
Rectangular Full Packed Format for Cholesky’s
Algorithm: Factorization, Solution and Inversion

Fred G. Gustavson

IBM T.J. Watson Research Center

and

Jerzy Waśniewski

Technical University of Denmark

and

Jack J. Dongarra

University of Tennessee, Oak Ridge National Laboratory and University of Manchester

and

Julien Langou

University of Colorado Denver

We describe a new data format for storing triangular, symmetric, and Hermitian matrices called
RFPF (Rectangular Full Packed Format). The standard two dimensional arrays of Fortran and

C (also known as full format) that are used to represent triangular and symmetric matrices waste

nearly half of the storage space but provide high performance via the use of Level 3 BLAS.
Standard packed format arrays fully utilize storage (array space) but provide low performance as

there is no Level 3 packed BLAS. We combine the good features of packed and full storage using
RFPF to obtain high performance via using Level 3 BLAS as RFPF is a standard full format

representation. Also, RFPF requires exactly the same minimal storage as packed format. Each

LAPACK full and/or packed triangular, symmetric, and Hermitian routine becomes a single new
RFPF routine based on eight possible data layouts of RFPF. This new RFPF routine usually

consists of two calls to the corresponding LAPACK full format routine and two calls to Level 3

BLAS routines. This means no new software is required. As examples, we present LAPACK
routines for Cholesky factorization, Cholesky solution and Cholesky inverse computation in RFPF

to illustrate this new work and to describe its performance on several commonly used computer

platforms. Performance of LAPACK full routines using RFPF versus LAPACK full routines using
standard format for both serial and SMP parallel processing is about the same while using half

the storage. Performance gains are roughly one to a factor of 43 for serial and one to a factor of

97 for SMP parallel times faster using vendor LAPACK full routines with RFPF than with using
vendor and/or reference packed routines.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra –
Linear Systems (symmetric and Hermitian); G.4 [Mathematics of Computing]: Mathematical
Software

General Terms: Algorithms, BLAS, Performance, Linear Algebra Libraries

Authors’ addresses: F.G. Gustavson, IBM T.J. Watson Research Center, Yorktown Heights, NY-

10598, USA, email: fg2@us.ibm.com; J. Waśniewski, Department of Informatics and Mathematical
Modelling, Technical University of Denmark, Richard Petersens Plads, Building 321, DK-2800
Kongens Lyngby, Denmark, email: jw@imm.dtu.dk; J.J. Dongarra, Electrical Engineering and
Computer Science Department, University of Tennessee, 1122 Volunteer Blvd, Knoxville, TN

37996-3450, USA, email: dongarra@eecs.utk.edu; Julien Langou, Department of Mathematical
and Statistical Sciences, University of Colorado Denver, 1250, 14th Street – Room 646, Denver,

Colorado 80202, USA, email: julien.langou@ucdenver.edu.



2 · Fred G. Gustavson, Jerzy Waśniewski, Jack J. Dongarra, and Julien Langou

Additional Key Words and Phrases: real symmetric matrices, complex Hermitian matrices, po-

sitive definite matrices, Cholesky factorization and solution, recursive algorithms, novel packed
matrix data structures, LAPACK, Rectangular Full Packed Format

1. INTRODUCTION

A very important class of linear algebra problems deals with a coefficient matrix A
that is symmetric and positive definite [Dongarra et al. 1998; Demmel 1997; Golub
and Van Loan 1996; Trefethen and Bau 1997]. Because of symmetry it is only
necessary to store either the upper or lower triangular part of the matrix A.

Fig. 1. The full format array layout of an order N symmetric matrix required by LAPACK.

LAPACK requires LDA ≥ N . Here we set LDA=N=7.

Lower triangular case
1
2 9

3 10 17

4 11 18 25
5 12 19 26 33

6 13 20 27 34 41

7 14 21 28 35 42 49



Upper triangular case
1 8 15 22 29 36 43

9 16 23 30 37 44

17 24 31 38 45

25 32 39 46
33 40 47

41 48

49



Fig. 2. The packed format array layout of an order 7 symmetric matrix required by LAPACK.

