1. Introduction

The IESP roadmap is a planning instrument designed to enable the international scientific cyberinfrastructure community to improve, coordinate and leverage their collective investments and development efforts.

[Other introductory stuff, such as the scope and boundaries of the roadmap.]

2. Where the IESP roadmap is intended lead us

The metaphor of the roadmap is intended to capture the idea that we need a representation of the world, drawn from our current vantage point, in order to better guide us from where we are now to the destination we want to reach. Such a device is all the more necessary when a large collection of individuals or groups, not all of whom are starting from precisely the same place, need the make the journey. In formulating such a map, formulating and agreeing on a reasonably clear idea of the destination is an essential for step. Building on the background knowledge that motivates the IESP and the work of its participants so far, we may define the destination that roadmap is intended to help reach as follows: 

By developing and following the IESP roadmap, the international scientific software research community seeks to create an common, open source software infrastructure for scientific computing that enables leading edge science and engineering groups to develop applications that exploit the full power of the e-scale computing platforms that will come on-line by the end of the this decade, i.e. in the 2018-2020 timeframe. We call this integrated collection of software the extreme-scale/exascale software stack, or X-stack. 
Explicating the elements of this goal statement in the context of the work done by the IESP to this point reveals that the X-stack must possess, at minimum, the following characteristics: 

· The X-stack should enable suitably designed science applications to exploit the full resources of the largest systems: The main goal of the X-stack is to support ground breaking research by enabling scientists to reach solutions faster, attack larger problems, achieve higher resolution observations and predictions, and explore vastly larger data sets. When exascale systems become available, the X-stack should enable scientists to use its full power.

· The X-stack should to scale both up and down the platform development chain: Science, and the software applications that enable it, is done on systems at a range of different scales, from departmental clusters to the world’s largest supercomputers. The X-stack should be designed to support applications well at all levels of this collection. 

· The X-stack should be as modular so as to enable parallel and alternative contributions:  The X-stack is intended to provide a common software infrastructure on which the entire community builds its science applications. For both practical and political reasons (e.g. sustainability, risk mitigation, etc.), the design of the X-stack should strive for modularity that makes it possible for many groups to contribute and accommodate more than one alternative in each software area. 

3. Technology trends and their impact on exascale

The design of the x-scale platforms that are expected to become available in 2018 will represent a convergence of technological trends and the boundary conditions imposed by over half a century of algorithm and application software development.  As with today’s petascale systems, the first exascale systems will likely be used by the international community for scientific discovery.  Thus the scientific computing community has a major responsibility to ensure that appropriate system software and applications are ready in order to fully exploit such systems when they are deployed.  This section will review describe the technological trends and their expected impact on computer architecture in the next decade.  This in turn will establish the foundation upon which subsequent sections build the x-scale roadmap.

3.1 Technology trends:

The scientific computing community today faces the daunting prospect of adapting to systems that offer a 1000X in capability, in multiple dimensions, over today’s most massive computing systems. As recent studies make clear [ref. Kogge], technology trends over the next decade will force a disruptive change in the form, function, and interoperability of future functional elements and the system architectures incorporating them. The momentous nature of these changes can be illustrated for several critical system level parameters:

· Concurrency– Moores’s Law scaling in the number of transistors is expected to continue through the end of the next decade, at which point the minimal VLSI geometries will be as small as five nanometers.  Unfortunately, the end of Dennard scaling means that clock rates are no longer keeping pace, and may in fact be reduced in the next few years to reduce power consumption.  As a result, the exascale systems on which the x-stack will run will likely be composed of hundreds of millions of ALUs.  Assuming there are multiple threads per ALU to cover main-memory and networking latencies, applications may contain ten billion threads.
· Reliability – System architecture will be complicated by the increasingly probabilistic nature of transistor behavior due to reduced operating voltages, gate oxides, and channel widths/lengths resulting in very small noise margins.  Given that state-of-the-art chips contain billions of transistors and the multiplicative nature of reliability laws, building resilient computing systems out of such unreliable components will become an increasing challenge.  This can not be cost-effectively addressed with pairing or TMR, and will must be addressed by x-stack software and perhaps even scientific applications.

