
Portability in an Age of Node Diversity
Can our programming models cope?

Barbara Chapman
University of Houston

http://www.cs.uh.edu/~hpctools

CCDSC Lyon; September 2014

Acknowledgements: NSF CNS-0833201, CCF-0917285;
DOE DE-FC02-06ER25759, ORAU, Shell, Total, Texas
Instruments, u.a.

Porting Reverse-time Migration Code to CAF

Forward Shot
Comparison

Total Domain
Size: 1024 x 768
x 512 (3.0 GB,
per shot)
Comparison:
OpenUH CAF,
Intel MPI

 CAF port and results by Alan
Richardson, Summer 2012 Internship,
Total.

n  A source wave is emitted per shot
n  Reflected waves captured by array of

sensors
n  RTM (in time domain) uses finite

difference method to numerically solve
wave equation and reconstruct
subsurface image (in parallel, with
domain decomposition)

 	

 	

5

Seismic Data Processing in OpenMP

 Loadline(nStartLine,...); // preload the first line of data
#pragma omp parallel
{
 for (int iLineIndex=nStartLine; iLineIndex <= nEndLine; iLineIndex++)
 {
#pragma omp single nowait
 {// loading the next line data, NO WAIT!
 Loadline(iLineIndex+1,...);
 }
#pragma omp for schedule(dynamic)

 for(j=0;j<iNumTraces;j++)
 for(k=0;k<iNumSamples;k++)
 processing();

#pragma omp single nowait
 {
 SaveLine(iLineIndex);
 }
 }
}

Load
Data

Process

Data
Save
Data

Load
Data

Process

Data
Save
Data

Load
Data

Load
Data

Process

Data

Timeline

OpenMP 4.0

n  Released July 2013
q  http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
q  http://www.openmp.org/mp-documents/

OpenMP_Examples_4.0.1.pdf
n  Main changes from 3.1:

q  Accelerator extensions
q  SIMD extensions
q  Places and thread affinity
q  Taskgroup and dependent tasks
q  Error handling (cancellation)
q  User-defined reductions

6

7

Thread Affinity

n  Mapping and binding of OpenMP threads
n  “proc_bind(spread)”

q  spread 2

q  spread 8

q  spread16

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4
p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

master worker partition

chip 0

core 0

 t0 t1

core 1

 t2 t3

core 2

 t4 t5

core 3

 t6 t7

chip 1

core 4

 t8 t9

core 5

 t10 t11

core 6

 t12 t13

core 7

 t14 t15

It’s A Heterogeneous World
n  High-level directive-based parallel programming
n  OpenMP as a unified, productive programming model

for heterogeneous nodes
q  Principles identifed by PGI, CAPS

n  Identify code to run on certain kind of core
n  Where and when is data allocated?
n  How to optimize data motion?

generic
core

generic
core

Special
ized
core

Special
ized
core

Control and
data transfers

HMPP

PGI

OpenMP for Accelerators

while ((k<=mits)&&(error>tol))
{
// a loop copying u[][] to uold[][] is omitted here
 …

#pragma omp parallel for private(resid,j,i) reduction(+:error)
for (i=1;i<(n-1);i++)
 for (j=1;j<(m-1);j++)
 {
 resid = (ax*(uold[i-1][j] + uold[i+1][j])\
 + ay*(uold[i][j-1] + uold[i][j+1])+ b * uold[i][j] - f[i][j])/b;
 u[i][j] = uold[i][j] - omega * resid;
 error = error + resid*resid ;
 } // rest of the code omitted ...
}

#pragma omp target data device (gpu0) map(to:n, m, omega, ax, ay, b, \
 f[0:n][0:m]) map(tofrom:u[0:n][0:m]) map(alloc:uold[0:n][0:m])

#pragma omp target device(gpu0)

9 Early Experiences With The OpenMP Accelerator Model; Chunhua Liao, Yonghong Yan, Bronis R. de Supinski,
Daniel J. Quinlan and Barbara Chapman; International Workshop on OpenMP (IWOMP) 2013, September 2013

0

10

20

30

40

50

60

70

80

90

100

128x128 256x256 512x512 1024x1024 2048x2048
Matrix size (float)

Jacobi Execution Time (s)

first version

target-data

Loop collapse using linearization with static-even scheduling

Loop collapse using 2-D mapping (16x16 block)

Loop collapse using 2-D mapping (8x32 block)

Loop collapse using linearization with round-robin scheduling

OpenACC Programming Model

n  Announced Supercomputing 2011
q  Initial work by NVIDIA, Cray, PGI,

CAPS
n  Directive-based programming for

accelerators
q  For Fortran, C, C++
q  Loop-based computations

n  Current version 2.0
n  Compilers: PGI, Cray, CAPS,

OpenUH, OpenARC, GCC (4.9)

