
1/ 26

Scheduling tree-shaped task graphs
to minimize memory and makespan

Lionel Eyraud-Dubois (INRIA, Bordeaux, France),
Loris Marchal (CNRS, Lyon, France),

Oliver Sinnen (Univ. Auckland, New Zealand),
Frédéric Vivien (INRIA, Lyon, France)

CCDSC 2014
September 5, 2014

2/ 26

Introduction

Task graph scheduling

I Application modeled as a graph

I Map tasks on processors and schedule them

I Usual performance metric: makespan (time)

Today: focus on memory
I Workflows with large temporary data
I Bad evolution of perf. for computation vs. communication:

1/Flops � 1/bandwidth � latency

I Gap between processing power and communication cost
increasing exponentially

annual improvements

Flops rate 59%
mem. bandwidth 26%

mem. latency 5%
I Avoid communications
I Restrict to in-core memory (out-of-core is expensive)

3/ 26

Focus on Task Trees

Motivation:

I Arise in multifrontal sparse matrix factorization

I Assembly/Elimination tree: application task graph is a tree

I Large temporary data

I Memory usage becomes a bottleneck

4/ 26

Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

+

u

−

−

+

7

+

v

−
2 z

5 1z x

×

/

+

t

Pebble-game rules:
I Inputs can be pebbled anytime
I If all ancestors are pebbled, a node can be pebbled
I A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles

4/ 26

Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

tu

−

−

+

7

+

v

−
2 z

5 1z x

×

/

+

+

Pebble-game rules:
I Inputs can be pebbled anytime
I If all ancestors are pebbled, a node can be pebbled
I A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles

4/ 26

Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

u

−

−

+

7

+

v

−
2 z

5 1z x

×

/

+

+

t

Pebble-game rules:
I Inputs can be pebbled anytime
I If all ancestors are pebbled, a node can be pebbled
I A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles

4/ 26

Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

−

−

+

7

+

v

−
2 z

5 1z x

×

/

+

+

tu

Pebble-game rules:
I Inputs can be pebbled anytime
I If all ancestors are pebbled, a node can be pebbled
I A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles

4/ 26

Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

tu

−

−

+

7

+

v

−
2 z

5 1z x

×

/

+

+

Pebble-game rules:
I Inputs can be pebbled anytime
I If all ancestors are pebbled, a node can be pebbled
I A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles

4/ 26

Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

Complexity results

Problem on trees:

I Polynomial algorithm [Sethi & Ullman, 1970]

General problem on DAGs (common subexpressions):

I P-Space complete [Gilbert, Lengauer & Tarjan, 1980]

I Without re-computation: NP-complete [Sethi, 1973]

Pebble-game rules:
I Inputs can be pebbled anytime
I If all ancestors are pebbled, a node can be pebbled
I A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles

5/ 26

Notations: Tree-Shaped Task Graphs

f3f2

f5f4

n3n2

n5n4

00

n1

0

54

2

1

3

I In-tree of n nodes

I Output data of size fi
I Execution data of size ni
I Input data of leaf nodes

have null size

I Memory for node i : MemReq(i) =

 ∑
j∈Children(i)

fj

 + ni + fi

5/ 26

Notations: Tree-Shaped Task Graphs

f3f2

f5f4

n3n2

n5n4

00

0

n1

54

2

1

3

I In-tree of n nodes

I Output data of size fi
I Execution data of size ni
I Input data of leaf nodes

have null size

I Memory for node i : MemReq(i) =

 ∑
j∈Children(i)

fj

 + ni + fi

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22

00

0

4

3

1

54

2

Peak memory so far:

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22
0

0

0

41

54

2 3

Peak memory so far: 4

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22

00

0

4

3

1

54

2

Peak memory so far: 4

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22

00

0

4

3

1

54

2

Peak memory so far: 6

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22

00

0

4

3

1

54

2

Peak memory so far: 6

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22

00

0

4

3

1

54

2

Peak memory so far: 8

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22

00

0

4

3

1

54

2

Peak memory so far: 8

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22

00

0

4

3

1

54

2

Peak memory so far: 12

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22

00

0

4

3

1

54

2

Peak memory so far: 12

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22

0

00

4

4

2 3

1

5

Peak memory so far: 12

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22

00

0

4

3

1

54

2

Peak memory so far:

