

Towards energy proportional HPC and Clouds

Laurent Lefèvre laurent.lefevre@inria.fr

CCDSC2014, Dareizé, September 5, 2014

INRIA **AVALON / LIP Ecole Normale Supérieure de Lyon**

Thanks to Jack and Bernard!

Some messages from our planet

Ice 500 Gtons 2011-2014 : Groenland 375 Gt /Antartic 125 Gt : *2/*3 compared to average between 03-09

Rising > 1 m (2100)

Temperature increasing (2°C – 2100) -> 4°C (50% chance – 2100)

No more petrol in 50 years ...

IT -> electricity -> CO2 -> impact

So we should change our way to use energy with IT - Chasing watts / chasing overprovisioning / unuseful services...

But IT/HPC/Cloud are good for the planet: IT4Green

- Problem: IT 4 Green is not yet proven (at least in France)
 - France : total increase (co2 emission) : 25 % between 1990 and 2010
 - +11 % population = +13 % per person increase
- Cloud/visio do not avoid travels

I am sure that the fox wants to...

- Avoid resources wasting
- Avoid sea rising increase
- Avoid global warming
- Avoid biodiversity loss

So my interpretation/assumption : « the fox wants to promote energy efficient infrastructures »

Energy: 1st limiting factor for large scale systems ((hpc)datacenter, clouds, internet)?

- Energy consumption is growing :
 - Top500 : Nov 2010 : 127 MW Nov
 - 2013: 205 MW (not all referenced) -
 - Green500: 550 MW (Nov. 13 all
 - referenced)
- Only usage! not the full life cycle which is bad: planned obsolescence, rebound effect, design (rare minerals), difficult recycling...
- How to build future exascale/datacenters platforms and make them (more) energy sustainable/responsible? - Multi dimension approaches: hardware, software, usage

Power profiling: some good old servers (2009)

Easy to analyze, easy to understand, no cores only CPUs...

Power profiling of a more recent server

Dell R610 - Zimmer LMG450 - watts in red

Energy proportionality

Luiz André Barroso and Urs Hölzle, « **The case for Energy-Proportional Computing** », IEEE Computer, 2007

At servers level:

Idle power consumption

Inefficient region depending on load

<u>At network level:</u>

Even less proportional

Switches energy consumption almost consta

Energy consumption and energy efficiency of a server according to its load

Static / dynamic part of power

Even reducing a lot some static part can remain important from GOS: 240 W / 260 W (92%) to recent one 90W / 190W (47%)

First LHF: switch off unused resources: delete the static part!

Aggressive ON/OFF is not always the best solution

- Exploiting the gaps between activities to reduce unused plugged ressources number
- But only switiching off → if potential energy saving
- ON -> OFF can be really long (at large scale)

Other difficulty: homogeneity (in energy consumption) does not exist! Must switch off/on the right resource

- Depends on technology
- Same flops but not same flops per watt
- Idle / static cost
- CPU : main responsible

Mohammed el Mehdi Diouri, Olivier Gluck, Laurent Lefevre and Jean-Christophe Mignot. "Your Cluster is not Power Homogeneous: Take Care when Designing Green Schedulers!", IGCC2013: International Green Computing Conference, Arlington, USA, June 27-29,

Reservation based Openstack Clouds

Switching off and on is difficult and complex at large scale without good prediction

Avoiding on-demand & overpovisioning

Needs of scheduling and planification -> need of reservation based systems

FSN XLCLOUD Project (2012-2015)

Partners: Bull SAS, Serviware, Institut Telecom, HPC-Project, CEA List, EISTI, ATEME, OW2, Inria

Target: HPC as a service: supporting HPC applications with interactive remote visualization in energy efficient Cloud: GPUs, Infiniband... etc...

Climate / Blazar project : capacity leasing in Openstack (Inria, Bull, Mirantis)

http://xlcloud.org/

Address the dynamic part with green levers : adapt resources to the need of applications

HPC applications keep growing in complexity: too many bugs in HPC applications already present, adding energy management and considerations won't help:=)

Are HPC programmers ready for eco design of applications?