C O M P U T E (((((|(((((S T O R E (((((|(((((A N A L Y Z E

Mar. 31, 2014

HPC Advisory Council, Lugano

6

● A common directive programming model for today’s GPUs

●  Announced at SC11 conference
●  Offers portability between compilers

●  Drawn up by: NVIDIA, Cray, PGI, CAPS

●  Multiple compilers offer:
●  portability, debugging, permanence

●  Works for Fortran, C, C++
●  Standard available at openacc.org
●  Initially implementations targeted at NVIDIA GPUs

● Compiler support: all now complete

●  Cray CCE: complete OpenACC 2.0 in v8.2

●  PGI Accelerator: version 12.6 onwards

●  CAPS: Full support in v1.3
●  gcc:work started in late 2013, aiming for 4.9

●  Various other compilers in development

OpenACC Compiler Translation

11

Loop Mapping Algorithms

Map-gv-gv in GPU Topology

#pragma acc loop gang (2) vector (2)

for (i = x1; i < X1; i++) {

#pragma acc loop gang (3) vector (4)

for (j = y1; j < Y1; j++) {...... }

}

X.Tian et al. LCPC Workshop 2013 17 / 26

n  Need to achieve coalesced memory access on GPUs

Results

Triple Nested Loop Mapping Algorithms Performance
PGI VS OpenUH

��

���

����

�������	�	

����	��	��	

����	��	��

�������	�	

����	��	��	

����	��	��

�
�

�
��
�

��	
����

������
������

��
���

������
������

��
���

�
��
��
��

�����
��

Figure: Wave13pt

X.Tian et al. LCPC Workshop 2013 31 / 26

Compiling a High-level Directive-Based Programming Model for GPGPUs; Xiaonan Tian, Rengan Xu, Yonghong Yan, Zhifeng Yun, Sunita
Chandrasekaran, and Barbara Chapman; 26th International Workshop on Languages and Compilers for Parallel Computing (LCPC2013)

Compiling a High-level Directive-Based Programming Model for GPGPUs 11

���

���

���

���

���

���

���

���

���

���

���

	
��
� ����� �
���
���

��
�
��
��
�

������
��

�
 �!�
�
 �!�
�
 �!�
�
 �!�

Fig. 9: Double nested loop mapping.

����

��

���

����

�����

����	
� �
��
	

� �
������

�

�
��
��
�

���	��
��

�
����
�
����
�
����

Fig. 10: Triple nested loop mapping.

Table 2: Threads used in each loop with double loop mappings
Benchmark Double Loop Map2 1 Map2 2 Map2 3 Map2 4

Jacobi (2048x2048)
Outer loop 2048 1024x2 2046 1023x2
Inner loop 128 128 16x128 16x128

DGEMM (8192x8192)
Outer loop 8192 4096x2 8192 4096x2
Inner loop 128 128 64x128 64x128

Gaussblur (1024x1024)
Outer loop 1024 512x2 1020 510x2
Inner loop 128 128 8x128 8x128

shows the performance comparison in di�erent benchmarks with di�erent dou-
ble nested loop mappings. All of Jacobi, DGEMM and Gaussblur have double
nested parallel loops but they show di�erent performance behavior. In Jacobi,
the data accessed from the inner loop are contiguous in memory while they are
non-contiguous when accessed from the outer loop. In all of our four double
nested loop mappings, the inner loop uses vector which means the threads ex-
ecuting the inner loop are consecutive. In both vector and gang vector cases,
the threads are consecutive and the only di�erence is the length of concurrent
threads. In Jacobi inner loop, consecutive threads access aligned and consecu-
tive data and therefore the memory access is coalesced. In this case the memory
access pattern and the loop mapping mechanism match perfectly. That is why
the performance using all of the four loop mappings are close. Table 2 shows
the number of threads used in each loop mapping. Because Map2 1 and Map2 2
have less threads than Map2 3 and Map2 4 in the inner loop, the execution time
is slightly longer. Map2 1 and Map2 2 have the same performance since their
threads are the same in both the outer loop and inner loop. The performance
behavior of Gaussblur is similar to Jacobi because their memory access pattern
and threads management are similar.