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22

00

0

4

3

1

54

2

Peak memory so far: 9

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22

00

0

4

3

1

54

2

Peak memory so far: 9

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22
0

0

0

41

54

2 3

Peak memory so far: 9

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22

00

0

4

3

1

54

2

Peak memory so far: 11

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22

0

00

4

4

2 3

1

5

Peak memory so far: 11

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

6/ 26

Impact of Schedule on Memory Peak

33

22

61

22

0

00

4

4

2 3

1

5

Peak memory so far: 11 (which is better than 12)

Two existing optimal sequential schedules:

I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]

7/ 26

Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

fnf2

r

P1
P2 . . . Pn

f1

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

In practice post-order have very good performance

8/ 26

Outline

Introduction and motivation

Complexity of parallel tree processing

Heuristics for weighted task trees

Simulations

Summary and perspectives

9/ 26

Model for Parallel Tree Processing

I p identical processors

I Shared memory of size M

I Task i has execution times pi
I Parallel processing of nodes ⇒ larger memory

I Trade-off time vs. memory

f3f2

f5f4

n3n2

n5n4
00

0

n1

2

1

3

54

10/ 26

NP-Completeness in the Pebble Game Model

Background:

I Makespan minimization NP-complete for trees (P|trees|Cmax)

I Polynomial when unit-weight tasks (P|pi = 1, trees|Cmax)

I Pebble game polynomial on trees

Pebble game model:

I Unit execution time: pi = 1

I Unit memory costs: ni = 0, fi = 1
(pebble edges, equivalent to pebble game for trees)

Theorem

Deciding whether a tree can be scheduled using at most B pebbles
in at most C steps is NP-complete.

11/ 26

Space-Time Tradeoff

Not possible to get a guarantee on both memory and time
simultaneously:

Theorem 1

There is no algorithm that is both an α-approximation for
makespan minimization and a β-approximation for memory peak
minimization when scheduling tree-shaped task graphs.

For a fixed number of processors:

Theorem 2

For any α(p)-approximation for makespan and β(p)-approximation
for memory peak with p ≥ 2 processors,

α(p)β(p) ≥ 2p

dlog(p)e+ 2
·

12/ 26

Outline

Introduction and motivation

Complexity of parallel tree processing

Heuristics for weighted task trees

Simulations

Summary and perspectives

13/ 26

InnerFirst: Post-Order in Parallel

Motivation:

I Post-Order behavior: process inner nodes ASAP

I Parallel version: give priority to inner nodes

I Naturally limits the number of concurrent subtrees

I Intuitively good to keep memory low

Implementation as a list-scheduling heuristic

I Put ready nodes in a queue (higher priority for inner nodes)

I Schedule them whenever a processor is ready

I Initially, sort leaf nodes using best sequential post-order

Performance:

I (2− 1/p)-approximation for makespan

I Unbounded ratio for memory

I O(n log n) complexity

14/ 26

DeepestFirst: Approach Optimal Makespan

DeepestFirst:

I Compute critical path values for all tasks

I List-scheduling based on critical path values

Performance:

I Known as a good heuristic for makespan minimization

I No guarantee (or intuition) on memory behavior

I O(n log n) complexity

15/ 26

Subtrees: Coarse-Grain Parallelism

Motivation:

I Divide the tree in p large subtrees + small set of other nodes

I Each processor works on its own subtree

I Locally, use memory-optimal sequential algorithm

I Process all remaining nodes sequentially

I Optimization: if more than p subtrees when spliting,
load-balance subtrees on processors

Performance:

I O(n log n) complexity

I p-approximation algorithm for memory

16/ 26

How to Cope with Limited Memory?

Motivation:

I Work with a given quantity of memory

I Optimize makespan under this constraint

Stronger assumptions:

I Reduction tree:
∑

j∈Children(i)

fj ≥ fi

I No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes

16/ 26

How to Cope with Limited Memory?

Motivation:

I Work with a given quantity of memory

I Optimize makespan under this constraint

Stronger assumptions:

I Reduction tree:
∑

j∈Children(i)

fj ≥ fi

I No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes

16/ 26

How to Cope with Limited Memory?

Motivation:

I Work with a given quantity of memory

I Optimize makespan under this constraint

Stronger assumptions:

I Reduction tree:
∑

j∈Children(i)

fj ≥ fi

I No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes

20

7 3

5

16/ 26

How to Cope with Limited Memory?

