BOAST
Performance Portability Using Meta-Programming and Auto-Tuning

Frédéric Desprez\(^1\), Brice Videau\(^{1,3}\), Kevin Pouget\(^1\), Luigi Genovese\(^2\), Thierry Deutsch\(^2\), Dimitri Komatitsch\(^3\), Jean-François Méhaut\(^1\)

\(^1\)INRIA/LIG - CORSE, \(^2\)CEA - L_Sim, \(^3\)CNRS

Workshop CCDSC
October 6, 2016
Scientific Application Portability

Limited Portability
- Huge codes (more than 100,000 lines), Written in FORTRAN or C++
- Collaborative efforts
- Use many different programming paradigms (OpenMP, OpenCL, CUDA, ...)

But Based on Computing Kernels
- Well defined parts of a program
- Compute intensive
- Prime target for optimization

Kernels Should Be Written
- In a portable manner
- In a way that raises developer productivity
- To present good performance
HPC Architecture Evolution

Very Rapid and Diverse, Top500:
- Sunway processor (TaihuLight)
- Intel processor + Xeon Phi (Tianhe-2)
- AMD processor + nVidia GPU (Titan)
- IBM BlueGene/Q (Sequoia)
- Fujitsu SPARC64 (K Computer)
- Intel processor + nVidia GPU (Tianhe-1)
- AMD processor (Jaguar)

Tomorrow?
- ARM + DSP?
- Intel Atom + FPGA?
- Quantum computing?

How to write kernels that could adapt to those architectures? (well maybe not quantum computing...)
Related Work

- **Ad hoc autotuners (usually for libraries):**
 - Atlas [6] (C macro processing)
 - SPIRAL [4] (DSL)
 - ...

- **Generic frameworks using annotation systems:**
 - POET [7] (external annotation file)
 - Orio [3] (source annotation)
 - BEAST [1] (Python preprocessor based, embedded DSL for optimization space definition/pruning)

- **Generic frameworks using embedded DSL:**
 - Halide [5] (C++, not very generic, 2D stencil targeted)
 - Heterogeneous Programming Library [2] (C++)
Classical Tuning of Computing Kernels

- Kernel optimization workflow
- Usually performed by a knowledgeable developer
Classical Tuning of Computing Kernels

- Compilers perform optimizations
- Architecture specific or generic optimizations
Classical Tuning of Computing Kernels

- Performance data hint at source transformations
- Architecture specific or generic hints
Classical Tuning of Computing Kernels

- Multiplication of kernel versions and/or loss of versions
- Difficulty to benchmark versions against each-other
Meta-programming of optimizations in BOAST

High level object oriented language
BOAST Workflow

- Generate combination of optimizations
- C, OpenCL, FORTRAN and CUDA are supported
Compilation and analysis are automated

Selection of best version can also be automated
BOAST Architecture

1. Optimization space prunner: ASK, Collective Mind
2. Select target language
3. Select performance metrics
4. Select input data
5. Best performing version

- Application kernel (SPECFEM3D, BigDFT, ...)
- Kernel written in BOAST DSL
- BOAST code generation
- BOAST runtime (gcc, opencl)
- Binary analysis tool like MAQAO
- Binary kernel
- Select compiler and options
- Select performance metrics
- Select input data
- Select target language

- C kernel
- Fortran kernel
- OpenCL kernel
- CUDA kernel
- C with vector intrinsics kernel
Example: Laplace Kernel from ARM

```c
void laplace(const int width,
            const int height,
            const unsigned char src[height][width][3],
            unsigned char dst[height][width][3]){
    for (int j = 1; j < height -1; j++) {
        for (int i = 1; i < width -1; i++) {
            for (int c = 0; c < 3; c++) {
                int tmp = -src[j -1][i -1][c] - src[j -1][i][c] - src[j -1][i +1][c]
                      - src[j +1][i -1][c] - src[j +1][i][c] - src[j +1][i +1][c];
                dst[j][i][c] = (tmp < 0 ? 0 : (tmp > 255 ? 255 : tmp));
            }
        }
    }
}
```

