Morton Ordering of 2D Arrays for Parallelism and Efficient Access to Hierarchical Memory

David W. Walker
Cardiff School of Computer Science & Informatics
WalkerDW@cardiff.ac.uk
Main Objectives of Talk

- To give a progress report on current research relating to efficient memory access in parallel and distributed computers.
- To describe the Morton order of memory layout for arrays.
- To present preliminary timing results for matrix multiplication, Cholesky factorization, and FFT, when Morton ordering is used.
The Problem

• Modern computer systems have complex hierarchical memory systems with multiple layers (caches, main memory, remote memory, etc.)
• Applications need to be able to control placement and transfer of data in memory.
• Need a model of concurrent computation that takes hierarchical memory into account and balances load across heterogeneous processors.
Matrix Multiply: ijk

```c
void matMul_ijk(float* M, float* N, float* P, int Width) {
    int i, j, k;
    for (i = 0; i < Width; ++i) {
        for (j = 0; j < Width; ++j) {
            float sum = 0;
            for (k = 0; k < Width; ++k) {
                float a = M[i * Width + k];
                float b = N[k * Width + j];
                sum += a * b;
            }
            P[i * Width + j] = sum;
        }
    }
}
```

M is accessed by row, and N is accessed by column
Matrix Multiply: ikj

```c
void matMul_ikj(float* M, float* N, float* P, float* work, int Width)
{
    int i, j, k;
    for (i = 0; i < Width; ++i){
        for (j = 0; j < Width; ++j) work[j] = 0;
        for (k = 0; k < Width; ++k) {
            float a = M[i * Width + k];
            for (j = 0; j < Width; ++j) {
                float b = N[k * Width + j];
                work[j] += a * b;
            }
        }
    }
    for (j = 0; j < Width; ++j) P[i * Width + j] = work[j];
}
```

M and N are both accessed by row.
Matrix Multiplication Variants

The graph illustrates the logarithm of time (seconds) for different matrix multiplication variants (kji, jki, ijk, kij, ikj) as a function of matrix size, n. The graph was generated using gcc -O3 on a MacBook.
Morton Order

- Can be done in-place using *unshuffle* operations
- Good locality of reference – should work well for hierarchical memories.
- Gives rise naturally to recursive parallel algorithms.
Square $2^n \times 2^n$ Arrays

Block size, $b = 2^{n-r}$
Unshuffle Operation

• The unshuffle operation takes a shuffled sequence of items and unshuffles them:

\[a_1 b_1 a_2 b_2 \ldots a_n b_n \rightarrow a_1 a_2 \ldots a_n b_1 b_2 \ldots b_n \]

where each \(a_i \) is a contiguous vector of \(\ell_a \) items, and each \(b_i \) is a contiguous vector of \(\ell_b \) items.

• Each \(a_i b_i \) pair represents one row of the matrix.

• The unshuffle operation partitions the matrix over columns.
Divide-And-Conquer Unshuffle

• Suppose \(n=8 \)
 1. Group as: \((a_1b_1a_2b_2)(a_3b_3a_4b_4)(a_5b_5a_6b_6)(a_7b_7a_8b_8)\)
 2. Swap first b vector with second a vector in each group: \((a_1a_2b_1b_2)(a_3a_4b_3b_4)(a_5a_6b_5b_6)(a_7a_8b_7b_8)\)
 3. Re-group as: \((a_1a_2b_1b_2a_3a_4b_3b_4)(a_5a_6b_5b_6a_7a_8b_7b_8)\)
 4. Swap first pair of b’s with second pair of a’s in each group: \((a_1a_2a_3a_4b_1b_2b_3b_4)(a_5a_6a_7a_8b_5b_6b_7b_8)\)
 5. Re-group as: \((a_1a_2a_3a_4b_1b_2b_3b_4a_5a_6a_7a_8b_5b_6b_7b_8)\)
 6. Swap first set of 4 b’s with second set of 4 a’s: \((a_1a_2a_3a_4a_5a_6a_7a_8b_1b_2b_3b_4b_5b_6b_7b_8)\)
Apply Morton Ordering to Matrix A

```
mortonOrder (A,n,b){
    if( b < n ){
        p1 = (n*n)/4
        p2 = 2*p1
        p3 = 3*p1
        unshuffle(A,n/2,n/2)
        unshuffle(A+p2,n/2,n/2)
        mortonOrder(A,n/2,b)
        mortonOrder(A+p1,n/2,b)
        mortonOrder(A+p2,n/2,b)
        mortonOrder(A+p3,n/2,b)
    }
}
```

n is matrix size, b is block size. Both are powers of 2.
Examples of Related Work