· Power consumption – Twenty years ago, HPC systems consumed less than a Megawatt.  The Earth Simulator was the first such system to exceed 10MW.  Exascale systems could consume over 100MW, and few of today’s computing centers have either adequate infrastructure to deliver such power or the budgets to pay for it.  The HPC community may find itself measuring results in terms of power consumed, rather than operations performed, and the x-stack and the applications it hosts must be conscious of this and action to minimize it.

Similarly dramatic examples could be adduced for other key variables, such as storage capacity, efficiency and programmability. More importantly, a close examination shows that changes in these parameters are interrelated and not orthogonal. For example, scalability will be limited by efficiency, as are power and programmability. Other cross correlations can also be perceived through analysis. The DARPA Exascale Technology Study exposes power as the pace setting parameter. Although an exact power consumption constraint value is ill defined, with upper limits of today’s systems (open) on the order of 5 Megawatts increases of an order of magnitude in less than 10 years will extend beyond the practical energy demands of all but a few strategic computing environments and a threshold of pain of 25 Megawatts has been suggested (by DARPA) as a working boundary. With dramatic changes to core architecture design, system integration, and programming control of data movement, best estimates for CMOS based systems at the 11 nanometer feature size is a factor of 3 to 5X this amount. One consequence is that clock rates are unlikely to increase substantially in spite of the IBM Power architecture roadmap with clock rates between 0.5 and 4.0 GHz a safe regime and a nominal value of 2.0 GHz appropriate, at least for some logic modules. A controversial viewpoint is the degree of instruction level parallelism (ILP) and speculative operation likely to be incorporated on a per processor core basis and the role of multithreading in subsuming more of the fine grain control space. It is recognized that data movement across the system, through the memory hierarchy, and even for register to register operations is the single principal contributor to power consumption with control adding to this appreciably. Data movement that does not advance the computation results in wasted energy that can be ill afforded in future systems. Alternative ways of hiding latency will be required that guarantees the utility of every data transfer. Admittedly, in today’s conventional systems at the server level, the majority of power is simply wasted overhead across the motherboard and ancillary logic, not optimized to be energy efficient. However, for mobile and embedded applications as well as such intentionally engineered systems as BG/P, energy efficiency is far better. Nonetheless, an improvement on the order of 100X is still required.

As a result of these and other observations, Exascale system architecture characteristics are beginning to emerge while the details must be deferred to future responsible investigation. Some of the critical aspects of future systems by the end of the next decade are summarized here:

· Feature size of 22 to 11 nanometers, CMOS in 2018
· Total average of 25 Pico-joules per floating point operation
· Approximately 10 billion-way concurrency for simultaneous operation and latency hiding
· 100 million to 1 billion cores
· Clock rates of 1 to 2 GHz (this is approximate with a possible error of a factor of 2)
· Multi-threaded fine grain concurrency of 10 to 100 way concurrency per core
· 100’s of cores per die (varies dramatically depending on core type, and other factors)
· Global address space without cache coherence; extensions to PGAS (e.g., AGAS)
· 128 Petabytes capacity mix of DRAM and nonvolatile memory (most expensive subsystem)
· Explicitly managed high speed buffer caches; part of deep memory hierarchy
· Optical communications for distances > 10 centimeters, possibly inter-socket
· Optical bandwidth of 1 Terabit per second (+/- 50%)
· System-wide latencies on the order of 10’s of thousands of cycles
· Active power management to eliminate wasted energy by momentarily unused cores
· Fault tolerance by means of graceful degradation and dynamically reconfigurable structures
· Hardware supported rapid thread context switching
· Hardware supported efficient message to thread conversion for message-driven computation
· Hardware supported lightweight synchronization mechanisms
· 3-D packaging of dies for stacks of 4 to 10 dies each including DRAM, cores, and networking
3.2 Science trends:

As scientific computing continues to mature, the software and the problems it addresses are becoming increasingly sophisticated.  Applications involve multiple physical phenomenon spanning many decades of spatial and temporal scale.  As the ratio of computing power to memory grows, the “weak scaling” which has been exploited for most of the last decade will increasingly give way to “strong scaling”, which will make scientific applications increasingly sensitive to overhead and noise generated by the x-stack.  These applications are increasingly constructed of components developed by computational scientists World-wide, and the x-stack must support the integration and performance portability of such software.