Lower triangular case
1

2 8
3 9 14

4 10 15 19

5 11 16 20 23
6 12 17 21 24 26
7 13 18 22 25 27 28



Upper triangular case
1 2 4 7 11 16 22

3 5 8 12 17 23
6 9 13 18 24

10 14 19 25
15 20 26

21 27

28



1.1 LAPACK full and packed storage formats

The LAPACK library [Anderson et al. 1999] offers two different kinds of subrou-
tines to solve the same problem: POTRF1 and PPTRF both factorize symmetric,

1Four names SPOTRF, DPOTRF, CPOTRF and ZPOTRF are used in LAPACK for real sym-

metric and complex Hermitian matrices [Anderson et al. 1999], where the first character indicates
the precision and arithmetic versions: S – single precision, D – double precision, C – complex and

Z – double complex. LAPACK95 uses one name LA POTRF for all versions [Barker et al. 2001].
In this paper, POTRF and/or PPTRF express, any precision, any arithmetic and any language
version of the PO and/or PP matrix factorization algorithms.



Rectangular Full Packed Data Format (Cholesky Algorithm) · 3

positive definite matrices by means of the Cholesky algorithm. A major difference
in these two routines is the way they access the array holding the triangular matrix
(see Figures 1 and 2).

In the POTRF case, the matrix is stored in one of the lower left or upper right
triangles of a full square matrix ([Anderson et al. 1999, pages 139 and 140] and [IBM
1997, page 64])2, the other triangle is wasted (see Figure 1). Because of the uniform
storage scheme, blocked LAPACK and Level 3 BLAS subroutines [Dongarra et al.
1990b; Dongarra et al. 1990a] can be employed, resulting in a fast solution.

In the PPTRF case, the matrix is stored in packed storage ([Anderson et al. 1999,
pages 140 and 141], [Agarwal et al. 1994] and [IBM 1997, pages 74 and 75]), which
means that the columns of the lower or upper triangle are stored consecutively in
a one dimensional array (see Figure 2). Now the triangular matrix occupies the
strictly necessary storage space but the nonuniform storage scheme means that
use of full storage BLAS is impossible and only the Level 2 BLAS packed subrou-
tines [Lawson et al. 1979; Dongarra et al. 1988] can be employed, resulting in a
slow solution.

To summarize: LAPACK offers a choice between high performance and wasting
half of the memory space (POTRF) versus low performance with optimal memory
space (PPTRF).

1.2 Packed Minimal Storage Data Formats related to RFPF

Recently many new data formats for matrices have been introduced for improving
the performance of Dense Linear Algebra (DLA) algorithms. The survey arti-
cle [Elmroth et al. 2004] gives an excellent overview.

Recursive Packed Format (RPF) [Andersen et al. 2001; Andersen et al. 2002]:
A new compact way to store a triangular, symmetric or Hermitian matrix called
Recursive Packed Format is described in [Andersen et al. 2001] as are novel ways
to transform RPF to and from standard packed format. New algorithms, called
Recursive Packed Cholesky (RPC) [Andersen et al. 2001; Andersen et al. 2002] that
operate on the RPF format are presented. RPF format operates almost entirely by
calling Level 3 BLAS GEMM [Dongarra et al. 1990b; Dongarra et al. 1990a] but
requires variants of algorithms TRSM and SYRK [Dongarra et al. 1990b; Dongarra
et al. 1990a] that are designed t work on RPF. The authors call these algorithms
RPTRSM and RPSYRK [Andersen et al. 2001] and find that they do most of their
FLOPS by calling GEMM [Dongarra et al. 1990b; Dongarra et al. 1990a]. It follows
that almost all of execution time of the RPC algorithm is done in calls to GEMM.
There are three advantages of this storage scheme compared to traditional packed
and full storage. First, the RPF storage format uses the minimum amount of
storage required for symmetric, triangular, or Hermitian matrices. Second, the
RPC algorithm is a Level 3 implementation of Cholesky factorization. Finally, RPF
requires no block size tuning parameter. A disadvantage of the RPC algorithm was
that it had a high recursive calling overhead. The paper [Gustavson and Jonsson
2000] removed this overhead and added other novel features to the RPC algorithm.

Square Block Packed Format (SBPF) [Gustavson 2003]: SBPF is described in
Section 4 of [Gustavson 2003]. A strong point of SBPF is that it requires mini-

2In Fortran column major, in C row major.



4 · Fred G. Gustavson, Jerzy Waśniewski, Jack J. Dongarra, and Julien Langou

mum block storage and all its blocks are contiguous and of equal size. If one uses
SBPF with kernel routines then data copying is mostly eliminated during Cholesky
factorization.

