Low rank approximation and write avoiding algorithms

Laura Grigori

Alpines

Inria Paris - LJLL, UPMC

with A. Ayala, S. Cayrols, J. Demmel
Motivation - the communication wall

Time to move data >> time per flop
• Gap steadily and exponentially growing over time

Annual improvements
• Time / flop 59% (1995-2004) 34% (2006-2016)
• Interprocessor bandwidth 26%
• Interprocessor latency 15%
• DRAM latency 5.5%

DRAM latency:
• DDR2 (2007) ~ 120 ns 1x
• DDR4 (2014) ~ 45 ns 2.6x in 7 years
• Stacked memory ~ similar to DDR4

Time/flop
• 2006 Intel Yonah ~ 2GHz x 2 cores (32 GFlops/chip) 1x
• 2015 Intel Haswell ~2.3GHz x 16 cores (588 GFlops/chip) 18x in 9 years

Source: J. Shalf, LBNL
2D Parallel algorithms and communication bounds

- Memory per processor = n^2 / P, the lower bounds on communication are
 \[\text{#words}_\text{moved} \geq \Omega \left(\frac{n^2}{P^{1/2}} \right), \quad \text{#messages} \geq \Omega \left(P^{1/2} \right) \]

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Minimizing #words (not #messages)</th>
<th>Minimizing #words and #messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesky</td>
<td>ScaLAPACK</td>
<td>ScaLAPACK</td>
</tr>
<tr>
<td>LU</td>
<td>ScaLAPACK uses partial pivoting</td>
<td>[LG, Demmel, Xiang, 08]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Khabou, Demmel, LG, Gu, 12]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uses tournament pivoting</td>
</tr>
<tr>
<td>QR</td>
<td>ScaLAPACK</td>
<td>[Demmel, LG, Hoemmen, Langou, 08]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uses different representation of Q</td>
</tr>
<tr>
<td>RRQR</td>
<td>ScaLAPACK</td>
<td>[Demmel, LG, Gu, Xiang 13]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uses tournament pivoting, 3x flops</td>
</tr>
</tbody>
</table>

- Only several references shown, block algorithms (ScaLAPACK) and communication avoiding algorithms
- CA algorithms exist also for SVD and eigenvalue computation
Parallel write avoiding algorithms

Need to avoid writing suggested by emerging memory technologies, as NVMs:
- Writes more expensive (in time and energy) than reads
- Writes are less reliable than reads

Some examples:
- Phase Change Memory: Reads 25 us latency
 Writes: 15x slower than reads (latency and bandwidth)
 consume 10x more energy
- Conductive Bridging RAM - CBRAM
 Writes: use more energy (1pJ) than reads (50 fJ)
- Gap improving by new technologies such as XPoint and other FLASH alternatives, but not eliminated
Parallel write-avoiding algorithms

- Matrix A does not fit in DRAM (of size M), need to use NVM (of size $\frac{n^2}{P}$)

- Two lower bounds on volume of communication
 - Interprocessor communication: $\Omega \left(\frac{n^2}{P^{1/2}} \right)$
 - Writes to NVM: $\frac{n^2}{P}$

- Result: any three-nested loop algorithm (matrix multiplication, LU,..), must asymptotically exceed at least one of these lower bounds
 - If $\Omega \left(\frac{n^2}{P^{1/2}} \right)$ words are transferred over the network, then $\Omega \left(\frac{n^2}{P^{2/3}} \right)$ words must be written to NVM!

- Parallel LU: choice of best algorithm depends on hardware parameters

<table>
<thead>
<tr>
<th></th>
<th>#words interprocessor comm.</th>
<th>#writes NVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left-looking</td>
<td>$O((n^3 \log^2 P) / (P M^{1/2}))$</td>
<td>$O(n^2 / P)$</td>
</tr>
<tr>
<td>Right-looking</td>
<td>$O((n^2 \log P) / P^{1/2})$</td>
<td>$O((n^2 \log^2 P) / P^{1/2})$</td>
</tr>
</tbody>
</table>
Low rank matrix approximation

- Problem: given $m \times n$ matrix A, compute rank-k approximation ZW^T, where Z is $m \times k$ and W^T is $k \times n$.

