Do we need dataflow
programming?

Anthony Danalis

Innovative Computing Laboratory
University of Tennessee

CCDSC’16, Chateau des Contes

icLor

INNOVATIVE

CUI\/IF’UTING LABORATORY
ue UNIVERSITY of TENNESSEE

—
Programming vs Execution

v'Dataflow based execution

v'Think ILP, Out of order execution

v’ Automatically derived by hardware/compiler/etc

v'Dataflow programming

v'Think Workflows

v'Flow of data explicitly specified by human

ic>or

—
Task-based vs Dataflow-based

Is task execution the same thing?

OpenMP

StarPU PaRSEC

*SS

HPX

—
Task-based vs Dataflow-based

Is task execution the same thing?

OpenMP
StarPU

Runtime derives
dataflow
Mo|je1ep
salJ10ads Jadojana(

—
Limits of deriving the dataflow

P: nodes
N: number of kernel executions

Tk: kernel execution time
To: overhead of discovery

To*N << Tk*N/P =>
To*N <= 0.1*Tk*N/P =>
P <= 0.1*Tk/To

To = 100ns, Tk = 10Qus => P <= 100

Explicit Dataflow Programming

Why does Explicit Dataflow
differ from everyt

The human developer explicit

Programming (EDP)
hing else?

vV expresses the

semantics of the algorithm/application in a way that

the runtimes/compilers can o

irectly take advantage

of without deriving information.

Explicit Dataflow Programming

Why does Explicit Dataflow Programming (EDP)
differ from everything else?

The human developer explicitly expresses the

semantics of the algorithm/a

pplication in a way that

the runtimes/compilers can directly take advantage
of without deriving information.

Benefits:

Perfect Parallelism, Automatic Comm./Comp. overlap,

Collective operation detection.

Perf. Case study: NWChem CCSD

DO {x4)
CALL nxt_ctx_next(ctx, icounter, next) <——3 Global work stealing
IF ((int_mb(..)+...).ne.8) THEN

CALL MA_PUSH_GET() o
CALL DFILL()]— Allocate and initialize C
DO {x2}
IF ((int_mb(...)+... .eq. int_mb(...)) THEN
CALL MA_PUSH_GET(....k_a)]_ Allocate and fetch A
CALL GET_HASH_BLOCK(d_a, dbl_mb(k_a), ...) (same for B, not shown)
CALL DGEMM(...) < 1 Actual work
END IF
END DO

CALL TCE_SORT_4(dbl_mb(k_c), ...)
CALL ADD_HASH_BLOCK(d_c, dbl_mb(k_c), ...) <——3 Push C back
END DO

Structure of PTG computation

INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT
A B A B A B A B
GEMM GEMM GEMM GEMM
(0 2 4 6
INPUT INPUT INPUT INPUT INPUT INPUT INPUT INPUT

A C B A CB ACB ACEB
1 3 5 7
c.. C c. . C

C C

REDUCTION(1,0)

C

I WRITE_RESULT_TO_GA I

—
CCSD Execution Time on 32 nodes

5000 7T T T

e Orlglnal32--0--
4500 [Q fffffffff ~ PaRSEC32—&—]

4000
< 3500

W
(@)
o
o

2500

2000

Execution Time (sec

—
(O)
(@)
o

1000

ool -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Cores/Node

icL>or

Performance bottlenecks

DO {x4} .
CALL nxt_ctx_next(ctx, icounter, next)) 1. Global atomlc _
F MBI ne ST ThEN 2. Coarse grain parallelism
CALL MA_PUSH_GET()
CALL DFILLY()

(---,K_a) 3. No opportunity for
comm/comp overlap

CALL GET_HASH_BLOCK(d_a, dbl_mb(k_a), ...)
CALL DGEMM(...)
END IF
END DO
CALL TCE_SORT_4(dbl_mb(k_c), ...)
CALL ADD_HASH_BLOCK(d_c, dbl_mb(k_c), ...)
END DO

Trace of Original code

7Ae*07 B8A4e+07

Trace of Original code (zoom)

t

lementa

imp

O
LL]
)
e
©
R
V-
®
O
&
©
e
—

|

Whose fault is the bad performance?

Audience participation. Choose who to blame:

* MPI

* Developers

* Programming paradigm (Coarse Grain Parallelism)
 Vetter (for not telling his users about dataflow)

—
Whose fault is it?

Audience participation. Choose who to blame:

* MPI

* Developers

* Programming paradigm (Coarse Grain Parallelism)
 Vetter (for not telling his users about dataflow)

MPI has a simple and an advanced APl and many developers use only the simple one.
- Rusty

ic>or

Message so far

» Using CGP does not scale
» Using Dataflow execution does

« BUT, developers have to understand their code

Sure, but can we make EDP easy?

Can we make dataflow execution harness all the
benefits without explicit dataflow programming?

Sure, but can we make EDP easy?

Can we make dataflow execution harness all the
benefits without explicit dataflow programming?

Yes, we can. In some cases. Maybe”?

