I/O specifications.
However, application developers are more willing to make drastic investment in
rewriting substantial part of the application if the direct effect of the investment
is a significant reduction in the application execution time, or a more robust
scalability. This is however not always the case. The reasons for the limited per-
formance often observed with MPI I/O is the diversity of existing I/O solutions
which make each I/O environment (almost) unique. The performance of parallel
I/O operations is influenced by the file system utilized, as well as by the number

Y. Cotronis et al. (Eds.): EuroMPI 2011, LNCS 6960, pp. 81–89, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



82 M. Chaarawi et al.

of storage servers, the I/O bandwidth of each storage server, the network con-
nectivity in-between the storage servers as well as between the storage servers
and compute nodes, and the network interconnect and its OS-level parameters
used for the MPI level communication. Additionally, application characteristics
such as frequency and volume of I/O operations as well as the algorithm utilized
to implement the functionality (e.g., the collective I/O operations), will greatly
contribute towards the I/O performance observed by the end-user.

In this paper, we present a new parallel I/O architecture for Open MPI called
OMPIO. The goal of OMPIO is to provide the infrastructure that allows to deal
with the challenges of parallel I/O in a flexible manner, and consequently allows
to optimize the performance of I/O operation for different applications and hard-
ware configurations. At the core of the architecture is the separation of parallel
I/O functionality into frameworks. This allows to encapsulate various aspects of
parallel I/O into smaller functional units, such as dealing with file system specific
operations, individual I/O, collective I/O, or shared file pointer operations. Each
framework has typically multiple modules providing the required functionality,
each module being designed for different scenarios. We argue, that the selec-
tion criteria that determines which module is being used is highly dependent on
the functionality provided by a framework and on external parameters such as
the file system utilized, hardware configuration, process placement by the batch
scheduler or application characteristics.

The remainder of the paper is organized as follows: Section 2 discusses the
related work in the area and makes the case why currently existing approaches,
provided by most popular MPI I/O libraries, do not offer the required flexibility
to deal with the diversity of the available I/O subsystems. Section 3 describes
the design of the new OMPIO module and its associated set of frameworks. In
section 4 we present a case study where we evaluate two different benchmarks
on two different platforms using a PVFS2 and a Lustre file system. The re-
sults demonstrates a the available functionality in OMPIO and exposes some
of the advantages of the new architecture for collective I/O operations. Finally,
section 5 summarizes the paper and presents the ongoing work in this area.

2 Related Work

The most widely used implementation of MPI I/O as of today is ROMIO [16].
ROMIO is part of the MPICH [8] distribution and is the basis for many I/O
libraries used in other public domain MPI libraries such as Open MPI and com-
mercial MPI implementations. ROMIO abstracts file systems specific operations
using the Abstract-Device Interface for Parallel I/O, called ADIO [15], which
reduces the number of routines that have to be implemented in order to support
a new file system. ROMIO also has the ability to support multiple file systems
simultaneously, e.g., in case an application opens a file on two different file sys-
tems. However, the selection criteria which ADIO module shall be used as of
today is based on the file system only. Krimpe et al. [9] allowed for non-file sys-
tem specific selection of some modules by prepending a keyword to the name of



OMPIO: A Modular Software Architecture for MPI I/O 83

the file. The solution presented in this paper has two main advantages compared
to ROMIO. First, the usage of different frameworks allows a more fine grained
separation of functionality than the approach used in ROMIO. Second, OMPIO
introduces the ability to make non-file system specific module selection that do
not require any modifications of the end-user application.

In [4], the authors introduced the ability to easily modify parameters of collec-
tive I/O operations. However, the work focused entirely on collective I/O, leaving
other aspects of parallel I/O unmodified. Furthermore, it is our understanding
that the framework described in this paper does not allow for easy deployment
of new collective I/O algorithms, but is restricted to modifying parameters of
the provided collective read/write operations.

The Adaptable IO System (ADIOS) [11] is an I/O library designed to allow
end users to select the best I/O method based on the application’s access pat-
tern and the underlying file system and hardware at hand. The access pattern
of the application is described in a separate input file, providing some of the
functionality that the file view provides in MPI I/O. Thus, the ADIOS library
has the ability to utilize POSIX style I/O operations, MPI I/O or any other
supported API without having to change the application itself. ADIOS also in-
troduces a file format called BP, which serves as an intermediate format that is
easily converted to other standard file formats such as HDF5.