3.3 Relevant Politico-economic trends

The HPC market is growing at approximately 11% per year.  The largest scale systems, those that will support the first exascale computations at the end of the next decade, will be deployed by government computing laboratories to support the quest for scientific discovery.  These capability computations often consume an entire HPC system and pose very difficult challenges for concurrent programming, debugging and performance optimization.  Thus, publicly-funded computational scientists will be the first users of the x-stack, and have a tremendous stake in seeing that suitable software exists, the very reason that for the IESP.

In the late 1980s, the commercial engineering market place, spanning diverse fields such as computer aided engineering and oil reservoir modeling, used the same computing platforms and often the same software as the scientific community.  This is no longer the case.  The commercial workload tends to be more capacity oriented, involving large ensembles of smaller computations.  The extreme levels of concurrency necessary for exascale computing suggests that this trend will not change, and that there will be little demand for those features of the x-stack unique to exascale computing from commercial HPC users.

3.4 Key requirements that these trends impose on the X-stack

The above trends in technology and applications will impose severe constraints on the design of the x-stack.  Below are crosscutting issues that will impact all aspects of system software and applications at exascale.

· Concurrency:  A 1000x increase in concurrency for a single job will be necessary achieve exascale throughput.  New programming models will be needed to enable application groups to address concurrency in a more natural way.  This will likely have to include “strong scaling” as growth in the volume of main memory won’t match that of the processors.  This in turn will require minimizing any x-stack overheads that might otherwise become a critical Amdahl fraction.

· Energy:  As much of the power in an exascale system will be expended moving data, both locally between processors and memory as well as globally, the X-stack must provide mechanisms and APIs for expressing and managing data locality.  This will also help minimize the latency of data accesses.  APIs also should be developed to allow applications to suggest other energy saving techniques, such as turning cores on and off dynamically, even though these techniques could result in other problems, such as more faults/errors.

· Resiliency:  The VLSI devices from which exascale systems will be constructed will not be a reliable as those used today.  All software, and therefore every application, will have to address resiliency in a thoroughgoing way if it is to be expected to run at scale. This means that the X-stack will have to recognize and adapt to errors continuously, and provide the support necessary for applications to do the same.

· Heterogeneity:  Heterogeneous systems offer the opportunity to exploit the extremely high performance of niche market devices such as GPUs and game chips (i.e., STI Cell) while still providing a general purpose platform.  An example of such system today is Tokyo Tech’s Tsubame, which incorporates AMD Opteron CPUs along with Clearspeed and Nvidia accelerators.  Simultaneously, large-scale scientific applications are also become more heterogeneous, address problems multi-scale problems spanning multiple disciplines.

· I/O and Memory:  Insufficient I/0 capability is a bottleneck today.  Ongoing developments in instrument construction and simulation design make it clear that data rates can be expected to increase by several orders of magnitude over the next decade.  The memory hierarchy will change based on both new packaging capabilities and new technology.  Local RAM and NVRAM will be available either on or very close to the nodes.  The change in memory hierarchy will affect programming models and optimization. 