Block Packed Hybrid Format (BPHF) [Andersen et al. 2005; Gustavson et al.
2007]: We consider an efficient implementation of the Cholesky solution of sym-
metric positive-definite full linear systems of equations using packed storage. We
take the same starting point as that of LINPACK [Dongarra et al. 1979] and LA-
PACK [Anderson et al. 1999], with the upper (or lower) triangular part of the
matrix being stored by columns. Following LINPACK [Dongarra et al. 1979] and
LAPACK [Anderson et al. 1999], we overwrite the given matrix by its Cholesky
factor. The paper [Andersen et al. 2005] uses the BPHF where blocks of the ma-
trix are held contiguously. The paper compares BPHF versus conventional full
format storage, packed format and the RPF for the algorithms. BPF is a variant of
SBPF in which the diagonal blocks are stored in packed format and so its storage
requirement is equal to that of packed storage.

We mention that for packed matrices SBPF and BPHF have become the for-
mat of choice for multicore processors when one stores the blocks in register block
format [Gustavson et al. 2007]. Recently, there have been many papers published
on new algorithms for multicore processors. This literature is extensive. So, we
only mention two projects, PLASMA [Buttari et al. 2007] and FLAME [Chan et al.
2007], and refer the interested reader to the literature for additional references.

In regard to other references on new data structures, the survey article [Elmroth
et al. 2004] gives an excellent overview. However, since 2005 at least two new
data formats for Cholesky type factorizations have emerged, [Herrero 2006] and the
subject matter of this paper, RFPF [Gustavson and Waśniewski 2007]. In the next
subsection we highlight the main features of RFPF.

1.3 A novel way of representing triangular, symmetric, and Hermitian matrices in LA-
PACK

LAPACK has two types of subroutines for triangular, symmetric, and Hermitian
matrices called packed and full format routines. LAPACK has about 300 these
kind of subroutines. So, in either format, a variety of problems can be solved by
these LAPACK subroutines. From a user point of view, RFPF can replace both
these LAPACK data formats. Furthermore, and this is important, using RFPF
does not require any new LAPACK subroutines to be written. Using RFPF in
LAPACK only requires the use of already existing LAPACK and BLAS routines.
RFPF strongly relies on the existence of the BLAS and LAPACK routines for full
storage format.

1.4 Overview of the Paper

First we introduce the RFPF in general, see Section 2. Secondly we show how
to use RFPF on symmetric and Hermitian positive definite matrices; e.g., for the
factorization (Section 3), solution (Section 4), and inversion (Section 5) of these
matrices. Section 6 describes LAPACK subroutines for the Cholesky factorization,
Cholesky solution, and Cholesky inversion of symmetric and Hermitian positive
definite matrices using RFPF. Section 7 indicates that the stability results of us-
ing RFPF is unaffected by this format choice as RFPF uses existing LAPACK



Rectangular Full Packed Data Format (Cholesky Algorithm) · 5

algorithms which are already known to be stable. Section 8 describes a variety
of performance results on commonly used platforms both for serial and parallel
SMP execution. These results show that performance of LAPACK full routines
using RFPF versus LAPACK full routines using standard format for both serial
and SMP parallel processing is about the same while using half the storage. Also,
performance gains are roughly one to a factor of 43 for serial and one to a factor of
97 for SMP parallel times faster using vendor LAPACK full routines with RFPF
than with using vendor and/or reference packed routines. Section 9 explains how
some new RFPF routines have been integrated in LAPACK. LAPACK software for
Cholesky algorithm (factorization, solution and inversion) using RFPF has been
released with LAPACK-3.2 on November 2008. Section 10 gives a short summary
and brief conclusions.

2. DESCRIPTION OF RECTANGULAR FULL PACKED FORMAT

We describe Rectangular Full Packed Format (RFPF). It transforms a standard
Packed Array AP of size NT = N(N + 1)/2 to a full 2D array. This means that
performance of LAPACK’s [Anderson et al. 1999] packed format routines becomes
equal to or better than their full array counterparts. RFPF is a variant of Hybrid
Full Packed (HFP) format [Gunnels and Gustavson 2004]. RFPF is a rearrangement
of a Standard full format rectangular Array SA of size LDA*N where LDA ≥ N .
Array SA holds a triangular part of a symmetric, triangular, or Hermitian matrix
A of order N . The rearrangement of array SA is equal to compact full format
Rectangular Array AR of size LDA1 ∗ N1 = NT and hence array AR like array AP
uses minimal storage. (The specific values of LDA1 and N1 can vary depending on
various cases and they will be specified later during the text.) Array AR will hold
a full rectangular matrix AR obtained from a triangle of matrix A. Note also that
the transpose of the rectangular matrix AT

