Spatio-temporal Sensor
Integration, Analysis, Classification

Can Exascale Cure Cancer?
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“Domain”: Spatio-temporal Sensor

Integration, Analysis, Classification
Big Data Extreme Computing 2014

Multi-scale material/tissue structural, molecular, functional
characterization. Design of materials with specific structural,
energy storage properties, brain, regenerative medicine,
cancer

Integrative multi-scale analyses of the earth, oceans,
atmosphere, cities, vegetation etc — cameras and sensors on
satellites, aircraft, drones, land vehicles, stationary cameras

Digital astronomy
Hydrocarbon exploration, exploitation, pollution remediation



g integrative data analyses
vehicles, e.g. self driving cars

ed by numerical simulation codes
icle methods



Typical Computational/Analysis Tasks

Spatio-temporal Sensor Integration, Analysis, Classification

Data Cleaning and Low Level Transformations
Data Subsetting, Filtering, Subsampling
Spatio-temporal Mapping and Registration
Object Segmentation

Feature Extraction

Object/Region/Feature Classification
Spatio-temporal Aggregation

Diffeomorphism type mapping methods (e.g. optimal
mass transport)

Particle filtering/prediction
Change Detection, Comparison, and Quantification
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Pete Beckman Argonne National Laboratory Northwestern University



Integrative Analysis: OSU BIST]
NBIB Center
Big Data (2005)

Associate genotype with phenotype

Big science experiments on cancer,
heart disease, pathogen host
response

Tissue specimen -- 1 cm?3

0.1 % resolution — roughly 1015 Proteomics
bytes TN

Molecular data (spatial location) can
add additional significant factor;
e.g. 10?

Multispectral imaging, laser
captured microdissection,
Imaging Mass Spec, Multiplex
Qb e

Multiple tissue specimens; another e
factor of 103

Total: 10%° bytes -- 100 exabytes
per big science experiment



The Tyranny of Scale

(Oil Reservoir Management

simulation scale

Tinsley Oden - U Texas)
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Why Applications Get Big

* Physical world or simulation results

* Detailed description of two, three (or more)
dimensional space

* High resolution in each dimension, lots of
timesteps
* e.g. oil reservoir code -- simulate 100 km by
100 km region to 1 km depth at resolution

of 100 cm:
—1076*1076*1074 mesh points, 102 bytes per
mesh point, 1076 timesteps --- 10724 bytes
(Yottabyte) of data!!!



ational Labs

arch meets HPC, Material Science,

led “omics”



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 4, JULY/AUGUST 2008 863

Reconstruction of Cellular Biological Structures
from Optical Microscopy Data

Kishore Mosaliganti, Student Member, IEEE, Lee Cooper, Richard Sharp, Member, IEEE,
Raghu Machiraju, Member, IEEE, Gustavo Leone, Kun Huang, Member, IEEE, and
Joel Saltz, Senior Member, IEEE

Center for Comprehensive Informatics




High-resolution whole-slide microscopy
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Direct Study of Relationship Between Image Features vs Clinical
Outcome, Response to Treatment, Molecular Information

Morpriomé&try

Normalization

Entropy

Feature Selection

Feature Index

Consensus Clustering

Multidimensional
Scaling

Survival Analysis
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Human Pathology

Lee Cooper,
Carlos Moreno
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Clustering identifies three morphological groups

e Analyzed 200 million nuclei from 162 TCGA GBMs (462 slides)
e Named for functions of associated genes:

Cell Cycle (CC), Chromatin Modification (CM),

Protein Biosynthesis (PB)
e Prognostically-significant (logrank p=4.5e-4)

Figure 2 Glioblastoma (GBM)
clusters, survival, and relationship to cc CM PB
molecular subtypes. (A) Means-based

analysis of GBM morphology reveals ——¢CC
three patient clusters. (B) Survival 10 |
differences between these clusters are CM
statistically significant. CC, cell cycle; —— PB

CM, chromatin modification; PB, protein 2°
biosynthesis.
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f5 — Proportion Enhancing

f7 — Proportion Necrosis

(4) 6-33% (5) 34-67% (6) 68-95%

Visually, when scanning through the entire tumor volume, what proportion of the entire
tumor would you estimate is enhancing. (Assuming that the entire abnormality may be
comprised of: (1) an enhancing component, (2) a non-enhancing component, (3) a necrotic
component and (4) a edema component.)

Radiology is a monthly journal de =
a O O radiology and allied sciences, ow
by the Radiological Society of No (4) 6-33% (5) 34-67%

[ Visually, when soanning?hmugh the entire tumor volume, what proportion of the tumor is estimated to represent
HOME | CURRENT | ARCHIVE | COLLECTIONS | %[ (ABSTRACTS) | RADIOLOGY S L S

enhancement, is high on T2W and proton density ~ images, is low on T1W images, and has an irregular
border). (Assuming that the entire abnormality may be comprised of: (1) an enhancing component, (2) a non-
enhancing component, (3) a necrotic component and (4) a edema component.)