4. Formulating paths forward for X-stack component technologies: 

In this section of the roadmap, the longest and most detailed, we undertake the difficult task of translating the critical system requirements for the X-stack, presented in the previous section, into concrete recommendations for research and development agendas for each of the software areas and necessary components of the X-stack. Accordingly, the discussion of each area is divided in the following parts: 
· Technology and science drivers: The implications of the critical system and science requirements for each software area and/or component of the X-stack must be described and analyzed. These implications represent technology and science drivers for the different elements of the X-stack. Each area/component must be evaluated in terms of how well or poorly current technologies address the targets the requirements entail and where the obstacles to progress lie. 
· Alternative R&D strategies: Once the technology and science drivers are identified and studied, the different possible lines of attack on the problems and challenges involved, as we see them today, need to be described and explored. 
· Research and development agenda recommendations: Finally, once the alternative R&D strategies in each area need to be evaluated and ranked, actual plans, including specific milestones, must be drawn up. Clearly these plans must take into account a variety of factors, many of which have been (or should be) described elsewhere in the roadmap. 
But, as we expect the above analysis to show, in many of these different parts of the X-stack, there will be interdependencies and the crosscutting effects of changes in other component areas of the X-stack are likely to be laced or scattered through the previous three subsections. In some cases it may be desirable to break out a summary of these considerations as a separate section in order to highlight gaps or to insure that activities are suitably coordinated. Currently we have focused on four such crosscutting areas: resiliency, power, performance and programmability.
4.1 Systems Software

The system software list is often that software that manages the system, but is transparent to the user.  It includes the operating system, run time system, I/O system, and the interfaces to the external environment, with includes archives, real time data streams, and increasingly, clouds.

4.1.1 Operating systems

4.1.1.1 Technology drivers for Operating Systems

Lots of words

4.1.1.2 Alternative R&D strategies for Operating Systems

Lots of words

4.1.1.3 Recommended research agenda Operating Systems

4.1.1.4 Crosscutting considerations

Lots of words

4.1.2 Runtime Systems

4.1.2.1 Technology and Science drivers for Runtime Systems

Lots of words

4.1.2.2 Alternative R&D strategies for Runtime Systems

Lots of words

4.1.2.3 Recommended research agenda Runtime Systems

4.1.2.4 Crosscutting considerations

Lots of words

4.1.3 I/O systems

4.1.3.1 Technology and Science drivers for I/O Systems

Lots of words

4.1.3.2 Alternative R&D strategies for I/O Systems

Lots of words

4.1.3.3 Recommended research agenda I/O Systems

Lots of words

Crosscutting considerations
Lots of words

4.1.4 External Environments

4.1.4.1 Technology and Science drivers for External Environments

Lots of words

4.1.4.2 Alternative R&D strategies for External Environments 
Lots of words

4.1.4.3 Recommended research agenda External Environments

Lots of words

Crosscutting considerations
Lots of words

4.1.5 Systems Management 
4.1.5.1 Technology and Science drivers for System Management

Lots of words

4.1.5.2 Alternative R&D strategies for System Management

Lots of words

4.1.5.3 Recommended research agenda System Management

Lots of words

Crosscutting considerations
 Lots of words

4.2 Development Environments

The application development environment is the software that the user has to program, debug, and optimize programs.  It includes the programming language, frameworks, compilers, libraries, debuggers, performance analysis tools, and at exascale, probably fault tolerance

4.2.1 Programming Models and Languages

4.2.1.1 Technology and Science drivers for Programming Models and Languages

New aspects of exascale systems, e.g., heterogeneous processors, global name space, etc.

Evolution vs revolution

4.2.1.2 Alternative R&D strategies for Programming Models and Languages.

Lots of words

4.2.1.3 Recommended research agenda Programming Models and Languages

Lots of words

4.2.1.4 Crosscutting considerations

Lots of words

4.2.2 Frameworks

4.2.2.1 Technology and Science drivers for Frameworks

Support for multi-scale and multi-physics S/W

4.2.2.2 Alternative R&D strategies for Frameworks

Lots of words

4.2.2.3 Recommended research agenda Frameworks

Lots of words

4.2.2.4 Crosscutting considerations

Lots of words

4.2.3 Compilers

4.2.3.1 Technology and Science drivers for Compilers

Manage entire sockets (Kogge report goal)

