Scheduling tree-shaped task graphs to minimize memory and makespan

Lionel Eyraud-Dubois (INRIA, Bordeaux, France),
Loris Marchal (CNRS, Lyon, France),
Oliver Sinnen (Univ. Auckland, New Zealand),
Frédéric Vivien (INRIA, Lyon, France)

CCDSC 2014
September 5, 2014
Introduction

Task graph scheduling
- Application modeled as a graph
- Map tasks on processors and schedule them
- Usual performance metric: makespan (time)

Today: focus on memory
- Workflows with large temporary data
- Bad evolution of perf. for computation vs. communication:
 $1/\text{Flops} \ll 1/\text{bandwidth} \ll \text{latency}$
- Gap between processing power and communication cost increasing exponentially

<table>
<thead>
<tr>
<th></th>
<th>annual improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flops rate</td>
<td>59%</td>
</tr>
<tr>
<td>mem. bandwidth</td>
<td>26%</td>
</tr>
<tr>
<td>mem. latency</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Avoid communications
- Restrict to in-core memory (out-of-core is expensive)
Focus on Task Trees

Motivation:
- Arise in multifrontal sparse matrix factorization
- Assembly/Elimination tree: application task graph is a tree
- Large temporary data
- Memory usage becomes a bottleneck
Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with the minimum number of registers?

$$7 + (1 + x)(5 - z) - ((u - t)/(2 + z)) + v$$

Pebble-game rules:
- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with the minimum number of registers?

\[7 + (1 + x)(5 - z) - ((u - t)/(2 + z)) + v \]

Pebble-game rules:

- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
How to efficiently compute the following arithmetic expression with the minimum number of registers?

$$7 + (1 + x)(5 - z) - ((u - t)/(2 + z)) + v$$

Pebble-game rules:

- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
How to efficiently compute the following arithmetic expression with the minimum number of registers?

\[7 + (1 + x)(5 - z) - \left(\frac{u - t}{2 + z}\right) + v \]

Pebble-game rules:
- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with the minimum number of registers?

$$7 + (1 + x)(5 - z) - (u - t)/(2 + z) + v$$

Pebble-game rules:
- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
How to efficiently compute the following arithmetic expression with the minimum number of registers?

\[7 + (1 + x)(5 - z) - ((u - t)/(2 + z)) + v \]

Complexity results

Problem on trees:
- Polynomial algorithm [Sethi & Ullman, 1970]

General problem on DAGs (common subexpressions):
- P-Space complete [Gilbert, Lengauer & Tarjan, 1980]
- Without re-computation: NP-complete [Sethi, 1973]

Pebble-game rules:
- Inputs can be pebbled anytime
- If all ancestors are pebbled, a node can be pebbled
- A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

Memory for node i: $\text{MemReq}(i) = \left(\sum_{j \in \text{Children}(i)} f_j \right) + n_i + f_i$
Notations: Tree-Shaped Task Graphs

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

Memory for node i: $\text{MemReq}(i) = \left(\sum_{j \in \text{Children}(i)} f_j \right) + n_i + f_i$
Impact of Schedule on Memory Peak

Peak memory so far:

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 4

Two existing optimal sequential schedules:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 4

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 6

Two existing optimal sequential schedules:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 6

Two existing optimal sequential schedules:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 8

Two existing optimal sequential schedules:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 8

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 12

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 12

Two existing optimal sequential schedules:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 12

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far:

Two existing optimal sequential schedules:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 9

Two existing optimal sequential schedules:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 9

Two existing optimal sequential schedules:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 9

Two existing optimal sequential schedules:
- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 11

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 11

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Impact of Schedule on Memory Peak

Peak memory so far: 11 (which is better than 12)

Two existing optimal sequential schedules:

- Best traversal [J. Liu, 1987]
- Best post-order traversal [J. Liu, 1986]
Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

Post-Order traversals are arbitrarily bad in the general case
There is no constant k such that the best post-order traversal is a k-approximation.

In practice post-order have very good performance
Outline

Introduction and motivation

Complexity of parallel tree processing

Heuristics for weighted task trees

Simulations

Summary and perspectives
Model for Parallel Tree Processing

- p identical processors
- Shared memory of size M
- Task i has execution times p_i
- Parallel processing of nodes \Rightarrow larger memory
- Trade-off time vs. memory
NP-Completeness in the Pebble Game Model

Background:

- Makespan minimization NP-complete for trees ($P|\text{trees}|C_{\text{max}}$)
- Polynomial when unit-weight tasks ($P|p_i = 1, \text{trees}|C_{\text{max}}$)
- Pebble game polynomial on trees

Pebble game model:

- Unit execution time: $p_i = 1$
- Unit memory costs: $n_i = 0, f_i = 1$
 (pebble edges, equivalent to pebble game for trees)

Theorem

Deciding whether a tree can be scheduled using at most B pebbles in at most C steps is NP-complete.
Space-Time Tradeoff

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1
There is no algorithm that is both an α-approximation for makespan minimization and a β-approximation for memory peak minimization when scheduling tree-shaped task graphs.

