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Porting Reverse-time Migration Code to CAF 

Forward Shot 
Comparison 
 
Total Domain 
Size: 1024 x 768 
x 512 (3.0 GB, 
per shot) 
Comparison: 
OpenUH CAF, 
Intel MPI 
 

 CAF port and results by Alan  
Richardson, Summer 2012 Internship, 
Total. 

n  A source wave is emitted per shot 
n  Reflected waves captured by array of 

sensors 
n  RTM (in time domain) uses finite 

difference method to numerically solve 
wave equation and reconstruct 
subsurface image (in parallel, with 
domain decomposition) 
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Seismic Data Processing in OpenMP  

 Loadline(nStartLine,...);  // preload the first line of data 
#pragma omp parallel 
{ 
   for (int iLineIndex=nStartLine; iLineIndex <= nEndLine; iLineIndex++) 
   { 
#pragma omp single nowait 
  {// loading the next line data, NO WAIT! 
         Loadline(iLineIndex+1,...);   
   } 
#pragma omp for schedule(dynamic) 

 for(j=0;j<iNumTraces;j++) 
  for(k=0;k<iNumSamples;k++) 
   processing(); 

#pragma omp single nowait 
      { 
          SaveLine(iLineIndex); 
      } 
   } 
} 
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OpenMP 4.0 

n  Released July 2013 
q  http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf 
q  http://www.openmp.org/mp-documents/

OpenMP_Examples_4.0.1.pdf 
n  Main changes from 3.1:  

q  Accelerator extensions 
q  SIMD extensions 
q  Places and thread affinity 
q  Taskgroup and dependent tasks 
q  Error handling (cancellation) 
q  User-defined reductions 
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Thread Affinity 

n  Mapping and binding of OpenMP threads 
n  “proc_bind(spread)” 

q  spread 2 
 

q  spread 8 
 

q  spread16 
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It’s A Heterogeneous World 
n  High-level directive-based parallel programming 
n  OpenMP as a unified, productive programming model 

for heterogeneous nodes 
q  Principles identifed by PGI, CAPS 

n  Identify code to run on certain kind of core 
n  Where and when is data allocated? 
n  How to optimize data motion? 
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OpenMP for Accelerators 

while ((k<=mits)&&(error>tol)) 
{  
// a loop copying u[][] to uold[][] is omitted here 
 … 
 
 
#pragma omp parallel for private(resid,j,i) reduction(+:error) 
for (i=1;i<(n-1);i++) 
  for (j=1;j<(m-1);j++) 
  { 
    resid = (ax*(uold[i-1][j] + uold[i+1][j])\ 
        + ay*(uold[i][j-1] + uold[i][j+1])+ b * uold[i][j] - f[i][j])/b; 
    u[i][j] = uold[i][j] - omega * resid; 
    error = error + resid*resid ; 
  } // rest of the code omitted  ... 
} 

#pragma omp target data device (gpu0) map(to:n, m, omega, ax, ay, b, \  
    f[0:n][0:m])  map(tofrom:u[0:n][0:m]) map(alloc:uold[0:n][0:m]) 
 

#pragma omp target  device(gpu0) 

9 Early Experiences With The OpenMP Accelerator Model; Chunhua Liao, Yonghong Yan, Bronis R. de Supinski, 
Daniel J. Quinlan and Barbara Chapman; International Workshop on OpenMP (IWOMP) 2013, September 2013 
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OpenACC Programming Model  

n  Announced Supercomputing 2011 
q  Initial work by NVIDIA, Cray, PGI, 

CAPS  
n  Directive-based programming for 

accelerators 
q  For Fortran, C, C++ 
q  Loop-based computations 

n  Current version 2.0  
n  Compilers: PGI, Cray, CAPS, 

OpenUH, OpenARC, GCC (4.9)  
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Mar. 31, 2014 

HPC Advisory Council, Lugano 
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● A common directive programming model for today’s GPUs 