Applications can share the same infrastructure: Optimizations made for saving energy considering some applications are likely to impact the performance of others

- Detect and characterize system's runtime behaviours/phases
- Optimize each subsystem (storage, memory, interconnect, CPU) accordingly

Online analysis without knowledge on applications

- Irregular usage of resources
- Phase detection, characterisation
- Power saving modes deployment
- MREEF framework

Phase label	Possible reconfiguration decisions		
compute intensive	switch off memory banks; send disks to sleep;		
	scale the processor up; put NICs into LPI mode		
memory intensive	scale the processor down; decrease disks		
	or send them to sleep; switch on memory banks		
mixed	switch on memory banks; scale the processor up		
	send disks to sleep; put NICs into LPI mode		
communication	switch off memory banks; scale the processor down		
intensive	switch on disks		
I/O intensive	switch on memory banks; scale the processor down;		
	increase disks, increase disks (if needed)		

Landry Tsafack, Laurent Lefevre, Jean-Marc Pierson, Patricia Stolf, and Georges Da Costa. "A runtime framework for energy efficient HPC systems without a priori knowledge of applications", *ICPADS 2012 : 18th International Conference on Parallel and Distributed Systems*, Singapore, December 2012

What about missing parts of the curve?

- Specific conditions of workload
- Gaps between bursts

 Exploiting heterogeneity of processors (flops, watts, flops per watt) to fill the missing parts

Heterogeneous multicore processors

ARM big.LITTLE

2 processors (4 cores each) :

- LITTLE (Cortex A7)
- big (Cortex A15)

GOAL→ Extend battery life time of mobile devices which are idle most of the time

Interconnected by a Cache Coherence system

Some utilization modes:

- Cluster migration (4/4)
- Global Task Scheduling (8)

big.LITTLE « Cluster migration »

Heterogeneous architectures

A the scale of a datacenter → ARM may be not enough We could need real performance to absorb load peaks

Exploring a combination of:

Low-power processors for low load and

high performance processors for heavy load

- → reduces static costs
- → use classical servers only at their most energy efficient load level
- + other classical levers : DVFS, switch off/on,... to improve consumption proportionality

Technical challenges

Different architectures: ARM and x86

How to combien them and be able to go from one architecture to another?

- live migration without impact on the moving application
- migration fastest as possible
- → First idea Classical cloud approach : Virtual machines
- 2 physical architectures → 2 choices for virtual machine architecture

When the VM is not on the right physical architecture, we use emulation with QEMU

- → What is the cost of emulation?
- → Which architecture to choose for the VM?

Comparison of VM architecture – First results

 ARM VM: Native on ARM processor Emulated on x86 processor

X86 VM:
 Native on x86 processor
 Emulated on ARM processor

ARM : Samsung Chromebook (2 processors ARM Cortex-A15)

x86 : Dell PowerEdge R720 (2 processors Intel Xeon 6 cores)

Benchmark nbench: integer/float

Comparison of native performances – First results

 If we can benefit from native performances of each architecture, what is the impact on proportionality

Comparison of VM performances – First results

Codename	Chromebook	Taurus	Parapluie
Fullname	Samsung // HP 11	Dell	HP Proliant
	Chromebook	PowerEdge R720	DL165 G7
Architecture	ARMv7 32 bits	x86 64 bits	x86 64 bits
CPU	2 x	2 x	2 x
	Cortex-A15	Intel Xeon E5-2630	AMD Opteron 6164
Total cores	2	12	24
Power			
consumption	5 – 25 W	96 – 227 W	180 – 280 W
Release year	2012 // 2013	2012	2010

Comparison of native performances – First results

Still some work to do to reach a nice energy proportional curve

Don't say!

- Not possible « I need tu use a constant power »
 Ex : power usage in France
 yesterday
- -> negociate with your provider –combine reservation/prediction
- -Not possible « my DC needs to consume a minimum amount of power » -> renegociate your contract
- -Not possible, when my machines (re)boot I face too much risks -> negociate with your system designer, add resilience solutions (see Yves for that)

Current Challenges

- Large scale frequent energy monitoring remains a challenge
 - Data deluge of energy info
 - Energy sensors: less interest for external monitoring (too much cores) - relying on internal sensors (quality, intrusiveness...)
- Possible supported scenario :
 - Cloud with workload variations
 - HPC with batch jobs
- Large scale energy variations : need live exchange with energy provider
- Need to adapt software and infrastructures to support computing power jitter and resilience to boot failures
- Full lifecycle of EP IT: from design, transport, deployment, usage, destroying, recycling

M. Diouri, O. Gluck, and L. Lefevre.

"Towards a novel Smart and
Energy-Aware Service-Oriented
Manager for Extreme-Scale
applications, First Workshop for
Power Grid-Friendly Computing
(PGFC'12), San Jose, USA,
June 2012

