Scheduling tree-shaped task graphs
to minimize memory and makespan

Lionel Eyraud-Dubois (INRIA, Bordeaux, France),
Loris Marchal (CNRS, Lyon, France),
Oliver Sinnen (Univ. Auckland, New Zealand),
Frédéric Vivien (INRIA, Lyon, France)

CCDSC 2014
September 5, 2014

1/ 26

Introduction

Qe o
Task graph scheduling @

» Application modeled as a graph

7
RN

» Map tasks on processors and schedule them @ ©
» Usual performance metric: makespan (time) :
Today: focus on memory
» Workflows with large temporary data
» Bad evolution of perf. for computation vs. communication:
1/Flops < 1/bandwidth < latency

» Gap between processing power and communication cost
increasing exponentially

annual improvements
Flops rate 59%
mem. bandwidth 26%
mem. latency 5%

» Avoid communications

» Restrict to in-core memory (out-of-core is expensive) T

Focus on Task Trees

Motivation:

» Arise in multifrontal sparse matrix factorization

v

Assembly/Elimination tree: application task graph is a tree

v

Large temporary data

v

Memory usage becomes a bottleneck

3/ 26

Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

T+ Q+x)5—2)— ((u—1t)/@2+2)+v

4/ 26

Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

T+ Q+x)5—2)— ((u—1t)/@2+2)+v

Pebble-game rules:
» Inputs can be pebbled anytime

4/ 26

Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

T+ Q+x)5—2)— ((u—1t)/@2+2)+v

Pebble-game rules:
» Inputs can be pebbled anytime

4/ 26

Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

T+ Q+x)5—2)— ((u—1t)/@2+2)+v

Pebble-game rules:
» Inputs can be pebbled anytime
» If all ancestors are pebbled, a node can be pebbled

4/ 26

Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with

the minimum number of registers?

T+ Q+x)5—2)— ((u—1t)/@2+2)+v

Pebble-game rules:
» Inputs can be pebbled anytime
» If all ancestors are pebbled, a node can be pebbled
> A pebble may be removed anytime
Objective: pebble root node using minimum number of pebbles

4/ 26

Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

T+ Q+x)5—2)— ((u—1t)/@2+2)+v

Complexity results
Problem on trees:
» Polynomial algorithm [Sethi & Ullman, 1970]
General problem on DAGs (common subexpressions):
» P-Space complete [Gilbert, Lengauer & Tarjan, 1980]
» Without re-computation: NP-complete [Sethi, 1973]

Pebble-game rules:
» Inputs can be pebbled anytime
» If all ancestors are pebbled, a node can be pebbled
> A pebble may be removed anytime
Objective: pebble root node using minimum number of pebbles 4/ 26

Notations: Tree-Shaped Task Graphs

> In-tree of n nodes
f f
» Output data of size f;
n n3 » Execution data of size n;
fi f TU > Input data of leaf nodes
have null size
Ny ns
To To
» Memory for node i: MemReq(i) = Z il +ni+f

J€Children(i)

5/ 26

Notations: Tree-Shaped Task Graphs

£ ‘ > In-tree of n nodes
2 3
» Output data of size f;
n, n3 » Execution data of size n;
ﬁl f5 TU > Input data of leaf nodes
have null size
Ny ns
To To
» Memory for node i: MemReq(i) = Z il +ni+f

J€Children(i)

5/ 26

Impact of Schedule on Memory Peak

6/ 26

Impact of Schedule on Memory Peak

Peak memory so far: 4

6/ 26

Impact of Schedule on Memory Peak

Peak memory so far: 4

6/ 26

Impact of Schedule on Memory Peak

Peak memory so far: 6

6/ 26

Impact of Schedule on Memory Peak

Peak memory so far: 6

6/ 26

Impact of Schedule on Memory Peak

Peak memory so far: 8

6/ 26

Impact of Schedule on Memory Peak

Peak memory so far: 8

6/ 26

Impact of Schedule on Memory Peak

Peak memory so far: 12

6/ 26

Impact of Schedule on Memory Peak

Peak memory so far: 12

6/ 26

Impact of Schedule on Memory Peak

Peak memory so far: 12

6/ 26

Impact of Schedule on Memory Peak

Peak memory so far:

6/ 26

Impact of Schedule on Memory Peak

Peak memory so far: 9

6/ 26

Impact of Schedule on Memory Peak

Peak memory so far: 9

6/ 26

Impact of Schedule on Memory Peak

Peak memory so far: 9

6/ 26

Impact of Schedule on Memory Peak

Peak memory so far: 11

6/ 26

Impact of Schedule on Memory Peak

Peak memory so far: 11

6/ 26

Impact of Schedule on Memory Peak

Peak memory so far: 11 (which is better than 12)
Two existing optimal sequential schedules:
» Best traversal [J. Liu, 1987]