For a fixed number of processors:

Theorem 2
For any $\alpha(p)$-approximation for makespan and $\beta(p)$-approximation for memory peak with $p \geq 2$ processors,

$$\alpha(p)\beta(p) \geq \frac{2p}{\lceil \log(p) \rceil + 2}.$$
Outline

Introduction and motivation

Complexity of parallel tree processing

Heuristics for weighted task trees

Simulations

Summary and perspectives
InnerFirst: Post-Order in Parallel

Motivation:
- Post-Order behavior: process inner nodes ASAP
- Parallel version: give priority to inner nodes
- Naturally limits the number of concurrent subtrees
- Intuitively good to keep memory low

Implementation as a list-scheduling heuristic
- Put ready nodes in a queue (higher priority for inner nodes)
- Schedule them whenever a processor is ready
- Initially, sort leaf nodes using best sequential post-order

Performance:
- \((2 - 1/p)\)-approximation for makespan
- Unbounded ratio for memory
- \(O(n \log n)\) complexity
DeepestFirst: Approach Optimal Makespan

DeepestFirst:
- Compute critical path values for all tasks
- List-scheduling based on critical path values

Performance:
- Known as a good heuristic for makespan minimization
- No guarantee (or intuition) on memory behavior
- $O(n \log n)$ complexity
Subtrees: Coarse-Grain Parallelism

Motivation:
- Divide the tree in p large subtrees + small set of other nodes
- Each processor works on its own subtree
- Locally, use memory-optimal sequential algorithm
- Process all remaining nodes sequentially
- Optimization: if more than p subtrees when splitting, load-balance subtrees on processors

Performance:
- $O(n \log n)$ complexity
- p-approximation algorithm for memory
How to Cope with Limited Memory?

Motivation:

▶ Work with a given quantity of memory
▶ Optimize makespan under this constraint

Stronger assumptions:

▶ Reduction tree: \[\sum_{j \in Children(i)} f_j \geq f_i \]
▶ No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes
How to Cope with Limited Memory?

Motivation:

▶ Work with a given quantity of memory
▶ Optimize makespan under this constraint

Stronger assumptions:

▶ Reduction tree: \[\sum_{j \in \text{Children}(i)} f_j \geq f_i \]
▶ No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes
How to Cope with Limited Memory?

Motivation:
▶ Work with a given quantity of memory
▶ Optimize makespan under this constraint

Stronger assumptions:
▶ Reduction tree: \[\sum_{j \in \text{Children}(i)} f_j \geq f_i \]
▶ No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes

\[
\begin{align*}
5 & \\
7 & \\
3 & \\
\end{align*}
\]
How to Cope with Limited Memory?

Motivation:

▶ Work with a given quantity of memory
▶ Optimize makespan under this constraint

Stronger assumptions:

▶ Reduction tree:
\[
\sum_{j \in \text{Children}(i)} f_j \geq f_i
\]

▶ No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes
How to Cope with Limited Memory?

Motivation:
- Work with a given quantity of memory
- Optimize makespan under this constraint

Stronger assumptions:
- Reduction tree: \[\sum_{j \in \text{Children}(i)} f_j \geq f_i \]
- No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes
Memory-Bounded Heuristics: Simple Way

First idea: restrain List-Scheduling heuristics (INNERFIRST and DEEPESTFIRST)

- Choose a feasible amount $\frac{M}{2}$ of memory
- Check that memory $\leq \frac{M}{2}$ when starting a new leaf
- Guarantee: Memory used at most M

Proof ideas:

- Reduction tree: memory reduced by processing inner nodes
- During the processing: at most twice the input memory
Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

- Book memory for parent nodes, ensure they can be processed later
- Test for memory (booked + used) when starting a leaf
- Never exceeds a given memory M
Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

▶ Book memory for parent nodes, ensure they can be processed later
▶ Test for memory (booked + used) when starting a leaf
▶ Never exceeds a given memory M
Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

- Book memory for parent nodes, ensure they can be processed later
- Test for memory (booked+used) when starting a leaf
- Never exceeds a given memory M
Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