In DGEMM, the performance of Map2 2 and Map2 4 are better than the
other two mappings which is because they both have enough parallelism in each
block to hide memory access latency. The performance penalty in Map2 1 is due
to less parallelism in each block. Map2 3 has the worst performance as it does

OpenACC Status

n  Under active development
n  Significant extensions in version 2.0 include:

q  Procedure calls, separate compilation
q  Nested parallelism
q  Loop tile clause
q  Device resident global data
q  New atomic construct

n  Future plans include:
q  Tools interface
q  Deep Copy for pointer based data structures
q  Better performance portability across implementations

Compiler Models

Cost models

Processor model
Cache model

Parallel model

Loop overhead

Parallel overhead

Machine cost

Cache cost

Reduction cost

Computational
resource cost

Dependency
latency cost
Register spill

 cost

Cache cost
Operation cost

Issue cost
Mem_ref cost

TLB cost

4853.08105
2691.89195 3551.39345

6033.2904

2402.6061 2255.9813

7083.30225
4546.6893

3064.6816 3567.4856 2697.7405
5231.9194

2167.1573

8119.38975

4286.8672
6046.2975

2574.97045 2108.68385

8906.8519

3676.1309 4898.5849
2451.7159

6758.78625
4134.11485

5505.723
2758.22575 3676.2987 4590.789

0
5000

10000

1+2 2+2 3+1 1+4 3+2 4+2 5+1 3+4 2+5 6+1 4+4 5+3 2+6 5+4 6+3 4+6 5+6 B
W

 (M
B

/s
)

Thread Configuration (# of remote + # of local threads)

HT3 BW vs Threads on 2 Istanbuls

1+2

2+1

2+2

1+3

Machine Aware Compilation
n  Restructure work units

q  Merging or splitting work units for better granularity
q  Guided by parameterized cost model

n  Application structural representation
q  Work units and dependences
q  Data distribution among places

n  Compile time approximation
q  Data mapping onto places
q  Data binding with work unit
q  Decision honored by runtime

n  But may be adapted and refined.

12

3.4 Related Work

Broadly speaking, the REX programing model is designed to address concerns and directions
expressed at the DoE 2011 Workshop on Exascale Programming Challenges [17]. The REX
programming model leverage multiple previous language e�orts, including asynchronous task
parallel models from Cilk [22], asynchronous PGAS languages such as X10 [26], [79] and
Chapel [4], and the data parallel model in OpenMP [72] and OpenACC [71] standard. It also
borrow concepts from data-flow, functional and single-assignment programming models [6], [20],
[21], [27], [68]. One of the distinguishing features of REX is its combination of these concepts with
an integration with MPI for inter-node communication. Also, REX is geared towards creating
higher-level constructs similar to the multiresolution programming model Chapel [4], but through
a creation of domain-specific languages suitable for compilation on heterogeneous platforms.

4 REX Compiler Research




























      












Fig. 6. REX Machine-Aware Compilation Environment

The extent to which a compiler is able to optimize code is highly dependent on the information
available to it about the program and its data usage, and how well it is able to speculate on the
runtime behavior. The REX compiler will make extensive use of the explicit data and parallelism
information contained in a REX program in order to perform aggressive optimizations that are
tailored to the target node architectures. The REX compiler research includes the following:

• We will design an Application Structural Representation (ASR) for REX programs. The
high-level representation of an application’s parallelism and data access patterns provided
by the ASR will be used to assist parallelism-aware compilation, pass information to the
runtime, and support interaction with both expert programmers and performance tools.

• We will perform research on machine-aware compilation and memory optimization on
di�erent architectures, including current and future architectures that are not conventional
but may influence parts of the exascale hardware roadmap.

• The REX compiler will support generation of multiple code versions for data parallel regions,
e.g. generating both CPU and GPGPU versions from a single source.

Is there a generic code structure that supports this process?

Small “Mistakes”, Big Consequences

n  GenIDLEST code
q  Solves incompressible Navier

Stokes and energy equations

OpenMP version

MPI version

OpenMP version: a single
procedure is responsible for
20% of total time, is 9 times
slower than MPI version . Its
loops are up to 27 times slower
in OpenMP than MPI.

Small “Mistakes”, Big Consequences

n  GenIDLEST code
q  Solves incompressible Navier

Stokes and energy equations

OpenMP version

MPI version

OpenMP version: a single
procedure is responsible for
20% of total time, is 9 times
slower than MPI version . Its
loops are up to 27 times slower
in OpenMP than MPI.

Optimized OpenMP version

Array bounds used privately
by threads were shared,
stored in same cache line.
Privatization led to 10X
performance improvement;
30% for entire program

Runtime False Sharing Detection

0

2

4

6

8

Sp
ee

du
p

1-thread 2-threads
4-threads 8-threads

0

2

4

6

8

Sp
ee

du
p

1-thread 2-threads
4-threads 8-threads

Original Version Optimized Version

B.	
 Wicaksono,	
 M.	
 Tolubaeva	
 and	
 B.	
 Chapman.	
 “Detecting	
 false	
 sharing	
 in	
 OpenMP	

applications	
 using	
 the	
 DARWIN	
 framework”,	
 LCPC	
 2011	

Modeling False Sharing at Compile-time

18

_ _ _mod _mod
*

_ _mod

fs measured nfs measured fs eled nfs eled

fs measured fs eled

T T T T
T T

− −
≈

0

10

20

30

40

50

2 4 8 16 24 32 40 48

Fa
ls

e
Sh

ar
in

g
Ef

fe
ct

 %

Number of Threads

FFT

Actual

Modeled

0

5

10

15

20

25

30

2 4 8 16 24 32 40 48

Fa
ls

e
Sh

ar
in

g
Ef

fe
ct

 %

Number of Threads

Heat Diffusion

Actual

Modeled

Compile-time assessment
n  Analyze array references to generate

a cache line ownership list
n  Apply a stack distance analysis
n  Compute the FS overhead cost