R resides in the transpose of array AR
and hence also represents A. Therefore, Level 3 BLAS [Dongarra et al. 1990b;
Dongarra et al. 1990a] can be used on array AR or its transpose. In fact, with
the equivalent LAPACK algorithm which uses the array AR or its transpose, the
performance is slightly better than standard LAPACK algorithm which uses the
array SA or its transpose. Therefore, this offers the possibility to replace all packed
or full LAPACK routines with equivalent LAPACK routines that work on array AR
or its transpose. For examples of transformations of a matrix A to a matrix AR see
the figures in Section 6.

RFPF is closely related to HFP format, see [Gunnels and Gustavson 2004], which
represents A as the concatenation of two standard full arrays whose total size is also
NT . A basic simple idea leads to both formats. Let A be an order N symmetric
matrix. Break A into a block 2–by–2 form

A =
[

A11 AT
21

A21 A22

]
or A =

[
A11 A12

AT
12 A22

]
(1)

where A11 and A22 are symmetric. Clearly, we need only store the lower triangles
of A11 and A22 as well as the full matrix A21 = AT

12 when we are interested in a
lower triangular formulation.

When N = 2k is even, the lower triangle of A11 and the upper triangle of AT
22



6 · Fred G. Gustavson, Jerzy Waśniewski, Jack J. Dongarra, and Julien Langou

can be concatenated together along their main diagonals into a (k + 1)–by–k dense
matrix (see the figures where N is even in Section 6). This last operation is the crux
of the basic simple idea. The off-diagonal block A21 is k–by–k, and so it can be
appended below the (k + 1)–by–k dense matrix. Thus, the lower triangle of A can
be stored as a single (N + 1)–by–k dense matrix AR. In effect, each block matrix
A11, A21 and A22 is now stored in ‘full format’. This means all entries of matrix
AR in array AR of size LDA1 = N + 1 by N1 = k can be accessed with constant row
and column strides. So, the full power of LAPACK’s block Level 3 codes are now
available for RFPF which uses the minimum amount of storage. Finally, matrix
AT

R which has size k–by–(N + 1) is represented in the transpose of array AR and
hence has the same desirable properties. There are eight representations of RFPF.
The matrix A can have have either odd or even order N , or it can be represented
either in standard lower or upper format or it can be represented by either matrix
AR or its transpose AT

R giving 23 = 8 representations in all.
All eight cases or representations are presented in Section 6. The RFPF matrices

are in the upper right part of the figures. We have introduced colors and horizontal
lines to try to visually delineate triangles T1, T2 representing lower, upper triangles
of symmetric matrices A11, AT

22 respectively and square or near square S1 repre-
senting matrices A21. For an upper triangle of A, T1, T2 represents lower, upper
triangles of symmetric matrices AT

11, A22 respectively and square or near square S1

representing matrices A12. For both lower and upper triangles of A we have, after
each ai,j , added its position location in the arrays holding matrices A and AR.

We now consider performance aspects of using RFPF in the context of using
LAPACK routines on triangular matrices stored in RFPF. Let X be a Level 3
LAPACK routine that operates either on full format. X has a full Level 3 LAPACK
block 2–by–2 algorithm, call it FX. We write a simple related partition algorithm
(SRPA) with partition sizes n1 and n2 where n1 + n2 = N . Apply the new SRPA
using the new RFPF. The new SRPA almost always has four major steps consisting
entirely of calls to existing full format LAPACK routines in two steps and calls to
Level 3 BLAS in the remaining two steps, see Figure 3.

Fig. 3. Simple related partition algorithm (SRPA) of RFPF
call X(’L’,n1,T1,ldt) ! step 1
call L3BLAS(n1,n2,’L’,T1,ldt,S,lds) ! step 2

call L3BLAS(n1,n2,S,lds,’U’,T2,ldt) ! step 3
call X(’U’,n2,T2,ldt) ! step 4

Section 6 shows FX algorithms equal to factorization, solution and inversion
algorithms on symmetric positive definite or Hermitian matrices.