- Previous work on *locality preserving hashing* and *space-filling curves*.
- *Sequoia*: programming language designed to facilitate the development of memory hierarchy aware parallel programs. Abstractly expose memory hierarchy in programming model. 10.1145/1188455.1188543
- Thiyagalingam, Beckmann and Kelly, 10.1002/cpe.1018
- Mellor-Crummey, Whalley and Kennedy, 10.1023/A:1011119519789
Matrix Multiplication with RQB

- C=AB, for square matrices.
- Apply one level of Morton ordering to A and B
- For i and j = 0,1:
 \[C_{i,j} = A_{i,0}B_{0,j} + A_{i,1}B_{1,j} \]
- So C=AB can be done recursively
- MO means the matrices at each level of recursion are stored contiguously.
Recursive Matrix Multiply

\[
\text{mm_Recursive}(A,B,C,n,b)\{ \quad // \ C = C + AB \\
\text{if}(n==b)\{ \\
\quad \text{matmul}(A,B,C,n) \\
\} \quad \text{End of recursion. Choose b so matrices fit in cache.} \\
\text{else}\{ \\
\quad \text{mm_Recursive}(A00,B00,C00,n/2,b) \\
\quad \text{mm_Recursive}(A01,B10,C00,n/2,b) \\
\quad \text{mm_Recursive}(A00,B01,C01,n/2,b) \\
\quad \text{mm_Recursive}(A01,B11,C01,n/2,b) \\
\quad \text{mm_Recursive}(A10,B00,C10,n/2,b) \\
\quad \text{mm_Recursive}(A11,B10,C10,n/2,b) \\
\quad \text{mm_Recursive}(A10,B01,C11,n/2,b) \\
\quad \text{mm_Recursive}(A11,B11,C11,n/2,b) \\
\} \quad \text{Note: all the work happens in the leaves of the recursion tree.} \\
\text{return} \ C \\
\}
\]
Preliminary Timing Results

• Platform 1: MacBook, OS X 10.9.5
 – 2.66GHz Intel Core 2 Duo processor
 – 3Mb cache, 4Gb main memory
 – gcc v. 4.8.2, using –O3 flag

• Platform 2: MacBook, OS X 10.10.5
 – 2.5GHz Intel Core i7 (4 cores)
 – 256Kb L2 cache, 6Mb L3 cache
 – 16Mb main memory
 – gcc v. 4.8.5, using –O3 flag
Preliminary Timing Results

- Platform 3: Xeon E5-2620, Red Hat Enterprise Linux Server v6.2
 - 2Ghz Intel Xeon E5-2620 processor (6 cores)
 - 15Mb cache
 - gcc v. 4.8.5, using –O3 flag
Platform 1

Matrix size, \(n = 2048 \)

Matrix size, \(n = 4096 \)

Matrix size, \(n = 8192 \)

Matrix size, \(n = 16384 \)
Platform 3

Matrix size, n = 2048

Matrix size, n = 4096

Matrix size, n = 8192

Matrix size, n = 16384
2D FFT with Morton Ordering

• The Fourier transform of an nxn array, X, can be expressed as:
 \[Y = F_n X F_n \]
 where element \((p,q)\) of matrix \(F_n\) is \(w_n^{pq}\)
 \[w_n = \exp(-2\pi i / n) \]

• The fast Fourier transform (FFT) recasts this dense matrix multiply in terms of sparse operations.
2D Fast Fourier Transform

\[Y = F_n X F_n = F_n X F_n^T = A_t \ldots A_1 P_n^T X P_n A_1^T \ldots A_t^T \]

- \(t = \log_2(n) \)
- \(P_n^T \) is a permutation matrix such that \(P_n^T X \) exchanges column \(k \) of \(X \) with column \(k' \), where \(k' \) is the \(t \) bits of \(k \) in reverse order.
\[A_q = I_r \otimes B_L \]

\[B_L = \begin{bmatrix}
I_{L*} & \Omega_{L*} \\
I_{L*} & -\Omega_{L*}
\end{bmatrix} \]

\[\Omega_{L*} = \text{diag}(1, \omega_L, \ldots, \omega_{L*}^{L-1}) \]

- where \(L = 2^q, r = n/L, L* = L/2 \)
- \(B_L \) is the “butterfly matrix”.
- \(A_q \) is made up of \(r \) diagonal blocks of \(B_L \).
\[F_n \Pi_{b,n} = B_{b,n} (I_{n/b} \otimes F_b) \]

\[
\Pi_{b,n} = \Pi_n (I_2 \otimes \Pi_{n/2})(I_4 \otimes \Pi_{n/4}) \ldots (I_{n/(2b)} \otimes \Pi_{2b})
\]

\[
B_{b,n} = B_n (I_2 \otimes B_{n/2})(I_4 \otimes B_{n/4}) \ldots (I_{n/(2b)} \otimes B_{2b})
\]

\[
= A_t A_{t-1} \ldots A_{s+1}
\]