» Best post-order traversal [J. Liu, 1986]
6/ 26

Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

In practice post-order have very good performance

7/ 26

QOutline

Complexity of parallel tree processing

8/ 26

Model for Parallel Tree Processing

v

p identical processors

v

Shared memory of size M

v

Task i has execution times p;

v

Parallel processing of nodes = larger memory

v

Trade-off time vs. memory

9/ 26

NP-Completeness in the Pebble Game Model

Background:
» Makespan minimization NP-complete for trees (P|trees|Cinax)
» Polynomial when unit-weight tasks (P|p; = 1, trees|Cmnax)

» Pebble game polynomial on trees

Pebble game model:
» Unit execution time: p; =1

» Unit memory costs: n; =0, =1
(pebble edges, equivalent to pebble game for trees)

Theorem

Deciding whether a tree can be scheduled using at most B pebbles
in at most C steps is NP-complete.

10/ 26

Space-Time Tradeoff

Not possible to get a guarantee on both memory and time
simultaneously:

Theorem 1

There is no algorithm that is both an a-approximation for
makespan minimization and a S-approximation for memory peak
minimization when scheduling tree-shaped task graphs.

For a fixed number of processors:

Theorem 2

For any «a(p)-approximation for makespan and (p)-approximation
for memory peak with p > 2 processors,

2p

a(p)B(p) > W

11/ 26

QOutline

Heuristics for weighted task trees

12/ 26

InnerFirst: Post-Order in Parallel

Motivation:

» Post-Order behavior: process inner nodes ASAP

v

Parallel version: give priority to inner nodes

v

Naturally limits the number of concurrent subtrees

v

Intuitively good to keep memory low

Implementation as a list-scheduling heuristic
» Put ready nodes in a queue (higher priority for inner nodes)
» Schedule them whenever a processor is ready

» Initially, sort leaf nodes using best sequential post-order

Performance:
» (2 —1/p)-approximation for makespan
» Unbounded ratio for memory
» O(nlog n) complexity

13/ 26

DeepestFirst: Approach Optimal Makespan

DeepestFirst:
» Compute critical path values for all tasks

» List-scheduling based on critical path values

Performance:
» Known as a good heuristic for makespan minimization
» No guarantee (or intuition) on memory behavior

» O(nlog n) complexity

14/ 26

Subtrees: Coarse-Grain Parallelism

Motivation:
» Divide the tree in p large subtrees + small set of other nodes
» Each processor works on its own subtree
» Locally, use memory-optimal sequential algorithm
» Process all remaining nodes sequentially

» Optimization: if more than p subtrees when spliting,
load-balance subtrees on processors

Performance:
» O(nlog n) complexity
> p-approximation algorithm for memory

15/ 26

How to Cope with Limited Memory?

Motivation:
» Work with a given quantity of memory

» Optimize makespan under this constraint

16/ 26

How to Cope with Limited Memory?

Motivation:
» Work with a given quantity of memory

» Optimize makespan under this constraint

Stronger assumptions:
» Reduction tree: Z fi>f
J€EChildren(i)
> No extra memory cost for task execution

16/ 26

How to Cope with Limited Memory?

Motivation:
» Work with a given quantity of memory

» Optimize makespan under this constraint

Stronger assumptions:

> Reduction tree: Z fi > f;
J€EChildren(i)
> No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes
20

™

16/ 26

How to Cope with Limited Memory?

Motivation:
» Work with a given quantity of memory

» Optimize makespan under this constraint

Stronger assumptions:

> Reduction tree: Z fi > f;
J€EChildren(i)
> No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes

?\3 7?1

16/ 26

How to Cope with Limited Memory?

Motivation:
» Work with a given quantity of memory

» Optimize makespan under this constraint

Stronger assumptions:

> Reduction tree: Z fi > f;
J€EChildren(i)
> No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes

20 20 20
— —
5 10
™ AN N

16/ 26

Memory-Bounded Heuristics: Simple Way

First idea: restrain List-Scheduling heuristics (INNERFIRST and
DEEPESTFIRST)

» Choose a feasible amount % of memory
» Check that memory < % when starting a new leaf

» Guarantee: Memory used at most M

Proof ideas:
» Reduction tree: memory reduced by processing inner nodes

» During the processing: at most twice the input memory

17/ 26

Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

» Book memory for parent nodes, ensure they can be processed
later

» Test for memory (booked+used) when starting a leaf

» Never exceeds a given memory M

22
14 12 \I8
30 16 20

18/ 26

Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

» Book memory for parent nodes, ensure they can be processed
later

» Test for memory (booked+used) when starting a leaf

» Never exceeds a given memory M

22
14 12 13
30 16 20

18/ 26

Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

» Book memory for parent nodes, ensure they can be processed
later

» Test for memory (booked+used) when starting a leaf

» Never exceeds a given memory M

22
14 12 N8
30 16 20

18/ 26

Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

» Book memory for parent nodes, ensure they can be processed
later

» Test for memory (booked+used) when starting a leaf

» Never exceeds a given memory M

14

30

18/ 26

QOutline

Simulations

19/ 26

Experimental Testbed

v

76 assembly trees of a set of sparse matrices from University
of Florida Sparse Collection