3. CHOLESKY FACTORIZATION USING RECTANGULAR FULL PACKED FORMAT

The Cholesky factorization of a symmetric and positive definite matrix A can be
expressed as

A = LLT or A = UT U(in the symmetric case)
A = LLH or A = UHU(in the Hermitian case) (2)

where L and U are lower triangular and upper triangular matrices.
Break the matrices L and U into 2–by–2 block form in the same way as was done

for the matrix A in Equation (1):



Rectangular Full Packed Data Format (Cholesky Algorithm) · 7

L =
[

L11 0
L21 L22

]
and U =

[
U11 U12

0 U22

]
(3)

We now have

the symmetric case:

LLT =
[

L11 0
L21 L22

] [
LT

11 LT
21

0 LT
22

]
and UT U =

[
UT

11 0
UT

12 UT
22

] [
U11 U12

0 U22

]
and the Hermitian case:

LLH =
[

L11 0
L21 L22

] [
LH

11 LH
21

0 LH
22

]
and UHU =

[
UH

11 0
UH

12 UH
22

] [
U11 U12

0 U22

] (4)

where L11, L22, U11, and U22 are lower and upper triangular submatrices, and L21

and U12 are square or almost square submatrices.
Using Equations (2) and equating the blocks of Equations (1) and Equations (4)

gives us the basis of a 2–by–2 block algorithm for Cholesky factorization using
RFPF. We can now express each of these four block equalities by calls to existing
LAPACK and Level 3 BLAS routines. An example, see Section 6, of this is the three
block equations is L11L

T
11 = A11, L21L

T
11 = A21 and L21L

T
21 + L22L22 = A22. The

first and second of these block equations are handled by calling LAPACK’s POTRF
routine L11 ← A11 and by calling Level 3 BLAS TRSM via L21 ← L21L

−T
11 . In

both these block equations the Fortran equality of replacement (←) is being used
so that the lower triangle of A11 is being replaced L11 and the nearly square matrix
A21 is being replaced by L21. The third block equation breaks into two parts:
A22 ← L21L

T
21 and L22 ← A22 which are handled by calling Level 3 BLAS SYRK

or HERK and by calling LAPACK’s POTRF routine. At this point we can use
the flexibility of the LAPACK library. In RFPF A22 is in upper format (upper
triangle) while in standard format A22 is in lower format (lower triangle). Due
to symmetry, both formats of A22 contain equal values. This flexibility allows
LAPACK to accommodate both formats. Hence, in the calls to SYRK or HERK
and POTRF we set uplo = ’U’ even though the rectangular matrix of SYRK and
HERK comes from a lower triangular formulation.

New LAPACK like routine PFTRF performs these four computations. PF was
chosen to fit with LAPACK’s use of PO and PP. The PFTRF routine covers the
Cholesky Factorization algorithm for the eight cases of the RFPF. Section 6 has
Figure 4 with four subfigures. Here we are interested in the first and second sub-
figure. The first subfigure contains the layouts of matrices A and AR. The second
subfigure has the Cholesky factorization algorithm obtained by simple algebraic
manipulations of the three block equalities obtained above.

4. SOLUTION

In Section 3 we obtained the 2–by–2 Cholesky factorization (3) of matrix A. Now,
we can solve the equation AX = B:



8 · Fred G. Gustavson, Jerzy Waśniewski, Jack J. Dongarra, and Julien Langou

• If A has lower triangular format then

LY = B and LT X = Y (in the symmetric case)
LY = B and LHX = Y (in the Hermitian case) (5)

• If A has an upper triangular format then

UT Y = B and UX = Y (in the symmetric case)
UHY = B and UX = Y (in the Hermitian case) (6)

B, X and Y are either vectors or rectangular matrices. B contains the RHS
values. X and Y contain the solution values. B, X and Y are vectors when there
is one RHS and matrices when there are many RHS. The values of X and Y are
stored over the values of B.

Expanding (5) and (6) using (3) gives the forward substitution equations

in the symmetric case:[
L11 0
L21 L22

] [
Y1

Y2

]
=
[

B1

B2

]
and

[
UT

11 0
UT

12 UT
22

] [
Y1

Y2

]
=
[

B1

B2

]
and in the Hermitian case:[

L11 0
L21 L22

] [
Y1

Y2

]
=
[

B1

B2

]
and

[
UH

11 0
UH

12 UH
22

] [
Y1

Y2

]
=
[

B1

B2

] , (7)

and the back substitution equations

in the symmetric case:[
LT

11 LT
21

0 LT
22

] [
X1

X2

]
=
[

Y1

Y2

]
and

[
U11 U12

0 U22

] [
X1

X2

]
=
[

Y1

Y2

]
and in the Hermitian case:[

LH
11 LH

21

0 LH
22

] [
X1

X2

]
=
[

Y1

Y2

]
and

[
U11 U12

0 U22

] [
X1

X2

]
=
[

Y1

Y2

]
.