4.2.3.2 Alternative R&D strategies for Compilers

Lots of words

4.2.3.3 Recommended research agenda Compilers

Lots of words

4.2.3.4 Crosscutting considerations
Lots of words

4.2.4 Libraries

4.2.4.1 Technology and Science drivers for Libraries

Lots of words

4.2.4.2 Alternative R&D strategies for Libraries

Lots of words

4.2.4.3 Recommended research agenda Libraries

Lots of words

4.2.4.4 Crosscutting considerations

Lots of words

4.2.5 Debugging tools

4.2.5.1 Technology and Science drivers for Debugging

Lots of words

4.2.5.2 Alternative R&D strategies for Debugging

Lots of words

4.2.5.3 Recommended research agenda Debugging

Lots of words

4.2.5.4 Crosscutting considerations

Lots of words

4.3 Applications

While IESP may not focus on developing applications per se, nevertheless they are the very reason for the existence of such systems.  It may be that exascale systems are specialized machines, co-designed with specific families of applications in mind.  Therefore, IESP needs to invest in the technology that makes these applications feasible.

4.3.1 Application Pioneers

4.3.1.1 Technology and Science drivers for specific exascale applications

In Paris we focused on:

Earth Sciences (incl. weather and climate)

Physics (incl. astro, high-energy, and plasma)

Chemistry, material science, and nanoscale

Life Sciences

Engineering, Finance, and Optimization

4.3.1.2 Alternative R&D strategies for specific exascale applications

Lots of words

4.3.1.3 Recommended research agenda specific exascale applications

Lots of words

4.3.1.4 Crosscutting considerations

Lots of words

4.3.2 Application Element: Algorithms

4.3.2.1 Technology and Science drivers for Algorithms

Lots of words

4.3.2.2 Alternative R&D strategies for Algorithms

Lots of words

4.3.2.3 Recommended research agenda Algorithms

Lots of words

4.3.2.4 Crosscutting considerations

Lots of words

4.3.3 Application Support: Data Analysis and Visualization

4.3.3.1 Technology and Science drivers for Data Analysis and Visualization

Lots of words

4.3.3.2 Alternative R&D strategies for Data Analysis and Visualization

Lots of words

4.3.3.3 Recommended research agenda Data Analysis and Visualization

Lots of words

4.3.3.4 Crosscutting considerations

 Lots of words

4.4 Crosscutting Dimensions 

4.4.1 Resilience
4.4.1.1 Technology and Science drivers for Resilience

-Faults everyday in PetaScale systems, Exascale will be worse

-Need to cope with continuous stream of failures (applications will have to resist to several errors, of different kinds, during their execution)

-SW errors & HW errors, Undetected Soft errors (Silent errors) are already a problem. 
Issues to address:

1) limits of the current checkpoint-restart approach, 2) software stack is not fault aware, nor consistent across layers with respect to fault detection, notification and management, 3) new technologies are available (SSD devices, Virtualization), 4) needs for more I/O, more Disc and more scalable file systems, 5) Fault prediction and proactive migration are not mature enough, 6) there is no system in place to deal with silent errors, 7) Event logging is too fuzzy, 8) lack of experimental platform. 

4.4.1.2 Alternative R&D strategies for Resilience

Improving Fault/errors (soft, hard) collection, notification, understanding, modeling, confinement and prediction

Improving checkpoint-restart (new FT protocols, fast-reexec, etc.) and avoid global restart

Improve/design Resilient storage, I/O and file systems

Improve communication resilience (from low level to MPI or other execution/communication paradigms)

Integration new technologies SSD devices, virtual machines, specific network?

Development of resilient software environment (below the applications)

Develop programming environment for resilient applications 

Development of  “naturally fault tolerant algorithm”

Usability of ABFT at large scale?

Development of experimental framework (software) to stress and validate Resilience mechanisms.

(  Many alternative strategies ( need to define milestones and may be priorities.