3 The OMPIO Set of Frameworks

The Open MPI Project [5] is an open source implementation of the MPI specifi-
cation that is developed and maintained by a consortium of academic, research,
and industry partners. The internal architecture of OpenMPI is built around
the Modular Component Architecture (MCA) [1], which allows for compile or
run time selection of the components used by the MPI library. A component
framework in Open MPI is dedicated to a single task, such as providing parallel
job control or performing MPI collective operations. Modules are self-contained
software units that can configure, build, and install themselves. Modules adhere
to the interface prescribed by the component framework that they belong to,
and provide requested services to higher-level tiers and other parts of MPI. This
mechanism allows a single OpenMPI installation to simultaneously support var-
ious network interconnects. The new OMPIO module is a module of the IO
framework of OpenMPI, and is designed to co-exist with ROMIO, the parallel
I/O library used in all released versions of Open MPI. Generally speaking, when
a file is being opened, both OMPIO and ROMIO are being queried, and the
module returning the higher priority value is used to for the subsequent I/O
operations.

The main goals of OMPIO are three fold. First, it increases the modularity of
the parallel I/O library by separating functionality into distinct sub-frameworks.
Second, it allows frameworks to utilize different run-time decision algorithms to
determine which module to use in a particular scenario, enabling non-file system
specific decisions. Third, it improves the integration of parallel I/O functions



84 M. Chaarawi et al.

Fig. 1. Overview of the OMPIO component and its frameworks

with other components of Open MPI, most notably the derived data type engine
and the progress engine. The integration with the Open MPI progress engine
allows for seamless progress of non-blocking I/O operations. The integration
with the derived data type engine has multiple advantages, most notably faster
decoding of derived data types and the usage of optimized data type to data type
copy operations. Furthermore, OMPIO has the ability to use the data conversion
functionality of the data type engine, without having to provide the according
(fairly complex) functions.

Similarly to the selection logic in other Open MPI frameworks, each sub-
framework of the OMPIO component determines in MPI Init the list of available
modules and opens them. Upon opening a file using MPI File open, the OM-
PIO module initializes each sub-framework for that particular file. A framework
will query each available module which in return responds with a priority value
indicating its readiness to be used for the given file. As an example, a module
providing a POSIX style interface might return a low priority value for most files,
indicating that it could be used for the according operations. However, a specific
module optimized for the given file system or installation will typically return
a higher priority and will be chosen for the subsequent I/O operations. Each
sub-framework or module will typically have different rules on when to return
a high priority. Conditions include the file systems type, location of participat-
ing processes, network parameters or user specified settings. In the following we
present briefly each sub-framework and the currently available modules.

3.1 The file system Framework (fs)

The fs framework abstracts out file manipulation operations such as opening,
closing, and deleting a file. The semantics of most of the operations are collective.
Furthermore, file system specific info objects have to be interpreted and applied
within this module. The fs framework has as of today a module providing generic
POSIX interface, and separate modules for Lustre and a PVFS2 which allow to
modify stripe size and stripe depth when creating a new file.



OMPIO: A Modular Software Architecture for MPI I/O 85

3.2 The file byte-transfer layer Framework (fbtl)

The fbtl framework provides the abstraction for all individual read and write
operations. A module implementing the fbtl interfaces has to provide, as of to-
day, blocking and non-blocking read and write operations, as well as a progress
function that will be registered with the Open MPI progress engine in order to
enforce the progress of pending I/O calls. The interfaces of the read and write
operations currently take a list containing tuples of <memory address, length in
bytes, file offset>. Currently available are fbtl modules which provides POSIX
semantics, and a module utilizing native PVFS2 read/write operations. Note
however, that the current OMPIO implementation only supports blocking oper-
ations for both fbtl. Support for non-blocking individual operations are expected
to be available in the near future.