- C reference implementation
- Many opportunities for improvement
- ARM GPU Mali 604 within the Montblanc project
Example: Laplace in OpenCL

```c
1 kernel laplace(const int width,
2     const int height,
3     global const uchar *src,
4     global uchar *dst){
5     int i = get_global_id(0);
6     int j = get_global_id(1);
7     for (int c = 0; c < 3; c++) {
8         int tmp = -src[3*width*(j-1) + 3*(i-1) + c]
9             - src[3*width*(j-1) + 3*(i  ) + c]
10            - src[3*width*(j-1) + 3*(i+1) + c]
11            - src[3*width*(j   ) + 3*(i-1) + c]
12            + 9*src[3*width*(j   ) + 3*(i  ) + c]
13            - src[3*width*(j   ) + 3*(i+1) + c]
14            - src[3*width*(j+1) + 3*(i-1) + c]
15            - src[3*width*(j+1) + 3*(i  ) + c]
16            - src[3*width*(j+1) + 3*(i+1) + c];
17     dst[3*width*j + 3*i + c] = clamp(tmp, 0, 255);
18     }
19 }
```

- OpenCL reference implementation
- Outer loops mapped to threads
- 1 pixel per thread
Example: Vectorizing

```c
kernel laplace(const int width,
const int height,
global const uchar *src,
global uchar *dst){
    int i = get_global_id(0);
    int j = get_global_id(1);
    uchar16 v11_ = vload16( 0, src + 3*width*(j-1) + 3*5*i - 3 );
    uchar16 v12_ = vload16( 0, src + 3*width*(j-1) + 3*5*i );
    uchar16 v13_ = vload16( 0, src + 3*width*(j-1) + 3*5*i + 3 );
    uchar16 v21_ = vload16( 0, src + 3*width*(j ) + 3*5*i - 3 );
    uchar16 v22_ = vload16( 0, src + 3*width*(j ) + 3*5*i );
    uchar16 v23_ = vload16( 0, src + 3*width*(j ) + 3*5*i + 3 );
    uchar16 v31_ = vload16( 0, src + 3*width*(j+1) + 3*5*i - 3 );
    uchar16 v32_ = vload16( 0, src + 3*width*(j+1) + 3*5*i );
    uchar16 v33_ = vload16( 0, src + 3*width*(j+1) + 3*5*i + 3 );
    int16 v11 = convert_int16 ( v11_ );
    int16 v12 = convert_int16 ( v12_ );
    int16 v13 = convert_int16 ( v13_ );
    int16 v21 = convert_int16 ( v21_ );
    int16 v22 = convert_int16 ( v22_ );
    int16 v23 = convert_int16 ( v23_ );
    int16 v31 = convert_int16 ( v31_ );
    int16 v32 = convert_int16 ( v32_ );
    int16 v33 = convert_int16 ( v33_ );
    int16 res = v22 * (int16)9 - v11 - v12 - v13 - v21 - v23 - v31 - v32 - v33;
    res = clamp(res, (int16)0, (int16)255);
    uchar16 res_ = convert_uchar16(res);
    vstore8(res_.s01234567, 0, dst + 3*width*j + 3*5*i);
    vstore8(res_.s89ab, 0, dst + 3*width*j + 3*5*i + 8);
    vstore8(res_.scd, 0, dst + 3*width*j + 3*5*i + 12);
    dst[3*width*j + 3*5*i + 14] = res_.se;
}
```

- Vectorized OpenCL implementation
- 5 pixels instead of one (15 components)
Example: Synthesizing Vectors

1. \texttt{uchar16 v11_ = vload16 (0, src + 3*width*(j-1) + 3*5*i - 3);}
2. \texttt{uchar16 v12_ = vload16 (0, src + 3*width*(j-1) + 3*5*i);}
3. \texttt{uchar16 v13_ = vload16 (0, src + 3*width*(j-1) + 3*5*i + 3);}
4. \texttt{uchar16 v21_ = vload16 (0, src + 3*width*(j) + 3*5*i - 3);}
5. \texttt{uchar16 v22_ = vload16 (0, src + 3*width*(j) + 3*5*i);}
6. \texttt{uchar16 v23_ = vload16 (0, src + 3*width*(j) + 3*5*i + 3);}
7. \texttt{uchar16 v31_ = vload16 (0, src + 3*width*(j+1) + 3*5*i - 3);}
8. \texttt{uchar16 v32_ = vload16 (0, src + 3*width*(j+1) + 3*5*i);}
9. \texttt{uchar16 v33_ = vload16 (0, src + 3*width*(j+1) + 3*5*i + 3);}