4.4.1.3 Recommended research agenda Resilience

Lots of words

4.4.1.4 Crosscutting considerations
Lots of words

4.4.2 Power
4.4.2.1 Technology and Science drivers for Power

Lots of words

4.4.2.2 Alternative R&D strategies for Power

Lots of words

4.4.2.3 Recommended research agenda Power

Lots of words

4.4.2.4 Crosscutting considerations

Lots of words

4.4.3 Performance Optimization

4.4.3.1 Technology and Science drivers for Performance Optimization

Exascale systems will consist of complex configurations with a huge number of potentially heterogeneous components. Deep software hierarchies of large, complex software components will be required to make use of such systems. Sophisticated integrated performance measurement, analysis, and optimization capabilities will be required to efficienctly operate an exascale system.

4.4.3.2 Alternative R&D strategies for Performance Optimization

A large number of approaches for performance analysis exist that have successfully applied at small and medium scale. The large amount of performance data may seem to impede the use at exascale. However, this might not be the case as long as features like memory size and I/O capabilities scale with compute power. An instrumented application is nothing but an application with modified demands on the system executing it. This makes current approaches for performance analysis still feasible in the future as long as all involved software components are concurrent and scalable. In addition to increased scalability techniques like automatic analysis, advanced filtering techniques, on-line monitoring, clustering and analysis as well as data mining will be of increased importance. A combination of various techniques will have to be applied.

Finally, in addition to user-controlled analysis and tuning of higher level components of the X-stack, self-monitoring, self-tuning frameworks, middle ware, and runtime schedulers, especially at lower levels, are necessary. 

Of course, all this might not work for machine architectures radically different from todays machines; this very likely will need radically different approaches to performance optimization.

4.4.3.3 Recommended research agenda Performance Optimization

The following considerations are key for a successful approach to performance at exascale:

· Failover or more general the operation with failed components should be performance neutral.

· An exascale system has to be capable to monitor the performance of components, not just the functionality.

· Hardware and software components need to provide sufficient performance details for analysis if a performance problem unexpectedly escalates to higher levels.

· Metrics beyond FLOPs need to be developed to identify and quantify performance problems, to measure the sustained performance and the gap to the attainable peak performance.

· Programming models should be designed with performance analysis in mind. Part of that could be a (standardized) hidden control mechanism in the runtime system that will be able to dynamically control – in time and space – the generation of performance data if requested. 

· Performance analysis in the presence of “noise” requires inclusion of appropriate statistical descriptions.

· Performance analysis needs to incorporate techniques from the areas of signal processing and data mining.

4.4.3.4 Crosscutting considerations

To ensure performance analysis and optimization at exascale, the various components and layers of the X-stack have to be designed to be transparent with respect to performance. This performance intransparency will result in escalation of unforeseen problems to higher layers, including the application. This is not a really new problem, but certain properties of an exascale system significantly increase its severity and significance.

· At this scale, there always will be failing components in the system with a large impact on performance. A “real-world” application will never run on the exact same configuration twice.

· Load balancing issues limit the success even on moderately concurrent systems, and the challenge of locality will become another severe issue which has to be addressed by appropriate mechanisms and tools. 

· Dynamic power management, e.g., at hardware level inside a CPU, will result in performance variability between cores and across different runs. The alternative to run at lower speed without dynamic power adjustments may not be an option in the future. 

· The unknown expectation of the application performance at exascale will make it difficult to detect a performance problem if it is escalated undetected to the application level.

· The ever growing higher integration of components into a single chip and the use of more and more hardware accelerators makes it more difficult to monitor application performance and move performance data out of the system unless special hardware support will be integrated into future systems.

Altogether this will require a integrated and collaborative approach to handle performance issues and correctly detect and analyze performance problems. 

4.4.4 Programmability
4.4.4.1 Technology and Science drivers for Programmability
Lots of words

4.4.4.2 Alternative R&D strategies for Programmability
Lots of words

4.4.4.3 Recommended research agenda Programmability
Lots of words

4.4.4.4 Crosscutting considerations

Lots of words

5. Summary report

· The identification and description of each technology area and its current status.

· Critical factors (show-stoppers) which if not met will cause the roadmap to fail.

· Areas not addressed in the roadmap.

· Technical recommendations.

· Implementation recommendations.