3.3 The collective I/O Framework (fcoll)

This framework provides interfaces for collective file I/O operations. In contrary
to the other frameworks which are part of the OMPIO set, the fcoll framework
triggers the selection logic not upon opening a file, but every time the file view
is being set.

Collective I/O operations are a very good example for the necessity to have
non-file system specific selection logic. As an example, the Lustre file system
serving the Jaguar system at Oak Ridge National Laboratory and the Lustre
file system at our development cluster at the University of Houston have fun-
damentally different characteristics, such as number of Object Storage Targets
(OSTs), bandwidth of each OST, and network characteristics between compute
nodes and OSTs. Despite the fact that both installations utilize the same file sys-
tem, different algorithms for collective I/O operations have to be used on these
two installations in order to maximize the I/O performance of an application,
since some optimizations only make sense for certain hardware configurations.

The fcoll framework has five different modules to choose from, one module for
each of the following algorithms: two-phase I/O, static segmentation, dynamic
segmentation, individual algorithm and an algorithm where each I/O node is
only receiving requests by a single aggregator process. The first three algorithms
have been extended to include a heuristic which automatically determines the
number of aggregator processes to be used [2].

The current selection logic is based on an extensive set of tests that has been
executed on various platforms and file systems. Among the factors that influence
which module is being used is the average contiguous data chunk accessed by
each process, gaps size in the file view between processes, and file system char-
acteristics, such as the stripe size and the minimal data required to saturate the
read/write bandwidth of one process. We omit here details of this selection logic
due to space limitations, more details may be found in [2].

3.4 The file cache Framework (fcache)

The fcache framework provides the ability to set and retrieve information related
to the file layout, such as the number of storage servers used, list of storage



86 M. Chaarawi et al.

servers, and stripe depth for each file separately. The main functionality of the
fcache is to provide a mapping of <offset into file, length in bytes> to a list of
<storage server id, local offset on that storage server, local length>. This allows
for various optimizations for example for collective I/O operations. As of today,
only a trivial module is available for UFS style file systems which provides only
basic information.

3.5 The shared file pointer Framework (sharedfp)

The sharedfp framework provides the functionality required to manage the shared
file pointer, allowing for generic and architecture specific optimizations. Al-
though shared file pointer operations have been sparingly used in the community,
due to the fact that in the most general case an implementation of shared file
pointer operations will be slow, it is well understood that, for particular archi-
tectures or settings, efficient implementations do exist. As an example, if the
shared file pointer is utilized by processes in a communicator that spans a sin-
gle physical node, the shared file pointer can be efficiently implemented using a
small shared memory segment. Alternatively, some of the strict requirements of
a shared file pointer can be relaxed for certain usage scenarios, allowing the uti-
lization of individual files per process. In doing so, the consolidation to a single
output file may be delayed to the post-processing step [10].

We have explored a number of shared file pointer algorithms in [10], which
are currently being converted into modules in the near future along with the
selection logic, which will include process placements as one of the key criteria
to determine which module to use.

4 Experimental Results

Two application benchmarks are used for evaluation on two different platforms.
The Shark cluster at the University of Houston consists all-in-all of 29 nodes,
with a PVFS2 file system consisting of 22 server nodes where each server uses
its local disk space as the back-end storage. The stripe size of the file system is
64 kB. The file system uses GE as the network interconnect.

The Deimos PC Farm at TU Dresden has 724 compute nodes with a Lustre file
system exported by 11 I/O servers via a separate 4x SDR InfiniBand network.
The file system is organized in 48 OSTs with a stripe size of 1 MB.

The first benchmark used is MPI-TILE-IO [13], a test application that imple-
ments tile access to a two dimensional dense dataset. This type of workload is
seen in tiled displays (for small numbers of tiles) and in some numerical applica-
tions. Several parameters that control the file access and 2D distribution of the
processes can be modified at runtime. The results shown report two tile sizes of
64 Bytes (2048 x 1600 elements) and 1 MB (20 x 15 elements), which represents
a non-contiguous and contiguous access respectively. We report the maximum
bandwidth achieved across five executions of every test case.