—
Bridging Explicit & Implicit dataflow

v'Reduce the cost of discovery

» Code specialization
« Developer expertise
« Results of compiler analysis

v'Harness benefits of parametric representation

» Compress the Graph on the fly
« Detect patterns in series that translate to expressions, or functions
« Use compiler inserted hints

—
Reduce the unnecessary discovery

DO {x4}
CALL nxt_ctx_next(ctx, icounter, next)
IF ((int_mb(...)+...).ne.8) THEN
CALL MA_PUSH_GET()
CALL DFILL()
DO {x2}
IF ((int_mb(...)+... .eq. int_mb(...)) THEN
CALL MA_PUSH_GET(...,k_a)
CALL GET_HASH_BLOCK(d_a, dbl_mb(k_a), ...)
CALL DGEMM(...) < - Insert_Task
END IF
END DO
CALL TCE_SORT_4(dbl_mb(k_c), ...)
CALL ADD_HASH_BLOCK(d_c, dbl_mb(k_c), ...)
END DO

—
Reduce the unnecessary discovery

DO {x4}
CALL nxt_ctx_next(ctx, icounter, next)
IF ((int_mb(...)*+...).ne.8) THEN

CALL MA_PUSH_GET() <G - Handle Generation
CALL DFILL()
DO {x2)
IF ((int_mb(...)+... .eq. int_mb(...)) THEN
CALL MA_PUSH_GET(....k_a) < . Handle Generation
CALL GET_HASH_BLOCK(d_a, dbl_mb(k_a), ...) < - Data Fetching
CALL DGEMM(...) < - Insert_Task
END IF
END DO
CALL TCE_SORT_4(dbl_mb(k_c), ...)
CALL ADD_HASH_BLOCK(d_c, dbl_mb(k_c), ...) <. - Data Flushing
END DO

ic>or

—
Reduce the unnecessary discovery

DO {x4} < - Pleasantly Parallel
CALL nxt_ctx_next(ctx, icounter, next)

IF ((int_mb(...)+...).ne.8) THEN

CALL MA_PUSH_GET() < - Handle Generation
CALL DFILL()
DO {x2)
IF ((int_mb(...)+... .eq. int_mb(...)) THEN
CALL MA_PUSH_GET(....k_a) < . Handle Generation
CALL GET_HASH_BLOCK(d_a, dbl_mb(k_a), ...) < - Data Fetching
CALL DGEMM(...) < - Insert_Task
END IF
END DO
CALL TCE_SORT_4(dbl_mb(k_c), ...)
CALL ADD_HASH_BLOCK(d_c, dbl_mb(k_c), ...) <. - Data Flushing
END DO

ic>or

Dataflow between subroutines

Code grouping based on dataflow

Message so far

* Discovering the whole DAG does not scale
* Pruning the DAG requires human expertise
« Compiler analysis can assist with pruning

« BUT, developers have to understand their code

—
Compressing the DAG to a PTG?

for (k = 0; k < MT; k++) {
Insert_Task(zgeqrt, A[k][k], INOUT, T[k][k], OUTPUT);
for (m = k+1; m < MT; m++) {
Insert_Task(ztsqgrt, A[k][k], INOUT | REGION_DIREGION_U,
A[m][k], INOUT | LOCALITY,
T[m][k], OUTPUT);
by
for (n = k+1; n < NT; n++) {
Insert_Task(zunmgr, A[k][k], INPUT | REGION_L,
T[k][k], INPUT,
A[Lk][n], INOUT);
for (m = k+1; m < MT; m++) {
Insert_Task(ztsmgr, A[k][n], INOUT,
A[m][n], INOUT | LOCALITY,
A[m][k], INPUT,
T[m][k], INPUT);

ic>or

What does a DAG look like?

Fully compressed DAG (PTG)

GEQRT (k) TSMOR (k,m, n) ==
k=0 ..mt-1 {[k,m,n]->[n] :k+l==n && k+l==m} | _ o p¢.q 8 B
m=%k+1 .. mt-1 B B
n=%k+1 .. mt-1 \ \
vV VvV
, % & " = Iz
o R\ % g o 3 0
M % $ Y S P 3
— - //‘Q \5’ B ~ ~
~ % 7 & - 8, B
B o & 5 oo
d : ° 3 1
b % pol = v 29
A & | - — g W
é\ ej x» 1 P ('Ir i
A & N & 5 -
= 7 & Y, o -
‘(:"\ «(.,L 'hf A
L8 & . + =)
o] 3 D i = Y
N s \ | X
A S <Y = Il +
4 ¥ : B P
ot N 2 &
1 /’ /\ m
|_\ ’
et é\ 1 E
= v
& 4 g
SN v -
— {[k,m] ->[k,m+1] :m<mt-1}
UNMOR (k, n) TSQRT (k, m)
k=0 .. mt-1 k=0 .. mt-1
n=%+1 .. mt-1 m=%k+1 .. mt-1

Compressing the DAG to a PTG?

