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Introduction

Task graph scheduling

I Application modeled as a graph

I Map tasks on processors and schedule them

I Usual performance metric: makespan (time)

Today: focus on memory
I Workflows with large temporary data
I Bad evolution of perf. for computation vs. communication:

1/Flops � 1/bandwidth � latency

I Gap between processing power and communication cost
increasing exponentially

annual improvements

Flops rate 59%
mem. bandwidth 26%

mem. latency 5%
I Avoid communications
I Restrict to in-core memory (out-of-core is expensive)
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Focus on Task Trees

Motivation:

I Arise in multifrontal sparse matrix factorization

I Assembly/Elimination tree: application task graph is a tree

I Large temporary data

I Memory usage becomes a bottleneck
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Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v
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Pebble-game rules:
I Inputs can be pebbled anytime
I If all ancestors are pebbled, a node can be pebbled
I A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
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Related Work: Register Allocation & Pebble Game

How to efficiently compute the following arithmetic expression with
the minimum number of registers?

7 + (1 + x)(5− z)− ((u − t)/(2 + z)) + v

Complexity results

Problem on trees:

I Polynomial algorithm [Sethi & Ullman, 1970]

General problem on DAGs (common subexpressions):

I P-Space complete [Gilbert, Lengauer & Tarjan, 1980]

I Without re-computation: NP-complete [Sethi, 1973]

Pebble-game rules:
I Inputs can be pebbled anytime
I If all ancestors are pebbled, a node can be pebbled
I A pebble may be removed anytime

Objective: pebble root node using minimum number of pebbles
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Notations: Tree-Shaped Task Graphs
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I In-tree of n nodes

I Output data of size fi
I Execution data of size ni
I Input data of leaf nodes

have null size

I Memory for node i : MemReq(i) =

 ∑
j∈Children(i)

fj

 + ni + fi
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Impact of Schedule on Memory Peak
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I Best traversal [J. Liu, 1987]

I Best post-order traversal [J. Liu, 1986]
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Impact of Schedule on Memory Peak
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Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

fnf2

r

P1
P2 . . . Pn

f1

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

In practice post-order have very good performance



8/ 26

Outline

Introduction and motivation

Complexity of parallel tree processing

Heuristics for weighted task trees

Simulations

Summary and perspectives
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Model for Parallel Tree Processing

I p identical processors

I Shared memory of size M

I Task i has execution times pi
I Parallel processing of nodes ⇒ larger memory

I Trade-off time vs. memory
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NP-Completeness in the Pebble Game Model

Background:

I Makespan minimization NP-complete for trees (P|trees|Cmax)

I Polynomial when unit-weight tasks (P|pi = 1, trees|Cmax)

I Pebble game polynomial on trees

Pebble game model:

I Unit execution time: pi = 1

I Unit memory costs: ni = 0, fi = 1
(pebble edges, equivalent to pebble game for trees)

Theorem

Deciding whether a tree can be scheduled using at most B pebbles
in at most C steps is NP-complete.
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Space-Time Tradeoff

Not possible to get a guarantee on both memory and time
simultaneously:

Theorem 1

There is no algorithm that is both an α-approximation for
makespan minimization and a β-approximation for memory peak
minimization when scheduling tree-shaped task graphs.

For a fixed number of processors:

Theorem 2

For any α(p)-approximation for makespan and β(p)-approximation
for memory peak with p ≥ 2 processors,

α(p)β(p) ≥ 2p

dlog(p)e+ 2
·
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Outline

Introduction and motivation

Complexity of parallel tree processing

Heuristics for weighted task trees

Simulations

Summary and perspectives
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InnerFirst: Post-Order in Parallel

Motivation:

I Post-Order behavior: process inner nodes ASAP

I Parallel version: give priority to inner nodes

I Naturally limits the number of concurrent subtrees

I Intuitively good to keep memory low

Implementation as a list-scheduling heuristic

I Put ready nodes in a queue (higher priority for inner nodes)

I Schedule them whenever a processor is ready

I Initially, sort leaf nodes using best sequential post-order

Performance:

I (2− 1/p)-approximation for makespan

I Unbounded ratio for memory

I O(n log n) complexity
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DeepestFirst: Approach Optimal Makespan

DeepestFirst:

I Compute critical path values for all tasks

I List-scheduling based on critical path values

Performance:

I Known as a good heuristic for makespan minimization

I No guarantee (or intuition) on memory behavior

I O(n log n) complexity
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Subtrees: Coarse-Grain Parallelism

Motivation:

I Divide the tree in p large subtrees + small set of other nodes

I Each processor works on its own subtree

I Locally, use memory-optimal sequential algorithm

I Process all remaining nodes sequentially

I Optimization: if more than p subtrees when spliting,
load-balance subtrees on processors

Performance:

I O(n log n) complexity

I p-approximation algorithm for memory
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How to Cope with Limited Memory?

Motivation:

I Work with a given quantity of memory

I Optimize makespan under this constraint

Stronger assumptions:

I Reduction tree:
∑

j∈Children(i)

fj ≥ fi

I No extra memory cost for task execution

Assumptions not verified, but enforced by adding fictitious nodes
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Memory-Bounded Heuristics: Simple Way

First idea: restrain List-Scheduling heuristics (InnerFirst and
DeepestFirst)

I Choose a feasible amount M
2 of memory

I Check that memory ≤ M
2 when starting a new leaf

I Guarantee: Memory used at most M

Proof ideas:

I Reduction tree: memory reduced by processing inner nodes

I During the processing: at most twice the input memory
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Memory-Bounded Heuristics: Complex Way

Second idea: complex memory booking scheme

I Book memory for parent nodes, ensure they can be processed
later

I Test for memory (booked+used) when starting a leaf

I Never exceeds a given memory M
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Experimental Testbed

I 76 assembly trees of a set of sparse matrices from University
of Florida Sparse Collection

I Metis and AMD ordering

I 1, 2, 4, or 16 relaxed amalgamation per node

I 608 trees with:
number of nodes: 2,000 to 1,000,000

depth: 12 to 70,000
maximum degree: 2 to 175,000

I 2, 4, 8, 16 or 32 processors
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Results

Heuristic Best memory
Avg. normalized

Best makespan
Avg. normalized

memory needed makespan

Subtrees 81.1 % 2.33 0.2 % 1.35
SubtreesOptim 49.9 % 2.45 1.1 % 1.29

InnerFirst 19.1 % 3.77 37.2 % 1.03
DeepestFirst 3.0 % 4.26 95.7 % 1.00

I Memory normalized with optimal sequential memory

I Makespan normalized with best makespan
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Memory-Aware Heuristics: Makespan vs. Memory
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Memory-Aware Heuristics: Memory Usage
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Memory-Aware Heuristics: Makespan vs. memory
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Summary and Perspectives

I Complexity study of parallel tree traversals

I Simple heuristics

I Memory-bounded heuristics

I Simulations on real elimination trees

Future work:

I Consider distributed memory

I Extend results to other class of regular graphs (2D grids, etc.)

I Minimize I/O volume for out-of-core execution

I Consider parallel (malleable) tasks



27/ 26

What does the fox really want?

A break!
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