. (8)

The Equations (7) and (8) gives the basis of a 2×2 block algorithm for Cholesky
solution using RFPF format. We can now express these two sets of two block
equalities by using existing Level 3 BLAS routines. An example, see Section 6, of
the first set of these two block equalities is L11Y1 = B1 and L21Y1 + L22Y2 = B2.
The first block equality is handled by Level 3 BLAS TRSM: Y1 ← L−1

11 B1. The
second block equality is handled by Level 3 BLAS GEMM and TRSM: B2 ←
B2−L21Y1 and Y2 ← L−1

22 Y2. The backsolution routines are similarly derived. One
gets X2 ← L−T

22 Y2, Y1 ← Y1 − LT
21X2 and X1 ← L−T

11 Y1.
New LAPACK like routine PFTRS performs these two solution computations

for the eight cases of RFPF. PFTRS calls a new Level 3 BLAS TFSM in the same
way that POTRS calls TRSM. The third subfigure in Section 6 gives the Cholesky
solution algorithm using RFPF obtained by simple algebraic manipulation of the
block Equations (7) and (8).

5. INVERSION

Following LAPACK we consider the following three stage procedure:



Rectangular Full Packed Data Format (Cholesky Algorithm) · 9

(1) Factorize the matrix A and overwrite A with either L or U by calling PFTRF;
see Section 3.

(2) Compute the inverse of either L or U . Call these matrices W or V and overwrite
either L or U with them. This is done by calling new routine new LAPACK
like TFTRI.

(3) Calculate either the product WT W or V V T and overwrite either W or V with
them.

As in Sections 3 and 4 we examine 2–by–2 block algorithms for the steps two
and three above. In Section 3 we obtain either matrices L or U in RFPF. Like
LAPACK inversion algorithms for POTRI and PPTRI, this is our starting point for
our LAPACK inversion algorithm using RFPF. The LAPACK inversion algorithms
for POTRI and PPTRI also follow from steps two and three above by first calling
in the full case LAPACK TRTRI and then calling LAPACK LAUUM.

Take the inverse of Equation (2) and obtain

A−1 = WT W or A−1 = V V T (in the symmetric case)
A−1 = WHW or A−1 = V V H(in the Hermitian case) (9)

where W and V are lower and upper triangular matrices.
Using the 2–by–2 blocking for either L or U in Equation (3) we obtain the

following 2–by–2 blocking for W and V :

W =
[

W11 0
W21 W22

]
and V =

[
V11 V12

0 V22

]
(10)

From the identities WL = LW = I and V U = UV = I and the 2–by–2 block
layouts of Equations (3) and 3), we obtain three block equations for W and V which
can be solved using LAPACK routines for TRTRI and Level 3 BLAS TRMM. An
example, see Figure 4, of these three block equations is L11W11 = I, L21W11 +
L22W21 = 0 and L22W22 = I. The first and third of these block equations are
handled by LAPACK TRTRI routines as W11 ← L−1

11 and V22 ← U−1
22 . In the

second inverse computation we use the fact that L22 is equally represented by it
transpose LT

22 which is U22 in RFPF. The second block equation leads to two calls
to Level 3 BLAS TRMM via L21 ← −L21W11 and W21 = W22L21. In the last
two block equations the Fortran equality of replacement (←) is being used so that
W21 = −W22L21W11 is replacing L21.

Now we turn to part three of the three stage LAPACK procedure above. For this
we use the 2–by–2 blocks layouts of Equation (10) and the matrix multiplications
indicated by following block Equations (11) giving

the symmetric case:

WT W =
[

WT
11 WT

21

0 WT
22

] [
W11 0
W21 W22

]
and V V T =

[
V11 V12

0 V22

] [
V T

11 0
V T

12 V T
22

]
and the Hermitian case:

WHW =
[

WH
11 WH

21

0 WH
22

] [
W11 0
W21 W22

]
and V V H =

[
V11 V12

0 V22

] [
V H

11 0
V H

12 V H
22

] (11)



10 · Fred G. Gustavson, Jerzy Waśniewski, Jack J. Dongarra, and Julien Langou

where W11, W22, V11, and V22 are lower and upper triangular submatrices, and W21

and V12 are square or almost square submatrices. The values of the indicated block
multiplications of W or V in Equation (11) are stored over the block values of W
or V .