OMPIO: A Modular Software Architecture for MPI I/O 87

Table 1. Performance comparison between OMPIO’s and ROMIO’s default setting
using MPI-TILE-IO

Platform/Number of Processes/Tile Size ROMIO OMPIO

Shark/81(9x9)/64B 303.8 MB/s 591.1 MB/s

Shark/81(9x9)/1MB 290.1 MB/s 625.4 MB/s

Deimos/256(16x16)/64B 411.6 MB/s 2167.1 MB/s

Deimos/256(16x16)/1MB 517.7 MB/s 2491.2 MB/s

The results shown in table 1 show the results using the MPI-TILE-IO bench-
mark over Shark with PVFS2 and Deimos with Lustre. ROMIO has been ex-
ecuted with default parameters, i.e. without passing any additional hints or
parameters to the library in order to have a base-line number from the perfor-
mance perspective. In OMPIO we set the optimal cycle buffer size determined
for the according file system. OMPIO chooses the two-phase I/O module for the
64 Byte tile size and the dynamic segmentation module for the 1 MB tile size.
The heuristic determining the number of aggregators automatically leads to 81
aggregator processes on Shark and 256 aggregators on Deimos in these test cases.
Collective I/O operations in ROMIO use the two-phase I/O algorithm with one
aggregator per node as the default setting. The results show that OMPIO leads
to a performance benefit in these test cases which can be attributed mostly to
the different number of aggregators used by OMPIO and the different algorithm
used in the first case. However, the main message of this result is not the perfor-
mance benefit observed due to the different number of aggregators, instead the
flexibility to switch seamlessly between different collective I/O module for the
same application due to the component architecture of OMPIO.

In the second scenario, we demonstrate the flexibility and modularity of
the OMPIO architecture by using the Open Tool for Parameter Optimizations
(OTPO) [3] to tune collective I/O operations and parameters for a given test
case. OTPO is a tool which can be used to optimize runtime parameters of
Open MPI. The tool takes in an input file which contains the names of pa-
rameters to be explored along with the according rules on how to modify the
parameters, and the name of the benchmark/application to be executed when
exploring the parameter space. After the optimization, OTPO reports the set
of parameter combination(s) which lead to the lowest execution time. In this
particular scenario, we used the Latency-IO micro-benchmark developed as part
of the latency test suite [6].

The parameter file that is passed to OTPO contains the different collective
I/O algorithms that are available in OMPIO and a some parameters of these
modules. Thus, the parameters to be optimized and according values are:

– fcoll module: static, dynamic, individual, two-phase
– number of aggregators: 5, 10, 20, 40
– cycle buffer size: 2 MB, 20 MB, 32 MB, 64 MB, 128 MB



88 M. Chaarawi et al.

In this case 65 different parameter combinations were generated from the input
file, the winning combination was (dynamic, 20, 32 MB). While there were other
parameter combinations that provided performance close to the wining combi-
nation, only two out of 65 parameter combinations were within 10% of the best
performance value. Those combinations were (dynamic, 20, 20 MB) and (static,
20, 32 MB). Overall, 23 out of 65 parameter combinations were within 25% of
the best performance.

This type of tuning of collective I/O parameters is possible because of the
OMPIO architecture and allows end-users and system administrators to pre-tune
a module for a particular application or scenario without having to recompile
the MPI library.

5 Conclusion

This paper introduces OMPIO, a newly developed parallel I/O architecture de-
signed for Open MPI. OMPIO introduces a modular architecture for parallel I/O
that separates functionality into different sub-frameworks and allows for a highly
flexible composition of modules in order to provide MPI I/O functionality, and
reduces the barriers to develop new, site-specific modules and configurations.
We demonstrate the usability of OMPIO by executing various benchmarks on
a PVFS2 and Lustre file system on two different clusters. OMPIO is currently
being evaluated by the Open MPI group and should be publicly available by the
end of the summer, with the initial intent of serving as a research vehicle into
parallel I/O.

The ongoing work includes multiple areas. First and foremost, we are working
on implementing the non-blocking I/O operations within the OMPIO framework.
This will support most of the operations defined in the MPI-2.2 specification
and will open the door for further optimizations for collective I/O operations.
Second, we are continuing to improve our collective I/O algorithms, most notably
by exploring new grouping strategies for the dynamic and static segmentation
algorithms.