Becomes

1. \texttt{uchar16 v11_ = vload16 (0, src + 3*width*(j-1) + 3*5*i - 3);}
2. \texttt{uchar16 v13_ = vload16 (0, src + 3*width*(j-1) + 3*5*i + 3);}
3. \texttt{uchar16 v12_ = uchar16 (v11_.s3456789a, v13_.s56789abc);}
4. \texttt{uchar16 v21_ = vload16 (0, src + 3*width*(j) + 3*5*i - 3);}
5. \texttt{uchar16 v22_ = uchar16 (v21_.s3456789a, v23_.s56789abc);}
6. \texttt{uchar16 v23_ = vload16 (0, src + 3*width*(j) + 3*5*i + 3);}
7. \texttt{uchar16 v31_ = vload16 (0, src + 3*width*(j+1) + 3*5*i - 3);}
8. \texttt{uchar16 v33_ = vload16 (0, src + 3*width*(j+1) + 3*5*i + 3);}
9. \texttt{uchar16 v32_ = uchar16 (v31_.s3456789a, v33_.s56789abc);}

- Reducing the number of loads since the vector are overlapping
- Synthesizing loads should save bandwidth
- Could be pushed further
Example: Reducing Variable Size

```c
1  int16 v11 = convert_int16(v11_);
2  int16 v12 = convert_int16(v12_);
3  int16 v13 = convert_int16(v13_);
4  int16 v21 = convert_int16(v21_);
5  int16 v22 = convert_int16(v22_);
6  int16 v23 = convert_int16(v23_);
7  int16 v31 = convert_int16(v31_);
8  int16 v32 = convert_int16(v32_);
9  int16 v33 = convert_int16(v33_);
10 int16 res = v22 * (int)9 - v11 - v12 - v13 - v21 - v23 - v31 - v32 - v33;
11  res = clamp(res, (int16)0, (int16)255);
```

Becomes

```c
1  short16 v11 = convert_short16(v11_);
2  short16 v12 = convert_short16(v12_);
3  short16 v13 = convert_short16(v13_);
4  short16 v21 = convert_short16(v21_);
5  short16 v22 = convert_short16(v22_);
6  short16 v23 = convert_short16(v23_);
7  short16 v31 = convert_short16(v31_);
8  short16 v32 = convert_short16(v32_);
9  short16 v33 = convert_short16(v33_);
10 short16 res = v22 * (short)9 - v11 - v12 - v13 - v21 - v23 - v31 - v32 - v33;
11  res = clamp(res, (short16)0, (short16)255);
```

- Using smaller intermediary types could save registers
Example: Optimization Summary

- Very complex process (several other optimizations could be applied)
- Intimate knowledge of the architecture required
- Numerous versions to be benchmarked
- Difficult to test combination of optimizations:
 - Vectorization,
 - Intermediary data type,
 - Number of pixels processed,
 - Synthesizing loads.
- Can we use BOAST to automate the process?
Example: Laplace Kernel with BOAST

- Based on components instead of pixel
- Use tiles rather than only sequence of elements
- Parameters used in the BOAST version:
 - `x_component_number`: a positive integer
 - `y_component_number`: a positive integer
 - `vector_length`: 1, 2, 4, 8 or 16
 - `temporary_size`: 2 or 4
 - `synthesizing_loads`: true or false
Example: ARM results

<table>
<thead>
<tr>
<th>Image Size</th>
<th>Naive (s)</th>
<th>Best (s)</th>
<th>Acceleration</th>
<th>BOAST (s)</th>
<th>Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>768 x 432</td>
<td>0.0107</td>
<td>0.00669</td>
<td>x1.6</td>
<td>0.000639</td>
<td>x16.7</td>
</tr>
<tr>
<td>2560 x 1600</td>
<td>0.0850</td>
<td>0.0137</td>
<td>x6.2</td>
<td>0.00687</td>
<td>x12.4</td>
</tr>
<tr>
<td>2048 x 2048</td>
<td>0.0865</td>
<td>0.0149</td>
<td>x5.8</td>
<td>0.00715</td>
<td>x12.1</td>
</tr>
<tr>
<td>5760 x 3240</td>
<td>0.382</td>
<td>0.0449</td>
<td>x8.5</td>
<td>0.0325</td>
<td>x11.8</td>
</tr>
<tr>
<td>7680 x 4320</td>
<td>0.680</td>
<td>0.0747</td>
<td>x9.1</td>
<td>0.0581</td>
<td>x11.7</td>
</tr>
</tbody>
</table>