- Problem with diverse applications
 - from scientific computing: fast solvers for integral equations, H-matrices
 - to data analytics: principal component analysis, image processing, …

- Used in iterative process by multiplication with a set of vectors

 $Ax \rightarrow ZW^T x$

 Flops: $2mn \rightarrow 2(m + n)k$
Low rank matrix approximation

• Problem: given m x n matrix A, compute rank-k approximation ZW^T, where Z is m x k and W^T is k x n.

• Best rank-k approximation \(A_k = U_k \Sigma_k V_k^T \) is the rank-k truncated SVD of A

\[
\min_{\text{rank}(\tilde{A}_k) \leq k} \| A - \tilde{A}_k \|_2 = \| A - A_k \|_2 = \sigma_{k+1}(A)
\]

Original image, 707x256

Rank-75 approximation, SVD

Rank-38 approximation, SVD

Image source: https://upload.wikimedia.org/wikipedia/commons/a/a1/Alan_Turing_Aged_16.jpg
Low rank matrix approximation: trade-offs

- Truncated CA-SVD
- Truncated SVD
- Lanczos Algorithm
 - CA rank revealing QR
 - (strong) QRCP
 - LU with column/row tournament pivoting
 - LU with column, rook pivoting

Flops ➔ Accuracy ➔ Communication

Randomized algorithms ??
Select k cols using tournament pivoting

Partition \(A = (A_1, A_2, A_3, A_4) \).
Select \(k \) cols from each column block,
by using QR with column pivoting

At each level \(i \) of the tree
At each node \(j \) do in parallel
Let \(A_{v,i-1}, A_{w,i-1} \) be the cols selected by
the children of node \(j \)
Select \(b \) cols from \((A_{v,i-1}, A_{w,i-1}) \),
by using QR with column pivoting
Return columns in \(A_{ji} \)
LU_CRTP: LU with column/row tournament pivoting

- Given A of size $m \times n$, compute a factorization

 $$P_r A P_c = \begin{pmatrix} \overline{A}_{11} & \overline{A}_{12} \\ \overline{A}_{21} & \overline{A}_{22} \end{pmatrix} = \begin{pmatrix} I & \overline{A}_{11}^{-1} I \\ \overline{A}_{21} \overline{A}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \overline{A}_{11} & \overline{A}_{12} \\ \overline{A}_{21} & \overline{A}_{22} \end{pmatrix},$$

 $$S(\overline{A}_{11}) = \overline{A}_{22} - \overline{A}_{21} \overline{A}_{11}^{-1} \overline{A}_{12},$$

 where \overline{A}_{11} is $k \times k$, P_r and P_c are chosen by using tournament pivoting

- LU_CRTP factorization satisfies

 \[
 1 \leq \frac{\sigma_i(A)}{\sigma_i(\overline{A}_{11})}, \quad \frac{\sigma_j(S(\overline{A}_{11}))}{\sigma_{k+j}(A)} \leq \sqrt{(1 + F^2(n - k))(1 + F^2(m - k))},
 \]

 \[
 \|S(\overline{A}_{11})\|_{\text{max}} \leq \min\left((1 + F\sqrt{k})\|A\|_{\text{max}}, F\sqrt{1 + F^2(m - k)\sigma_k(A)}\right)
 \]

 for any $1 \leq i \leq k$ and $1 \leq j \leq \min(m,n) - k$, $F \leq \frac{1}{\sqrt{2k}}(n/k)^{\log_2(2\sqrt{2k})}$
• Given LU_CRTP factorization

\[P_r A P_c = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{21} & \bar{A}_{22} \end{pmatrix} = \begin{pmatrix} I & \bar{A}_{11} \\ \bar{A}_{21}\bar{A}_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{11} & \bar{A}_{12} \end{pmatrix}, \]

the rank - k CUR approximation is

\[\tilde{A}_k = \begin{pmatrix} I & \bar{A}_{11} \\ \bar{A}_{21}\bar{A}_{11}^{-1} & \bar{A}_{11} \end{pmatrix} = \begin{pmatrix} \bar{A}_{11} & \bar{A}_{12} \\ \bar{A}_{11} & \bar{A}_{12} \end{pmatrix} \]

• \(\bar{A}_{11}^{-1} \) is never formed, its factorization is used when \(\tilde{A}_k \) is applied to a vector

• In randomized algorithms, \(U = C^+ A R^+ \), where \(C^+ \), \(R^+ \) are Moore-Penrose generalized inverses
Results for image of size 256x707

Original image, 707x256

LU_CRTP: Rank-38 approx.