References

1. Barrett, B., Squyres, J.M., Lumsdaine, A., Graham, R.L., Bosilca, G.: Analysis of
the component architecture overhead in Open MPI. In: Proc. of the 12th European
PVM/MPI Users’ Group Meeting, Sorrento, Italy, pp. 175–182 (September 2005)

2. Chaarawi, M.: Optimizing Parallel I/O Operations for High Performance Comput-
ing. Ph.D. thesis, Department of Computer Science, University of Houston (2011)

3. Chaarawi, M., Squyres, J.M., Gabriel, E., Feki, S.: A tool for optimizing runtime
parameters of open MPI. In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.)
EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 210–217. Springer, Heidelberg (2008)

4. Coloma, K., Ching, A., Choudhary, A., Liao, W., Ross, R., Thakur, R., Ward, L.:
A New Flexible MPI Collective I/O Implementation. In: Proceedings of the 2006
IEEE International Conference on Cluster Computing, pp. 1–10 (2006)



OMPIO: A Modular Software Architecture for MPI I/O 89

5. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B.W., Lumsdaine, A., Castain, R.H., Daniel,
D.J., Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a
next generation MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra,
J. (eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg
(2004)

6. Gabriel, E., Fagg, G.E., Dongarra, J.J.: Evaluating dynamic communicators and
one-sided operations for current MPI libraries. International Journal of High Per-
formance Computing Applications 19(1), 67–79 (2005)

7. Gabriel, E., Venkatesan, V., Shah, S.: Towards high performance cell segmentation
in multispectral fine needle aspiration cytology of thyroid lesions. Computational
Methods and Programs in Biomedicine 98(3), 231–240 (2009)

8. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Comput-
ing 22(6), 789–828 (1996)

9. Kimpe, D., Ross, R., Vandewalle, S., Poedts, S.: Transparent log-based data stor-
age in MPI-IO applications. In: Cappello, F., Herault, T., Dongarra, J. (eds.)
PVM/MPI 2007. LNCS, vol. 4757, pp. 233–241. Springer, Heidelberg (2007)

10. Kulkarni, K., Gabriel, E.: Evaluating Algorithms for Shared File Pointer Opera-
tions in MPI I/O. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Don-
garra, J., Sloot, P.M.A. (eds.) ICCS 2009. LNCS, vol. 5544, pp. 280–289. Springer,
Heidelberg (2009)

11. Lofstead, J., Zheng, F., Klasky, S., Schwan, K.: Adaptable, metadata rich IO meth-
ods for portable high performance IO. In: Proc. of IPDPS 2009, Rome, Italy, May
25-29 (2009)

12. Message Passing Interface Forum: MPI-2.2: Extensions to the Message Passing
Interface (September 2009), http://www.mpi-forum.org

13. Ross, R.: Parallel I/O Benchmarking Consortium,
http://www.mcs.anl.gov/research/projects/pio-benchmark

14. Ross, R., Nurmi, D., Cheng, A., Zingale, M.: A Case Study in Application I/O on
Linux Clusters. In: ACM/IEEE Supercomputing Conference, Denver, CO, USA
(2001)

15. Thakur, R., Gropp, W., Lusk, E.: An Abstract-Device Interface for Implementing
Portable Parallel-I/O Interfaces. In: Proc. of the 6th Symposium on the Frontiers
of Massively Parallel Computation, pp. 180–187. IEEE Computer Society Press,
Los Alamitos (1996)

16. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with
high performance. In: Proc. of the 6th Workshop on I/O in Parallel and Distributed
Systems, pp. 23–32 (1999)

http://www.mpi-forum.org
http://www.mcs.anl.gov/research/projects/pio-benchmark

	OMPIO: A Modular Software Architecture for MPI I/O
	Introduction and Motivation
	Related Work
	The OMPIO Set of Frameworks
	The file system Framework (fs)
	The file byte-transfer layer Framework (fbtl)
	The collective I/O Framework (fcoll)
	The file cache Framework (fcache)
	The shared file pointer Framework (sharedfp)

	Experimental Results
	Conclusion
	References