- Optimal parameter values:
 - x_component_number: 16
 - y_component_number: 1
 - vector_length: 16
 - temporary_size: 2
 - synthesizing_loads: false

- Close to what ARM engineers found
Example: Performance Portability

<table>
<thead>
<tr>
<th>Image Size</th>
<th>BOAST ARM (s)</th>
<th>BOAST Intel</th>
<th>Ratio</th>
<th>BOAST NVIDIA</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>768 x 432</td>
<td>0.000639</td>
<td>0.000222</td>
<td>x2.9</td>
<td>0.0000715</td>
<td>x8.9</td>
</tr>
<tr>
<td>2560 x 1600</td>
<td>0.00687</td>
<td>0.00222</td>
<td>x3.1</td>
<td>0.000782</td>
<td>x8.8</td>
</tr>
<tr>
<td>2048 x 2048</td>
<td>0.00715</td>
<td>0.00226</td>
<td>x3.2</td>
<td>0.000799</td>
<td>x8.9</td>
</tr>
<tr>
<td>5760 x 3240</td>
<td>0.0325</td>
<td>0.0108</td>
<td>x3.0</td>
<td>0.00351</td>
<td>x9.3</td>
</tr>
<tr>
<td>7680 x 4320</td>
<td>0.0581</td>
<td>0.0192</td>
<td>x3.0</td>
<td>0.00623</td>
<td>x9.3</td>
</tr>
</tbody>
</table>

Optimal parameter values (Intel I7 2760, 2.4 GHz):
- _x_component_number: 16
- _y_component_number: 4..2
- _vector_length: 8
- _temporary_size: 2
- _synthesizing_loads: false

Optimal parameter values nVidia (GTX 680):
- _x_component_number: 4
- _y_component_number: 4
- _vector_length: 4
- _temporary_size: 2
- _synthesizing_loads: false

Performance **portability** among several different architectures.
Real Applications: BigDFT

- Novel approach for DFT computation based on Daubechies wavelets
- Fortran and C code, MPI, OpenMP, supports CUDA and OpenCL
- Reference is hand tuned code on target architecture (Nehalem)
- Toward a BLAS-like library for wavelets
Real Applications: SPECFEM3D

- Seismic wave propagation simulator
- SPECFEM3D ported to OpenCL using BOAST
 - Unified code base (CUDA/OpenCL)
 - Refactoring: kernel code base reduced by 40%
 - Similar performance on NVIDIA Hardware
 - Non regression test for GPU kernels

- On the Mont-Blanc prototype:
 - OpenCL+MPI runs
 - Speedup of 3 for the GPU version
Conclusions

- BOAST v1.0 is released
- BOAST language features:
 - Unified C and FORTRAN with OpenMP support,
 - Unified OpenCL and CUDA support,
 - Support for vector programming.
- BOAST runtime features:
 - Generation of parametric kernels,
 - Parametric compilation,
 - Non-regression testing of kernels,
 - Benchmarking capabilities (PAPI support)
Find and port new kernels to BOAST (GYSELA)

Couple BOAST with other tools:
- Parametric space pruners (speed up optimization),
- Binary analysis (guide optimization, MAQAO),
- Source to source transformation (improve optimization),
- Binary transformation (improve optimization).

Improve BOAST:
- Improve the eDSL to make it more intuitive,
- Better vector support,
- Gather feedback.
Hartwig Anzt, Blake Haugen, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra.
Experiences in autotuning matrix multiplication for energy minimization on gpus.
cpe.3516.

Jorge F. Fabeiro, Diego Andrade, and Basilio B. Fraguela.
Writing a performance-portable matrix multiplication.

Albert Hartono, Boyana Norris, and Ponnuswamy Sadayappan.
Annotation-based empirical performance tuning using Orio.
Also available as Preprint ANL/MCS-P1556-1008.

Markus Püschel, José MF Moura, Bryan Singer, Jianxin Xiong, Jeremy Johnson, David Padua, Manuela Veloso, and Robert W Johnson.
SPIRAL: A generator for platform-adapted libraries of signal processing algorithms.

Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines.

R. Clint Whaley and Antoine Petitet.
Minimizing development and maintenance costs in supporting persistently optimized BLAS.

Qing Yi, Keith Seymour, Haihang You, Richard Vuduc, and Dan Quinlan.
POET: Parameterized optimizations for empirical tuning.