©

MR Imaging Predictors of Molecular Profile and Survival: Multi-institutional o=+
Study of the TCGA Glioblastoma Data Set

David A. Gutman, MD, PhD, Lee A. D. Cooper, PhD, Scott N. Hwang, MD, PhD, Chad A. Holder, MD, JingJing Gao, PhD, Tarun D. Aurora, BS,
William D. Dunn, Jr, BS, Lisa Scarpace, MS, Tom Mikkelsen, MD, Rajan Jain, MD, Max Wintermark, MD, MAS, Manal Jilwan, MD,

Prashant Raghavan, MD, Erich Huang, PhD, Robert J. Clifford, PhD, Pattanasak Mongkolwat, PhD, Vladimir Kleper, BS, John Freymann, BA,
Justin Kirby, BS, Pascal O. Zinn, MD, Carlos Moreno, PhD, Carl Jaffe, MD, Rivka Colen, MD, Daniel L. Rubin, MD, MS, Joel Saltz, MD, PhD,
Adam Flanders, MD and Daniel J. Brat, MD, PhD
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Complex image analysis, feature

extraction, machine learning pipelines
Spatio-temporal Sensor Integration, Analysis,
Classification
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Programming Tools

Multi level computational pipeline
management

Region Templates — abstraction for multi-scale
spatio-temporal computations

“Domain” specific language

User Abstract Dataflow | instantiate

(1) Assign Stage Instance B.X
Stage Instance A X
© {4) Completed (8) Completed
Stage Instance AX  Stage Instance B.X

(2) Read

(3) Write
Input

o

InputSet 1

inputset 2| |

Inputset 4| e

||nom9et Sh - —_ -
o

t14 . d
Input Data Intermediary Results Output Results.
(files or in-memory storage ) (flles or in-memory storage) (files or in-memory storage)
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Database Tools (Fusheng Wang)
Spatial Queries and Analytics

e Feature based descriptive queries
- Feature based filtering or feature aggregation
- Spatial relationship based queries
- Spatial join (two- or multi-), window, point-in-
polygon
- Polygon overlay or spatial cross-matching
- Distance based queries
- Nearest neighbors
e Spatial analytics

- Density based spatial patterns: find clusters,
hotspots, and anomalies

— Spatial relationship modeling, e.g., geographically
weighted regression model(GWR)



Vector Valued “omics”
Data Scale




Inter-tumour Tumor Hete rOgeneity

heterogeneity
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Dominance of clone 1 Dominance of clone 2 Mixed dominance

Marusyk 2012



250-500M Slides/Year in USA
tal: 0.1-10 Exabytes/year



Falling fast

In the first few years after the end of the Human Genome Project, the cost of
genome sequencing roughly followed Moore's law, which predicts exponential
declines in computing costs. After 2007, sequencing costs dropped precipitously.
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Genomics: The single life

Sequencing DNA from individual cells is changing the way that researchers think of humans

as a whole.

ONE GENOME FROM MANY

Sequencing the genomes of single cells is similar to sequencing
those from multiple cells — but errors are more likely.

» Standard genome sequencing

Loads of

A sample containing thousands to DNA is extracted from all the nuclei. DNA is broken into fragments The sequences are assembled to give a
millions of cells is isolated. and then sequenced common, sensus’ sequence.

» Single-cell sequencing
- i \ \

GENOME
Hardly

any DNA 17\ R

~* DNA

amplification

A single cell is difficult to isolate, but The DNA is extracted and amplified, Amplified DNA is sequenced. Errors introduced in earlier steps make
it can be done mechanically or with during which errors can creep in. sequence assembly difficult; the final
an automated cell sorter. sequence can have gaps.

Brian Owens




Ligers and Tigons

Imprinted genes are under greater selective pressure than normal genes. This is
because only one copy is active at a time. Any variations in that copy will be
expressed. There is no "back-up copy" to mask its effects. As a result, imprinted
genes evolve more rapidly than other genes. And imprinting patterns - which
genes are silenced in the eggs and sperm -- also evolve quickly. They can be
quite different in closely related species.

Lions and tigers don't normally meet in nature. But they can get along very well
in captivity, where they sometimes produce hybrid offspring. The offspring look
different, depending on who the mother is. A male lion and a female tiger
produce a liger - the biggest of the big cats. A male tiger and a female lion
produce a tigon, a cat that is about the same size as its parents.

Imprinting patterns often differ even in closely related animals such
The difference in size and appearance between ligers and tigons is due in part to as tigers and lions.
the parents' differently imprinted genes. Other animals can also hybridize, with
similar results. For example, a horse and a donkey can produce a mule or a
hinny.