●  Announced at SC11 conference 
●  Offers portability between compilers 

●  Drawn up by: NVIDIA, Cray, PGI, CAPS 

●  Multiple compilers offer: 
●  portability, debugging, permanence 

●  Works for Fortran, C, C++ 
●  Standard available at openacc.org 
●  Initially implementations targeted at NVIDIA GPUs 

● Compiler support: all now complete 

●  Cray CCE: complete OpenACC 2.0 in v8.2 

●  PGI Accelerator: version 12.6 onwards 

●  CAPS: Full support in v1.3 
●  gcc:work started in late 2013, aiming for 4.9 

●  Various other compilers in development 



OpenACC Compiler Translation 
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Loop Mapping Algorithms

Map-gv-gv in GPU Topology

#pragma acc loop gang (2) vector (2)

for ( i = x1; i < X1; i++ ) {

#pragma acc loop gang (3) vector (4)

for ( j = y1; j < Y1; j++ ) {...... }

}

X.Tian et al. LCPC Workshop 2013 17 / 26

n  Need to achieve coalesced memory access on GPUs 

Results

Triple Nested Loop Mapping Algorithms Performance
PGI VS OpenUH
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Figure: Wave13pt

X.Tian et al. LCPC Workshop 2013 31 / 26

Compiling a High-level Directive-Based Programming Model for GPGPUs; Xiaonan Tian, Rengan Xu, Yonghong Yan, Zhifeng Yun, Sunita 
Chandrasekaran, and Barbara Chapman; 26th International Workshop on Languages and Compilers for Parallel Computing (LCPC2013) 

Compiling a High-level Directive-Based Programming Model for GPGPUs 11
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Fig. 9: Double nested loop mapping.
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Fig. 10: Triple nested loop mapping.

Table 2: Threads used in each loop with double loop mappings
Benchmark Double Loop Map2 1 Map2 2 Map2 3 Map2 4

Jacobi (2048x2048)
Outer loop 2048 1024x2 2046 1023x2
Inner loop 128 128 16x128 16x128

DGEMM (8192x8192)
Outer loop 8192 4096x2 8192 4096x2
Inner loop 128 128 64x128 64x128

Gaussblur (1024x1024)
Outer loop 1024 512x2 1020 510x2
Inner loop 128 128 8x128 8x128

shows the performance comparison in di�erent benchmarks with di�erent dou-
ble nested loop mappings. All of Jacobi, DGEMM and Gaussblur have double
nested parallel loops but they show di�erent performance behavior. In Jacobi,
the data accessed from the inner loop are contiguous in memory while they are
non-contiguous when accessed from the outer loop. In all of our four double
nested loop mappings, the inner loop uses vector which means the threads ex-
ecuting the inner loop are consecutive. In both vector and gang vector cases,
the threads are consecutive and the only di�erence is the length of concurrent
threads. In Jacobi inner loop, consecutive threads access aligned and consecu-
tive data and therefore the memory access is coalesced. In this case the memory
access pattern and the loop mapping mechanism match perfectly. That is why
the performance using all of the four loop mappings are close. Table 2 shows
the number of threads used in each loop mapping. Because Map2 1 and Map2 2
have less threads than Map2 3 and Map2 4 in the inner loop, the execution time
is slightly longer. Map2 1 and Map2 2 have the same performance since their
threads are the same in both the outer loop and inner loop. The performance
behavior of Gaussblur is similar to Jacobi because their memory access pattern
and threads management are similar.