- Book memory for parent nodes, ensure they can be processed later
- Test for memory (booked+used) when starting a leaf
- Never exceeds a given memory M
Outline

Introduction and motivation

Complexity of parallel tree processing

Heuristics for weighted task trees

Simulations

Summary and perspectives
Experimental Testbed

- 76 assembly trees of a set of sparse matrices from University of Florida Sparse Collection
- Metis and AMD ordering
- 1, 2, 4, or 16 relaxed amalgamation per node
- 608 trees with:
 - number of nodes: 2,000 to 1,000,000
 - depth: 12 to 70,000
 - maximum degree: 2 to 175,000
- 2, 4, 8, 16 or 32 processors
Results

<table>
<thead>
<tr>
<th>Heuristic</th>
<th>Best memory</th>
<th>Avg. normalized memory needed</th>
<th>Best makespan</th>
<th>Avg. normalized makespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBTREES</td>
<td>81.1 %</td>
<td>2.33</td>
<td>0.2 %</td>
<td>1.35</td>
</tr>
<tr>
<td>SUBTREESOptim</td>
<td>49.9 %</td>
<td>2.45</td>
<td>1.1 %</td>
<td>1.29</td>
</tr>
<tr>
<td>InnerFirst</td>
<td>19.1 %</td>
<td>3.77</td>
<td>37.2 %</td>
<td>1.03</td>
</tr>
<tr>
<td>DeepestFirst</td>
<td>3.0 %</td>
<td>4.26</td>
<td>95.7 %</td>
<td>1.00</td>
</tr>
</tbody>
</table>

- Memory normalized with optimal sequential memory
- Makespan normalized with best makespan
Memory-Aware Heuristics: Makespan vs. Memory

![Graph showing the comparison between normalized makespan and normalized memory limit for 4 processors. The x-axis represents the normalized memory limit on a log scale, while the y-axis represents the normalized makespan on a log scale.]
Memory-Aware Heuristics: Makespan vs. Memory

Normalized makespan (log scale)

Normalized memory limit (log scale)

4 processors

Subtrees
Memory-Aware Heuristics: Makespan vs. Memory
Memory-Aware Heuristics: Makespan vs. Memory

Normalized makespan (log scale) vs. Normalized memory limit (log scale) for 4 processors.

- **Subtrees**
- **SubtreesOptim**
- **InnerFirst**
Memory-Aware Heuristics: Makespan vs. Memory

![Graph showing normalized makespan vs. normalized memory limit for different heuristics.]

- **DeepestFirst**
- **InnerFirst**
- **MemLimitDeepestFirst**
- **MemLimitInnerFirst**
- **Subtrees**
- **SubtreesOptim**
- **MemLimitDeepestFirstOptim**
- **MemLimitInnerFirstOptim**

Legend:
- Orange triangle: Subtrees
- Red triangle: SubtreesOptim
- Blue circle: InnerFirst
- Pink square: DeepestFirst
- Light blue plus: MemLimitInnerFirst
- Black plus: MemLimitInnerFirstOptim
- Gray box: MemLimitDeepestFirst
- Dark gray box: MemLimitDeepestFirstOptim

4 processors
Memory-Aware Heuristics: Makespan vs. Memory

Normalized makespan (log scale)

Normalized memory limit (log scale)

4 processors

- Subtrees
- SubtreesOptim
- InnerFirst
- DeepestFirst
- MemoryBooking
- MemLimitInnerFirst
- MemLimitInnerFirstOptim
- MemLimitDeepestFirst
- MemLimitDeepestFirstOptim
Memory-Aware Heuristics: Memory Usage

![Graph showing Memory Usage](image)

- **heuristic**
 - MemoryBooking
 - MemLimitInnerFirstOptim
 - MemLimitInnerFirst
 - MemLimitDeepestFirst

Normalized amount of available memory vs. normalized amount of used memory.
Memory-Aware Heuristics: Makespan vs. memory

![Graph showing normalized makespan vs. normalized amount of limited memory for different processor counts and heuristics.](image-url)
Outline

Introduction and motivation

Complexity of parallel tree processing

Heuristics for weighted task trees

Simulations

Summary and perspectives
Summary and Perspectives

- Complexity study of parallel tree traversals
- Simple heuristics
- Memory-bounded heuristics
- Simulations on real elimination trees

Future work:
- Consider distributed memory
- Extend results to other class of regular graphs (2D grids, etc.)
- Minimize I/O volume for out-of-core execution
- Consider parallel (malleable) tasks
What does the fox really want?

A break!