Motivation:

I Work with a given quantity of memory

I Optimize makespan under this constraint

Stronger assumptions:

I Reduction tree:
∑

j∈Children(i)

fj ≥ fi

I No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes

0

5
7 3

20

7 3

5

20

16/ 26

How to Cope with Limited Memory?

Motivation:

I Work with a given quantity of memory

I Optimize makespan under this constraint

Stronger assumptions:

I Reduction tree:
∑

j∈Children(i)

fj ≥ fi

I No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes

20

10
7 3

0

7 3

20

0

5
7 3

5

20

17/ 26

Memory-Bounded Heuristics: Simple Way

First idea: restrain List-Scheduling heuristics (InnerFirst and
DeepestFirst)

I Choose a feasible amount M
2 of memory

I Check that memory ≤ M
2 when starting a new leaf

I Guarantee: Memory used at most M

Proof ideas:

I Reduction tree: memory reduced by processing inner nodes

I During the processing: at most twice the input memory

18/ 26

Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

I Book memory for parent nodes, ensure they can be processed
later

I Test for memory (booked+used) when starting a leaf

I Never exceeds a given memory M

22

30 16 20

18
1214

18/ 26

Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

I Book memory for parent nodes, ensure they can be processed
later

I Test for memory (booked+used) when starting a leaf

I Never exceeds a given memory M

22

30 16 20

18
1214

18/ 26

Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

I Book memory for parent nodes, ensure they can be processed
later

I Test for memory (booked+used) when starting a leaf

I Never exceeds a given memory M

22

30 16 20

18
1214

18/ 26

Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

I Book memory for parent nodes, ensure they can be processed
later

I Test for memory (booked+used) when starting a leaf

I Never exceeds a given memory M

22

30 16 20

18
1214

2

19/ 26

Outline

Introduction and motivation

Complexity of parallel tree processing

Heuristics for weighted task trees

Simulations

Summary and perspectives

20/ 26

Experimental Testbed

I 76 assembly trees of a set of sparse matrices from University
of Florida Sparse Collection

I Metis and AMD ordering

I 1, 2, 4, or 16 relaxed amalgamation per node

I 608 trees with:
number of nodes: 2,000 to 1,000,000

depth: 12 to 70,000
maximum degree: 2 to 175,000

I 2, 4, 8, 16 or 32 processors

21/ 26

Results

Heuristic Best memory
Avg. normalized

Best makespan
Avg. normalized

memory needed makespan

Subtrees 81.1 % 2.33 0.2 % 1.35
SubtreesOptim 49.9 % 2.45 1.1 % 1.29

InnerFirst 19.1 % 3.77 37.2 % 1.03
DeepestFirst 3.0 % 4.26 95.7 % 1.00

I Memory normalized with optimal sequential memory

I Makespan normalized with best makespan

22/ 26

Memory-Aware Heuristics: Makespan vs. Memory

1.5

2.0

1.4

1.3

1.2

1.1

1.0

Normalized memory limit (log scale)

N
o
rm

al
iz

ed
 m

ak
es

p
an

 (
lo

g
 s

ca
le

)

1 2 4 6 8 10 15 20

4 processors

22/ 26

Memory-Aware Heuristics: Makespan vs. Memory

1.3

1.5

1.4

2.0

1.2

1.1

1.0

Subtrees

N
o
rm

al
iz

ed
 m

ak
es

p
an

 (
lo

g
 s

ca
le

)

Normalized memory limit (log scale)

4 processors

1 2 4 6 8 10 15 20

22/ 26

Memory-Aware Heuristics: Makespan vs. Memory

1.1

1.0

2.0

1.5

1.4

1.3

1.2

Subtrees

SubtreesOptim

Normalized memory limit (log scale)

N
o
rm

al
iz

ed
 m

ak
es

p
an

 (
lo

g
 s

ca
le

)

4 processors

1 2 4 6 8 10 15 20

22/ 26

Memory-Aware Heuristics: Makespan vs. Memory

1.2

1.0

2.0

1.5

1.4

1.3

1.1

InnerFirst

Subtrees

SubtreesOptim

N
o
rm

al
iz

ed
 m

ak
es

p
an

 (
lo

g
 s

ca
le

)

Normalized memory limit (log scale)