In DGEMM, the performance of Map2 2 and Map2 4 are better than the
other two mappings which is because they both have enough parallelism in each
block to hide memory access latency. The performance penalty in Map2 1 is due
to less parallelism in each block. Map2 3 has the worst performance as it does



OpenACC Status 

n  Under active development 
n  Significant extensions in version 2.0 include: 

q  Procedure calls, separate compilation 
q  Nested parallelism 
q  Loop tile clause  
q  Device resident global data  
q  New atomic construct  

n  Future plans include: 
q  Tools interface  
q  Deep Copy for pointer based data structures 
q  Better performance portability across implementations 



Compiler Models 
 

Cost models 

Processor model 
Cache model 

Parallel model 

Loop overhead 

Parallel overhead 

Machine cost 

Cache cost 

Reduction cost 

Computational  
resource cost 

Dependency  
latency cost 
Register spill 

 cost 

Cache cost 
Operation cost 

Issue cost 
Mem_ref cost 

TLB cost 
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2691.89195 3551.39345 

6033.2904 

2402.6061 2255.9813 

7083.30225 
4546.6893 

3064.6816 3567.4856 2697.7405 
5231.9194 

2167.1573 

8119.38975 

4286.8672 
6046.2975 

2574.97045 2108.68385 

8906.8519 

3676.1309 4898.5849 
2451.7159 

6758.78625 
4134.11485 

5505.723 
2758.22575 3676.2987 4590.789 

0 
5000 

10000 

1+2 2+2 3+1 1+4 3+2 4+2 5+1 3+4 2+5 6+1 4+4 5+3 2+6 5+4 6+3 4+6 5+6 B
W

 (M
B

/s
) 

Thread Configuration (# of remote + # of local threads) 

HT3 BW vs Threads on 2 Istanbuls 

1+2 

2+1 

2+2 

1+3 



Machine Aware Compilation 
n  Restructure work units 

q  Merging or splitting work units for better granularity 
q  Guided by parameterized cost model 

n  Application structural representation 
q  Work units and dependences 
q  Data distribution among places  

n  Compile time approximation 
q  Data mapping onto places 
q  Data binding with work unit 
q  Decision honored by runtime  

n  But may be adapted and refined. 
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3.4 Related Work

Broadly speaking, the REX programing model is designed to address concerns and directions
expressed at the DoE 2011 Workshop on Exascale Programming Challenges [17]. The REX
programming model leverage multiple previous language e�orts, including asynchronous task
parallel models from Cilk [22], asynchronous PGAS languages such as X10 [26], [79] and
Chapel [4], and the data parallel model in OpenMP [72] and OpenACC [71] standard. It also
borrow concepts from data-flow, functional and single-assignment programming models [6], [20],
[21], [27], [68]. One of the distinguishing features of REX is its combination of these concepts with
an integration with MPI for inter-node communication. Also, REX is geared towards creating
higher-level constructs similar to the multiresolution programming model Chapel [4], but through
a creation of domain-specific languages suitable for compilation on heterogeneous platforms.

4 REX Compiler Research
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Fig. 6. REX Machine-Aware Compilation Environment

The extent to which a compiler is able to optimize code is highly dependent on the information
available to it about the program and its data usage, and how well it is able to speculate on the
runtime behavior. The REX compiler will make extensive use of the explicit data and parallelism
information contained in a REX program in order to perform aggressive optimizations that are
tailored to the target node architectures. The REX compiler research includes the following:

• We will design an Application Structural Representation (ASR) for REX programs. The
high-level representation of an application’s parallelism and data access patterns provided
by the ASR will be used to assist parallelism-aware compilation, pass information to the
runtime, and support interaction with both expert programmers and performance tools.

• We will perform research on machine-aware compilation and memory optimization on
di�erent architectures, including current and future architectures that are not conventional
but may influence parts of the exascale hardware roadmap.

• The REX compiler will support generation of multiple code versions for data parallel regions,
e.g. generating both CPU and GPGPU versions from a single source.

Is there a generic code structure that supports this process? 



Small “Mistakes”, Big Consequences 

n  GenIDLEST code 
q  Solves incompressible Navier 

Stokes and energy equations 

OpenMP version 

MPI version 

OpenMP version: a single 
procedure is responsible for 
20% of total time, is 9 times 
slower than MPI version . Its 
loops are up to 27 times slower 
in OpenMP than MPI.     



