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Introduction

Qe o
Task graph scheduling @

» Application modeled as a graph

7
RN

» Map tasks on processors and schedule them @ ©
» Usual performance metric: makespan (time) :
Today: focus on memory
» Workflows with large temporary data
» Bad evolution of perf. for computation vs. communication:
1/Flops < 1/bandwidth < latency

» Gap between processing power and communication cost
increasing exponentially

annual improvements
Flops rate 59%
mem. bandwidth 26%
mem. latency 5%

» Avoid communications

» Restrict to in-core memory (out-of-core is expensive) T



Focus on Task Trees

Motivation:

» Arise in multifrontal sparse matrix factorization

v

Assembly/Elimination tree: application task graph is a tree

v

Large temporary data

v

Memory usage becomes a bottleneck
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Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

T+ Q+x)5—2)— ((u—1t)/@2+2)+v
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Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

T+ Q+x)5—2)— ((u—1t)/@2+2)+v

Complexity results
Problem on trees:
» Polynomial algorithm [Sethi & Ullman, 1970]
General problem on DAGs (common subexpressions):
» P-Space complete [Gilbert, Lengauer & Tarjan, 1980]
» Without re-computation: NP-complete [Sethi, 1973]

Pebble-game rules:
» Inputs can be pebbled anytime
» If all ancestors are pebbled, a node can be pebbled
> A pebble may be removed anytime
Objective: pebble root node using minimum number of pebbles 4/ 26



Notations: Tree-Shaped Task Graphs

> In-tree of n nodes
f f
» Output data of size f;
n n3  » Execution data of size n;
fi f TU > Input data of leaf nodes
have null size
Ny ns
To To
» Memory for node i: MemReq(i) = Z il +ni+f

J€Children(i)
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Impact of Schedule on Memory Peak

Peak memory so far: 11 (which is better than 12)
Two existing optimal sequential schedules:
» Best traversal [J. Liu, 1987]

» Best post-order traversal [J. Liu, 1986]
6/ 26



Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

In practice post-order have very good performance
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Complexity of parallel tree processing
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Model for Parallel Tree Processing

v

p identical processors

v

Shared memory of size M

v

Task i has execution times p;

v

Parallel processing of nodes = larger memory

v

Trade-off time vs. memory

9/ 26



NP-Completeness in the Pebble Game Model

Background:
» Makespan minimization NP-complete for trees (P|trees|Cinax)
» Polynomial when unit-weight tasks (P|p; = 1, trees|Cmnax)

» Pebble game polynomial on trees

Pebble game model:
» Unit execution time: p; =1

» Unit memory costs: n; =0, =1
(pebble edges, equivalent to pebble game for trees)

Theorem

Deciding whether a tree can be scheduled using at most B pebbles
in at most C steps is NP-complete.
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Space-Time Tradeoff

Not possible to get a guarantee on both memory and time
simultaneously:

Theorem 1

There is no algorithm that is both an a-approximation for
makespan minimization and a S-approximation for memory peak
minimization when scheduling tree-shaped task graphs.

For a fixed number of processors:

Theorem 2

For any «a(p)-approximation for makespan and (p)-approximation
for memory peak with p > 2 processors,

2p

a(p)B(p) > W
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Heuristics for weighted task trees
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InnerFirst: Post-Order in Parallel

Motivation:

» Post-Order behavior: process inner nodes ASAP

v

Parallel version: give priority to inner nodes

v

Naturally limits the number of concurrent subtrees

v

Intuitively good to keep memory low

Implementation as a list-scheduling heuristic
» Put ready nodes in a queue (higher priority for inner nodes)
» Schedule them whenever a processor is ready

» Initially, sort leaf nodes using best sequential post-order

Performance:
» (2 —1/p)-approximation for makespan
» Unbounded ratio for memory
» O(nlog n) complexity
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DeepestFirst: Approach Optimal Makespan

DeepestFirst:
» Compute critical path values for all tasks

» List-scheduling based on critical path values

Performance:
» Known as a good heuristic for makespan minimization
» No guarantee (or intuition) on memory behavior

» O(nlog n) complexity
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Subtrees: Coarse-Grain Parallelism

Motivation:
» Divide the tree in p large subtrees + small set of other nodes
» Each processor works on its own subtree
» Locally, use memory-optimal sequential algorithm
» Process all remaining nodes sequentially

» Optimization: if more than p subtrees when spliting,
load-balance subtrees on processors

Performance:
» O(nlog n) complexity
> p-approximation algorithm for memory
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How to Cope with Limited Memory?

Motivation:
» Work with a given quantity of memory

» Optimize makespan under this constraint
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Memory-Bounded Heuristics: Simple Way

First idea: restrain List-Scheduling heuristics (INNERFIRST and
DEEPESTFIRST)

» Choose a feasible amount % of memory
» Check that memory < % when starting a new leaf

» Guarantee: Memory used at most M

Proof ideas:
» Reduction tree: memory reduced by processing inner nodes

» During the processing: at most twice the input memory
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Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

» Book memory for parent nodes, ensure they can be processed
later

» Test for memory (booked+used) when starting a leaf

» Never exceeds a given memory M

22
14 12 \I8
30 16 20
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Simulations
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Experimental Testbed

v

76 assembly trees of a set of sparse matrices from University
of Florida Sparse Collection

Metis and AMD ordering
1, 2, 4, or 16 relaxed amalgamation per node

608 trees with:
number of nodes: 2,000 to 1,000,000
depth: 12 to 70,000

maximum degree: 2 to 175,000

v

v

v

v

2,4, 8, 16 or 32 processors
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Results

Heuristic Best memory Avg. normalized Best makespan Avg. normalized
memory needed makespan
SUBTREES 81.1 % 2.33 0.2 % 1.35
SUBTREESOPTIM 49.9 % 2.45 1.1 % 1.29
INNERFIRST 19.1 % 3.77 372 % 1.03
DEEPESTFIRST 3.0 % 4.26 95.7 % 1.00

» Memory normalized with optimal sequential memory

» Makespan normalized with best makespan
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Memory-Aware Heuristics: Makespan vs. Memory

4 processors

Normalized makespan (log scale)

Normalized memory limit (log scale)
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Memory-Aware Heuristics: Memory Usage
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Memory-Aware Heuristics: Makespan vs. memory

Normalized makespan (log scale)
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Summary and perspectives
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Summary and Perspectives

v

Complexity study of parallel tree traversals

v

Simple heuristics

v

Memory-bounded heuristics

Simulations on real elimination trees

v

Future work:
» Consider distributed memory

» Extend results to other class of regular graphs (2D grids, etc.)

v

Minimize 1/O volume for out-of-core execution

v

Consider parallel (malleable) tasks
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What does the fox really want?

A break!
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