- \(b = 2^s, \ b < n \).
- \(\Pi_n \) is a permutation matrix that performs a perfect shuffle index operation.
- \(\Pi_{b,n} \) performs a partial bit reversal on indices.
$H_{b,n}$ permutes the columns and rows of X based on a partial bit-reversal of indices.

$$H_{b,n} = \Pi_{b,n}^T X \Pi_{b,n}$$

$$F_n X F_n = F_n X F_n^T = B_{b,n} (I_{n/b} \otimes F_b) H_{b,n} (I_{n/b} \otimes F_b) B_{b,n}^T$$

What is in the red box? This is the result of partitioning the matrix into $b \times b$ blocks and performing a 2D FFT on each.

Denote this by $K_{b,n}$.
\[F_n X F_n = F_n X F_n^T = A_t \ldots A_{s+1} K_{b,n} A_{s+1}^T \ldots A_t^T \]

\[Y_{b,n} = A_t \ldots A_{s+1} K_{b,n} \]
\[F_n X F_n^T = \tilde{X} = Y_{b,n} A_{s+1}^T \ldots A_t^T \]
\[\tilde{X}^T = A_t \ldots A_{s+1} Y_{b,n}^T \]

1. Evaluate \(Y_{b,n} \)
2. Transpose
3. Evaluate \(\tilde{X}^T \)
4. Transpose
Recursive 2D FFT

• Apply Morton ordering to X to give contiguous bxb blocks.
• Re-order rows and columns of re-ordered X according to partial bit-reverse permutation.
• Do 2D FFT of resulting bxb blocks.
• Recursively pre-multiply by A_q to build up blocks of size $(2b)x(2b)$, then $(4b)x(4b)$, etc.
• Transpose.
• Recursively pre-multiply by A_q to build up blocks of size $(2b)x(2b)$, then $(4b)x(4b)$, etc.
• Transpose.
Recursive 2D FFT

```c
fft2D_Recursive (X,n,b,dofft){
    if(n==b){
        if(dofft) fft2D(X,n)
    }
    else{
        fft2D_Recursive(X00,n/2,b,dofft)
        fft2D_Recursive(X01,n/2,b,dofft)
        fft2D_Recursive(X10,n/2,b,dofft)
        fft2D_Recursive(X11,n/2,b,dofft)
        butterfly(X,n,b)
    }
    return
}
```

End of recursion. Choose b so matrices fit in cache.

Butterfly routine applies butterfly matrix to nxn block, overwriting X.

Note: includes work at each level of the recursion tree.
Platform 1 Timings: FFT

Matrix size: 1024x1024

Matrix size: 2048x2048

Matrix size: 4096x4096

Matrix size: 8192x8192
Platform 2 Timings: FFT

Matrix size, n = 2048

Matrix size, n = 4096

Matrix size, n = 8192

Matrix size, n = 16384
Platform 3 Timings: FFT

Matrix size, $n = 2048$

Matrix size, $n = 4096$

Matrix size, $n = 8192$

Matrix size, $n = 16384$
FFT Results

• Morton ordering doesn’t improve FFT timings by as much as for matrix multiplication.
• Computation to data movement ratio is n for matrix multiply, and $\log(n)$ for FFT.
• FFT results are preliminary – still scope for improvements.
• Extra overhead in FFT arises from need to apply partial bit reverse, butterfly, and transpose operations to Morton ordered matrices.
Cholesky Factorization

1. Triangular factorization (DPOTRF)
2. Triangular solve (DTRSM)
3. Rank b update (DSYRK)

b
Platform 2

1024x1024

- Time (seconds)
- Block size

- Standard
- Standard 2
- Morton naive
- Morton TBK
- Morton Table
- Unblocked
Platform 2

Chart showing the time (seconds) for different block sizes with various algorithms such as Standard, Standard 2, Morton naive, Morton TBK, Morton Table, and Unblocked.
Concluding Remarks

• Morton ordering and related recursive parallel algorithms may work well when hierarchical memory is handled programmatically. Extend MPI to control the memory hierarchy??
• Need to optimize FFT further.
• Next step will be to incorporate parallelism.
• Will look at frameworks and languages that use recursion to extract parallelism.
Thank you for your attention.

Any Questions?