Metis and AMD ordering
1, 2, 4, or 16 relaxed amalgamation per node

608 trees with:
number of nodes: 2,000 to 1,000,000
depth: 12 to 70,000

maximum degree: 2 to 175,000

v

v

v

v

2,4, 8, 16 or 32 processors

20/ 26

Results

Heuristic Best memory Avg. normalized Best makespan Avg. normalized
memory needed makespan
SUBTREES 81.1 % 2.33 0.2 % 1.35
SUBTREESOPTIM 49.9 % 2.45 1.1 % 1.29
INNERFIRST 19.1 % 3.77 372 % 1.03
DEEPESTFIRST 3.0 % 4.26 95.7 % 1.00

» Memory normalized with optimal sequential memory

» Makespan normalized with best makespan

21/ 26

Memory-Aware Heuristics: Makespan vs. Memory

4 processors

Normalized makespan (log scale)

Normalized memory limit (log scale)

22/ 26

Memory-Aware Heuristics: Makespan vs. Memory

Normalized makespan (log scale)

4 processors

-4 Subtrees

Normalized memory limit (log scale)

22/ 26

Memory-Aware Heuristics: Makespan vs. Memory

Normalized makespan (log scale)

4 processors

-4 Subtrees
-4 SubtreesOptim
S—A—A—A—A—AAA
S—Ah—Dh DD DA ANM
I I I I I I
2 6 8 0 1 20

Normalized memory limit (log scale)

22/ 26

Memory-Aware Heuristics: Makespan vs. Memory

Normalized makespan (log scale)

4 processors

-4 Subtrees
-4 SubtreesOptim
-©- InnerFirst
DD DD DDA
C—o0—o—0—90—09090
I I I I I I
2 6 8 10 15 20

Normalized memory limit (log scale)

22/ 26

Memory-Aware Heuristics: Makespan vs. Memory

Normalized makespan (log scale)

4 processors

Normalized memory limit (log scale)

-4 Subtrees
-4 SubtreesOptim
-©- InnerFirst

MemLimitInnerFirst

22/ 26

Memory-Aware Heuristics: Makespan vs. Memory

Normalized makespan (log scale)

4 processors

Normalized memory limit (log scale)

-4 Subtrees
-4 SubtreesOptim
-©- InnerFirst

MemLimitInnerFirst
-~ MemLimitInnerFirstOptim

22/ 26

Memory-Aware Heuristics: Makespan vs. Memory

Normalized makespan (log scale)

4 processors

Normalized memory limit (log scale)

- Subtrees

-4 SubtreesOptim

-©- InnerFirst
DeepestFirst

MemLimitInnerFirst

-~ MemLimitInnerFirstOptim
MemLimitDeepestFirst
MemLimitDeepestFirstOptim

22/ 26

Memory-Aware Heuristics: Makespan vs. Memory

Normalized makespan (log scale)

4 processors

Normalized memory limit (log scale)

-4- Subtrees

-4 SubtreesOptim

-©- InnerFirst
DeepestFirst

-©- MemoryBooking
MemLimitInnerFirst

-~ MemLimitInnerFirstOptim
MemLimitDeepestFirst
MemLimitDeepestFirstOptim

22/ 26

Memory-Aware Heuristics: Memory Usage

1.00 -

o

~

o
1

0.50 -

0.25- =

Normalized amount of used memory

o

o

o
1

1 1 1
10 15 20
Normalized amount of available memory
heuristic
—e— MemoryBooking ~ —#— MemLimitinnerFirstOptim

MemLimitlnnerFirst MemLimitDeepestFirst

23/ 26

Memory-Aware Heuristics: Makespan vs. memory

Normalized makespan (log scale)

2 processors 4 processors 8 processors

15-

- PARMEMORY BOOKING
o~ PARMEMLIMITINNERFIRST
30-

- PARMEMLIMITDEEPESTFIRST
= PARMEMLMITDEEPESTFIRSTOPTIM

Normalized amount of limited memorv (log scale)

24/ 26

QOutline

Summary and perspectives

25/ 26

Summary and Perspectives

v

Complexity study of parallel tree traversals

v

Simple heuristics

v

Memory-bounded heuristics

Simulations on real elimination trees

v

Future work:
» Consider distributed memory

» Extend results to other class of regular graphs (2D grids, etc.)

v

Minimize 1/O volume for out-of-core execution

v

Consider parallel (malleable) tasks

26/ 26

What does the fox really want?

A break!

27/ 26

	Introduction and motivation
	Complexity of parallel tree processing
	Heuristics for weighted task trees
	Simulations
	Summary and perspectives