for (k = 0; k < MT; k++) { Task_A
Insert_Task(zgeqrt, A[k][k], |Task_B D5
for (m = k+1; m < MT; m++) { Task B
Insert_Task(ztsqgrt, A[K][Task_B GION_U,
Am]L Task_C
T[m][-
1 Task_D
for (n = k+1; n < NT; n++) { Task_D
Insert_Task(zunmgr, A[k]L Task_D
TLKIL|
ALk] [ha5—=roo 75

for (m = k+1; m < MT; m++) {
Insert_Task(ztsmgr, A[k][n], INOUT,
A[m][n], INOUT | LOCALITY,
A[m][k], INPUT,
T[m][k], INPUT);

Compressing the DAG to a PTG?

for (k = 0; k < MT; k++) { Task_A
Insert_Task(zgeqrt, A[k][k], |Task_B D5
for (m = k+1; m < MT; m++) { Task B
Insert_Task(ztsqgrt, A[k][Task_B GION_U,
Am]L Task_C
T[m][-
1 Task_D
for (n = k+1; n < NT; n++) { Task_D
Insert_Task(zunmgr, A[k]L Task_D
TLKIL|
ALk] [ha5—=roo 75

for (m = k+1; m < MT; m++) {
Insert_Task(ztsmgr, A[k][n], INOUT,
A[m][n], INOUT | LOCALITY,
A[m][k], INPUT,
T[m][k], INPUT);

Compressing the DAG to a PTG?

for (k = 0; k < MT; k++) {
Insert_Task(zgeqrt, A[k][k],
for (m = k+1; m < MT; m++) {
Insert_Task(ztsqgrt, A[Lk]L

A[m][
TIm][

Iy

for (n = k+1; n < NT; n++) {

Task_A
Task_B
Task_B
Task_B
Task_C7
Task_D(1-3)

D

GION_U,

Insert_Task(zunmgr, A[k]L

for (m = k+1; m < MT; m++) {

Insert_Task(ztsmgr, A[k][n], INOUT,

1, INPUT | REGION_L,
T[k][k], INPUT,
A[Lk][n], INOUT);

A[m][n], INOUT | LOCALITY,

A[m][k], INPUT,
T[m][k], INPUT);

—
Compressing the DAG to a PTG?

for (k = 0; k < MT; k++) {
Insert_Task(zgeqrt, A[k][k], INOUT, T[k][k], OUTPUT);
for (m = k+1; m < MT; m++) {
Insert_Task(ztsqgrt, A[k][k], INOUT | REGION_DIREGION_U,
A[m][k], INOUT | LOCALITY,
T[m][k], OUTPUT);
by
for (n = k+1; n < NT; n++) {
Insert_Task(zunmgr, A[k][k], INPUT | REGION_L,
T[k][k], INPUT,
A[Lk][n], INOUT);
for (m = k+1; m < MT; m++) {
Insert_Task(ztsmgr, A[k][n], INOUT,
A[m][n], INOUT | LOCALITY,

Iteration_vector(Ck,n,m) A[m][k]1, INPUT,
Indices(A[k][n],k,n) T[m][k], INPUT);

icL>or

Compressing the DAG to a PTG?

for (k = 0; k < MT; k++) {
Insert_Task(zgeqrt, A[k][k],

for (m = k+1; m < MT; m++) {
Insert_Task(ztsgrt, A[k][
A[m][
T[m][
Iy
for (n = k+1; n < NT; n++) {
Insert_Task(zunmgr, A[k]L
TLkIL
ALK]L
for (m = k+1; m < MT; m++)
Insert_Task(ztsmgr, A[
Al
Al

Task_A
Task_B
Task_B
Task_B
Task_C
Task_D
Task_D
Task_D
Task_C
Task_D
Task_D
Task_D
Task_A

T ...

D

GION_U,

Compressing the DAG to a PTG?

for (k = 0; k < MT; k++) { Task_A
Insert_Task(zgeqrt, A[k][k], | Task B D;
for (m = k+1; m < MT; m++) { Task B
Insert_Task(ztsqgrt, A[Lk]L Task B GION_U,
A Task_Clk
TmI[ask_C(,n)—7k<m<MT
1 Task_D(k,n,m)
for (n = k+1; n < NT; n++) { -
Insert_Task(zunmgr, A[k][k], INPUT | REGION_L,

T[k][k], INPUT,
A[Lk][n], INOUT);
for (m = k+1; m < MT; m++) {
Insert_Task(ztsmgr, A[k][n], INOUT,
A[m][n], INOUT | LOCALITY,
A[m][k], INPUT,
T[m][k], INPUT);

—
Conclusion

© Dataflow execution is more scalable than CGP
© Dataflow programming can maximize benefits

® Compilers cannot do it by themselves

® Not even Torsten’s compiler!

® Runtimes can, but at a cost

» Dataflow for the masses means sharing the load
between developer, compiler and runtime.

ic>or

Quotes

Developers know about their program much
more than a compiler can ever figure out.

- Doug Miles

Let the human do what humans do best.
- Jeff Hollingsworth