M. Tolubaeva, Y. Yan and B. Chapman. Compile-Time Detection of False Sharing via Loop
Cost Modeling. HIPS'12 Workshop in conjunction with IPDPS'12 (accepted)

Heterogeneous doesn’t just mean GPUs

Intel Xeon Phi

Nvidia Kepler
Nvidia Maxwell

Nvidia
Pascal

Intel
Haswell

Blue Gene/Q

Tilera

Xtreme DATA
SGI
RASC

FPGAs Virtex 5

IBM Cyclops64

Intel
Sandybridge

FPGAs Virtex
7 Convey

CPU
s

Cell BE
IBM Power 7

IBM Power 8
AMD Warsaw

AMD Berlin Before 2000

2013 onwards

Nvidia Volta

19

DSP +
ARM

Rethinking Implementation Strategies

P
ar

al
le

l r
eg

io
n

1

Start

End

Initialization

slave thread #1

snoop for nequest

Execute
“micro_task()”

start
 msg

completion
msgs

Initialization
micro_task context

send request

Execute micro_task()

barrier

P
ar

al
le

l r
eg

io
n

2

Initialization
micro_task context

send request

Execute micro_task()

barrier

barrier

slave thread #1

snoop for nequest

Execute
“micro_task()”

barrier

slave thread #1

snoop for nequest

Execute
“micro_task()”

barrier

B. Chapman, L. Huang, E. Stotzer, E. Biscondi, A. Shrivastava, A. Gatherer. Implementing OpenMP on a High Performance
Embedded Multicore MPSoC, pp 1-8, Proc. of Workshop on Multithreaded Architectures and Applications (MTAAP'09) In
conjunction with International Parallel and Distributed Processing Symposium (IPDPS), 2009.

Agenda Motivation MCA APIs libEOMP Design Implementation Evaluation Conclusion Ack

libEOMP: A portable OpenMP implementation for multicore embedded systems

OpenMP for embedded systems
solution stack 1 Use MCA APIs as a translation layer for

OpenMP implementation

2 Design an unified runtime targeting
various multicore embedded systems

3 Fill the programming gap between
general-purpose architecture and unique
architectural challenges for multicore
embedded systems

4 Provide support for essential feature sets
of OpenMP 2.5

Presented by Cheng Wang Jun. 21st, 2013 cwang35@uh.edu 11 / 21

n  Implementation of OpenMP
for embedded systems

n  Portable runtime layer
supports implementation

n  Using Multicore Association
(MCA) APIs
n  Multicore Resource

Management API
n  Multicore Communication API
n  Multicore Task Management

API
n  Virtualization

n  Very low overheads

OpenMP at Exascale: XPI as Runtime Target

n  DOE-funded XPRESS project
q  Portable exascale system execution
q  Framework for future exascale system design
q  Experimentation with MPI and OpenMP on top of XPI

OpenMP Application

OpenUH OpenMP Compiler

OS/system

OpenUH libopenmp
Runtime HPX XPI

hpxMP xpiMP

Adaptive Runtime
OpenMP
Runtime
Library

Collector Tool

OpenMP App

Event
callback

Register
event

n  Runtime support to continuously
q  Adapt workload and data to environment
q  Respond to changes caused by application characteristics, power,

(impending) faults, system noise
q  Provide feedback on application behavior

n  Lightweight monitoring embedded compiler’s runtime,
enables monitoring of OpenMP program
q  Enables tools to interact with OpenMP runtime library

n  Locality-aware scheduling
n  Task-level autotuning, specific adaptations

Let’s Change The System Stack!

n  Compilers can share information on application with
other components

n  Facilitate lightweight data collection
n  Multiversioning and runtime adaptation

IPA: Inlining Analysis
/ Selective
Instrumentation

Instrumentation Phase

Source-to-Source
Transformations

Optimization Logs

Oscar Hernandez, Haoqiang Jin, Barbara Chapman. Compiler Support for Efficient Instrumentation. In Parallel
Computing: Architectures, Algorithms and Applications , C. Bischof, M. B¨ucker, P. Gibbon, G.R. Joubert, T.
Lippert, B. Mohr, F. Peters (Eds.), NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 661-668, 2007.