Genetic Science Learning Center - Utah
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Cancer stem cells in 3-D

Tumor-propagating/repopulating cell

Cell-of-origin

Tumor-initiating cell

Carcinogenesis Tumorigenesis / progression Metastasis
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* Unlimited self-renewal

* Recapitulation of tumor heterogeneity

* Exclusive in vivo tumorigenicity

e DA * Resistance to standard therapy Metastatic

Spanish National Cancer Research Center



Therapy Pipeline

Early Late Early Late
r
S—

PG11400 Series
PG11100 Series

LSD1 Series

Epigenetics
Discovery

The epigenetic product portfolio represents a defined and well positioned
series of drug candidates and discovery opportunities.

Given the interest in the epigenetics space, our package should attract a
number of spin out options.

Progen Pharmaceuticals Ltd




\ . EMR Data Analytics: Tools for Clinical
Q\\\ Stony Brook Medicine Phenotyping and Population Health

Patient History

Physical Exam PET Scans

Chemistries Path specimens

Hematology Genomics

redicilive
CT Scans Ana'Y tics

Proteomics
MRI Scans Metabalomics

Lipidomics



EMORY

UNIVERSITY

Clinical Phenotype Characterization and the Emory
Analytic Information Warehouse

e Example Project: Find hot spots in readmissions
within 30 days

— What fraction of patients with a given principal diagnosis will
be readmitted within 30 days?

— What fraction of patients with a given set of diseases will be
readmitted within 30 days?

- How does severity and time course of co-morbidities affect
readmissions?

— Geographic analyses

e Compare and contrast with UHC Clinical Data Base
— Repeat analyses across all UHC hospitals
- Are we performing the same?

- How are UHC-curated groupings of patients (e.g., product
lines) useful?

Center for Comprehensive Informatics

Andrew Post, Sharath Cholleti, Doris Gao, Michel Monsour, Himanshu Rathod



Center for Comprehensive Informatics

EMORY

UNIVERSITY

30-Day Readmission Rates for Derived

Variables

Emory Health Care
Patient Population Number of Encounters Number of Readmissions Readmission Rate
All-Emory 202181 36734 15%
Multiple Ml 4414 1506 36% (Single MI 15%)
ESRD 18445 5036 27% (CKD 23%)
>=4 readmissions 19510 10707 55%
Multiple Ml and >= 4 readmissions B 520 52%
CKD and >=4 readmissions 7865 4110 52%
Uncontrolled diabetes 12219 2573 21% (Diabetes 19%)
Uncontrolled diabetes & pressure ulcer 648 201 31%
Uncontrolled diabetes & ESRD 1645 531 32%
Sickle cell crisis 1809 663 37% (Sickle cell anemia 34%)
MRSA 1565 410 26%
Stroke and MRSA 42 16 38% (Stroke 24%)
Ml and MRSA 140 43 31% (Ml 15%)
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Geographic Analyses
UHC Medicine General Product Line (#15)
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Analytic Information Warehouse
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UNIVERSITY

Predictive Modeling for Readmission

e Random forests (ensemble of decision trees)

— Create a decision tree using a random subset of the
variables in the dataset

— Generate a large number of such trees

— All trees vote to classify each test example in a
training dataset

— Generate a patient-specific readmission risk for each
encounter

e Rank the encounters by risk for a subsequent 30-
day readmission

Center for Comprehensive Informatics

Sharath Cholleti
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Predictive Modeling for 180 UHC Hospitals, 35 Million Patients
Identify High Risk Patients!
Readmission fraction of top 10% high risk patients
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DSRIP

Delivery System Reform Incentive
Payment (DSRIP) Program



What is DSRIP? <

e 8 billion dollar grant from CMS to NY State

— 25% reduction over five years in avoidable
hospitalizations and ER visits in the Medicaid and
uninsured population

— Collaborative effort to implement innovative
projects focused on
e System transformation
* Clinical improvement
e Population health improvement



5 YEAR GOALS

* Create integrated care delivery system
anchored by safety net providers

 Engage partners across the care delivery
spectrum to create a county wide network of

care

e After five years transition this network to an
ACO which will contract with insurance
providers on an at risk basis



The projects

 The chosen projects must address the most
significant healthcare issues in the Suffolk County
Medicaid and uninsured population and address
healthcare disparities—some examples

— Behavioral health: BH and primary care integration
— Adults: COPD, diabetes, HTN, renal failure
— Children: Asthma

— Hi risk OB/neonates—Esp. Hispanic and African
American communities



DATA ANALYTICS

* County wide healthcare data will be collected

* Near real-time data analytics will be used to
drive healthcare improvements

— Analyzing success and failures to create fast turn-
around improvement opportunities

— Analyze trends in disease and wellness population
wide
— Continuous analysis of outcomes
* Testbed for Machine Learning



Conclusions

* Major application areas
— Exascale++
— Impact — “cure cancer”

e “Domains”

— Spatio-temporal Sensor Integration, Analysis,
Classification

— Integrative Predictive Analytics

* Agile extreme scale computing