4 processors

1 2 4 6 8 10 15 20

22/ 26

Memory-Aware Heuristics: Makespan vs. Memory

1.1

1.5

1.4

1.3

1.0

1.2

2.0

InnerFirst

MemLimitInnerFirst

Subtrees

SubtreesOptim

N
o
rm

al
iz

ed
 m

ak
es

p
an

 (
lo

g
 s

ca
le

)

Normalized memory limit (log scale)

4 processors

1 2 4 6 8 10 15 20

22/ 26

Memory-Aware Heuristics: Makespan vs. Memory

1.1

1.5

1.4

1.3

1.0

1.2

2.0

InnerFirst

MemLimitInnerFirst

MemLimitInnerFirstOptim

Subtrees

SubtreesOptim

Normalized memory limit (log scale)

N
o
rm

al
iz

ed
 m

ak
es

p
an

 (
lo

g
 s

ca
le

)

20

4 processors

1 2 4 6 8 10 15

22/ 26

Memory-Aware Heuristics: Makespan vs. Memory

1.5

1.3

1.4

1.2

2.0

1.0

1.1

DeepestFirst

InnerFirst

MemLimitDeepestFirst

MemLimitDeepestFirstOptim

MemLimitInnerFirst

MemLimitInnerFirstOptim

Subtrees

SubtreesOptim

N
o
rm

al
iz

ed
 m

ak
es

p
an

 (
lo

g
 s

ca
le

)

Normalized memory limit (log scale)

1086421

4 processors

15 20

22/ 26

Memory-Aware Heuristics: Makespan vs. Memory

1.3

1.5

2.0

1.0

1.1

1.2

1.4

DeepestFirst

InnerFirst

MemLimitDeepestFirst

MemLimitDeepestFirstOptim

MemLimitInnerFirst

MemLimitInnerFirstOptim

MemoryBooking

Subtrees

SubtreesOptim

Normalized memory limit (log scale)

N
o
rm

al
iz

ed
 m

ak
es

p
an

 (
lo

g
 s

ca
le

)

4 processors

15 201 2 64 8 10

23/ 26

Memory-Aware Heuristics: Memory Usage

0.00

0.25

0.50

0.75

1.00

5 10 15 20
Normalized amount of available memory

N
or

m
al

iz
ed

 a
m

ou
nt

 o
f u

se
d

m
em

or
y

heuristic
MemoryBooking

MemLimitInnerFirst

MemLimitInnerFirstOptim

MemLimitDeepestFirst

24/ 26

Memory-Aware Heuristics: Makespan vs. memory

2 processors 4 processors 8 processors

16 processors 32 processors

1.0

1.1

1.2

1.3

1.4

1.5

1.0

1.1

1.2

1.3

1.4

1.5

2.0

1.0

1.1

1.2

1.3

1.4

1.5

2.0

1.0

1.1

1.2

1.3

1.4
1.5

2.0

1.0

1.1

1.2
1.3
1.4
1.5

2.0

3.0

1 2 4 6 8 10 15 20 1 2 4 6 8 10 15 20 1 2 4 6 8 10 15 20

1 2 4 6 8 10 15 20 1 2 4 6 8 10 15 20

Normalized amount of limited memory (log scale)

N
or

m
al

iz
ed

m
ak

es
p

an
(l

og
sc

al
e)

Heuristics:

ParSubtrees

ParSubtreesOptim

ParInnerFirst

ParDeepestFirst

ParMemoryBooking

ParMemLimitInnerFirst

ParMemLimitInnerFirstOptim

ParMemLimitDeepestFirst

ParMemLimitDeepestFirstOptim

25/ 26

Outline

Introduction and motivation

Complexity of parallel tree processing

Heuristics for weighted task trees

Simulations

Summary and perspectives

26/ 26

Summary and Perspectives

I Complexity study of parallel tree traversals

I Simple heuristics

I Memory-bounded heuristics

I Simulations on real elimination trees

Future work:

I Consider distributed memory

I Extend results to other class of regular graphs (2D grids, etc.)

I Minimize I/O volume for out-of-core execution

I Consider parallel (malleable) tasks

27/ 26

What does the fox really want?

A break!

	Introduction and motivation
	Complexity of parallel tree processing
	Heuristics for weighted task trees
	Simulations
	Summary and perspectives