LUPP: Rank-75 approximation

SVD: Rank-38 approx.

SVD: Rank-75 approximation

LU_CRTP: Rank-75 approx.
Tournament pivoting for sparse matrices

A has arbitrary sparsity structure\hspace{1cm} G(A^T A) is an \(n^{1/2} \) - separable graph

\[
\text{flops}(TP_{FT}) \leq 2\text{nnz}(A)k^2 \\
\text{flops}(TP_{BT}) \leq 8\frac{\text{nnz}(A)}{P}k^2 \log \frac{n}{k}
\]

\[
\text{flops}(TP_{FT}) \leq O\left(\text{nnz}(A)k^{3/2}\right) \\
\text{flops}(TP_{BT}) \leq O\left(\frac{\text{nnz}(A)}{P}k^{3/2} \log \frac{n}{k}\right)
\]

- Randomized algorithm by Clarkson and Woodruff, STOC’13

Given \(n \times n \) matrix \(A \), it computes \(LDW^T \), where \(D \) is \(k \times k \), such that

\[
\|A - LDW^T\|_F \leq (1 + \varepsilon)\|A - A_k\|_F, \hspace{1cm} A_k \text{ is the best rank - } k \text{ approximation.}
\]

\[
\text{flops} \leq O(\text{nnz}(A)) + n\varepsilon^{-4} \log^{O(1)}(n\varepsilon^{-4})
\]

- Tournament pivoting is faster if
 \[
 \varepsilon \leq \frac{1}{(\text{nnz}(A)/n)^{1/4}}
 \]
 or if \(\varepsilon = 0.1 \) and \(\text{nnz}(A)/n \leq 10^4 \)
Performance results

Comparison of number of nonzeros in the factors L/U, Q/R.

<table>
<thead>
<tr>
<th>Name/size</th>
<th>Nnz A(:,1:K)</th>
<th>Rank K</th>
<th>Nnz QRCP/ LU_CRTP</th>
<th>Nnz LU_CRTP/LUPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rfdevice 74104</td>
<td>633</td>
<td>128</td>
<td>10.0</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>2255</td>
<td>512</td>
<td>82.6</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>4681</td>
<td>1024</td>
<td>207.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Parab_fem 525825</td>
<td>896</td>
<td>128</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>3584</td>
<td>512</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>7168</td>
<td>1024</td>
<td>-</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Performance results

Selection of 256 columns by tournament pivoting

Edison, Cray XC30 (NERSC) – 2x12-core Intel Ivy Bridge (2.4 GHz)

Tournament pivoting uses SPQR (T. Davis) + dGEQP3 (Lapack), time in secs

Matrices: \(n \times n \) \quad \text{vs} \quad \text{n x n/32}

- Parab_fem: 528825 x 528825 528825 x 16432
- Mac_econ: 206500 x 206500 206500 x 6453

<table>
<thead>
<tr>
<th>Matrices</th>
<th>Time (n \times 2k)</th>
<th>Time (n \times n/32)</th>
<th>Number of MPI processes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPQR+GEQP3</td>
<td></td>
<td>16 32 64 128 256 512 1024</td>
</tr>
<tr>
<td>Parab_fem</td>
<td>0.26</td>
<td>0.26+1129</td>
<td>46.7 24.5 13.7 8.4 5.9 4.8 4.4</td>
</tr>
<tr>
<td>Mac_econ</td>
<td>0.46</td>
<td>25.4+510</td>
<td>132.7 86.3 111.4 59.6 27.2 - -</td>
</tr>
</tbody>
</table>
Conclusions

• Deterministic low rank approximation algorithm
 • Accuracy close to rank revealing QR factorization
 • Complexity close to randomized algorithms

• Future work
 • Design algorithms that do not need explicitly the matrix
 • Do a thorough comparison with randomized algorithms

Thanks to: EC H2020 NLAFET
Further information:
http://www-rocq.inria.fr/who/Laura.Grigori/