Small “Mistakes”, Big Consequences 

n  GenIDLEST code 
q  Solves incompressible Navier 

Stokes and energy equations 

OpenMP version 

MPI version 

OpenMP version: a single 
procedure is responsible for 
20% of total time, is 9 times 
slower than MPI version . Its 
loops are up to 27 times slower 
in OpenMP than MPI.     

Optimized OpenMP version 

Array bounds used privately 
by threads were shared, 
stored in same cache line. 
Privatization led to 10X 
performance improvement; 
30% for entire program 
 



Runtime False Sharing Detection 
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Modeling False Sharing at Compile-time 
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Compile-time assessment  
n  Analyze array references to generate 

a cache line ownership list 
n  Apply a stack distance analysis 
n  Compute the FS overhead cost 

M. Tolubaeva, Y. Yan and B. Chapman. Compile-Time Detection of False Sharing via Loop 
Cost Modeling. HIPS'12 Workshop in conjunction with IPDPS'12 (accepted) 



Heterogeneous doesn’t just mean GPUs 
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Rethinking Implementation Strategies 
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B. Chapman, L. Huang, E. Stotzer, E. Biscondi, A. Shrivastava, A. Gatherer. Implementing OpenMP on a High Performance 
Embedded Multicore MPSoC, pp 1-8, Proc. of Workshop on Multithreaded Architectures and Applications (MTAAP'09) In 
conjunction with International Parallel and Distributed Processing Symposium (IPDPS), 2009. 



Agenda Motivation MCA APIs libEOMP Design Implementation Evaluation Conclusion Ack

libEOMP: A portable OpenMP implementation for multicore embedded systems

OpenMP for embedded systems
solution stack 1 Use MCA APIs as a translation layer for

OpenMP implementation

2 Design an unified runtime targeting
various multicore embedded systems

3 Fill the programming gap between
general-purpose architecture and unique
architectural challenges for multicore
embedded systems

4 Provide support for essential feature sets
of OpenMP 2.5

Presented by Cheng Wang Jun. 21st, 2013 cwang35@uh.edu 11 / 21

n  Implementation of OpenMP 
for embedded systems 

n  Portable runtime layer 
supports implementation 

n  Using Multicore Association 
(MCA) APIs  
n  Multicore Resource 

Management API 
n  Multicore Communication API 
n  Multicore Task Management 

API 
n  Virtualization 

n  Very low overheads 



OpenMP at Exascale: XPI as Runtime Target 

n  DOE-funded XPRESS project  
q  Portable exascale system execution 
q  Framework for future exascale system design 
q  Experimentation with MPI and OpenMP on top of XPI 

OpenMP Application 

OpenUH OpenMP Compiler 

OS/system 

OpenUH libopenmp 
Runtime         HPX XPI 

hpxMP xpiMP 



   



Adaptive Runtime 
OpenMP 
Runtime 
Library 

Collector Tool 

OpenMP App 

Event 
callback 

Register 
event 

n  Runtime support to continuously 
q  Adapt workload and data to environment 
q  Respond to changes caused by application characteristics, power, 

(impending) faults, system noise 
q  Provide feedback on application behavior 

n  Lightweight monitoring embedded compiler’s runtime, 
enables monitoring of OpenMP program 
q  Enables tools to interact with OpenMP runtime library 

n  Locality-aware scheduling 
n  Task-level autotuning, specific adaptations 



Let’s Change The System Stack! 

n  Compilers can share information on application with 
other components 

n  Facilitate lightweight data collection  
n  Multiversioning and runtime adaptation 

IPA: Inlining Analysis 
/ Selective 
Instrumentation 

Instrumentation Phase 

Source-to-Source 
Transformations 

Optimization Logs 

Oscar Hernandez, Haoqiang Jin, Barbara Chapman. Compiler Support for Efficient Instrumentation. In Parallel 
Computing: Architectures, Algorithms and Applications , C. Bischof, M. B¨ucker, P. Gibbon, G.R. Joubert, T. 
Lippert, B. Mohr, F. Peters (Eds.), NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 661-668, 2007. 