Performing the indicated 2–by–2 block multiplications of Equation (11) leads to
three block matrix computations. An example, see Section 6, of these three block
computations is WT

11W11+WT
21W21, WT

22W21 and WT
22W22. Additionally, we want to

overwrite the values of these block multiplications on their original block operands.
Block operand W11 only occurs in the (1,1) block operand computation and hence
can be overwritten by a call to LAPACK LAUUM, W11 ←WT

11W11, followed by a
call to Level 3 BLAS SYRK or HERK, W11 ←W11 +WT

21W21. Block operand W21

now only occurs in the (2,1) block computation and hence can be overwritten by a
call to Level 3 BLAS TRMM, W21 ←WT

22W21. Finally, block operand W22 can be
overwritten by a call to LAPACK LAUUM, W22 ←WT

22W22.
The fourth subfigure in Section 6 has the Cholesky inversion algorithms using

RFPF based on the results of this Section. New LAPACK routine, PFTRI, performs
this computation for the eight cases of RFPF.

6. RFP DATA FORMATS AND ALGORITHMS

This section contains three figures.

(1) The first figure describes the RFPF (Rectangular Full Packed Format) and
gives algorithms for Cholesky factorization, solution and inversion of symmetric
positive definite matrices, where N is odd, uplo = ’lower’, and trans = ’no
transpose’. This figure has four subfigures.
(a) The first subfigure depicts the lower triangle of a symmetric positive definite

matrix A in standard full and its representation by the matrix AR in
RFPF.

(b) The second subfigure gives the RFPF Cholesky factorization algorithm and
its calling sequences of the LAPACK and BLAS subroutines, see Section 3.

(c) The third subfigure gives the RFPF Cholesky solution algorithm and its
calling sequences to the LAPACK and BLAS subroutines, see Section 4.

(d) The fourth subfigure in each figure gives the RFPF Cholesky inversion
algorithm and its calling sequences to the LAPACK and BLAS subroutines,
see Section 5.

(2) The second figure shows the transformation from full to RFPF of all “no trans-
form” cases.

(3) The third figure depicts all eight cases in RFPF.

The data format for A has LDA = N . Matrix AR has LDAR = N if N is odd and
LDAR = N + 1 if N is even and n1 columns where n1 = dN/2e. Hence, matrix
AR always has LDAR rows and n1 columns. Matrix AT

R always has n1 rows and
LDAR columns and its leading dimension is equal to n1. Matrix AR always has
LDAR× n1 = NT = N(N + 1)/2 elements as does matrix AT

R.
The order N of matrix A in the first figure is seven and six or seven in the

remaining two figures.



Rectangular Full Packed Data Format (Cholesky Algorithm) · 11

Fig. 4. The Cholesky factorization algorithm using the Rectangular Full Packed For-

mat (RFPF) if N is odd, uplo = ’lower’, and trans = ’no transpose’.

A of LAPACK full data format
LDA=N = 7,memory needed

LDA×N = 49
a1,11 � � � � � �
a2,12 a2,29 � � � � �
a3,13 a3,210 a3,317 � � � �
a4,14 a4,211 a4,318 a4,425 � � �
a5,15 a5,212 a5,319 a5,426 a5,533 � �
a6,16 a6,213 a6,320 a6,427 a6,534 a6,641 �
a7,17 a7,214 a7,321 a7,428 a7,535 a7,642 a7,749


Matrix A

AR of Rectangular full packed

LDAR=N = 7,memory needed

LDAR× n1 = 28
a1,11 a5,58 a6,515 a7,522

a2,12 a2,29 a6,616 a7,623

a3,13 a3,210 a3,317 a7,724

a4,14 a4,211 a4,318 a4,425

a5,15 a5,212 a5,319 a5,426

a6,16 a6,213 a6,320 a6,427

a7,17 a7,214 a7,321 a7,428


Matrix AR

Cholesky Factorization Algorithm (n1 = dN/2e, n2 = N − n1) :

1) factor L11LT
11 = A11;

call POTRF(′L′, n1, AR, N, &
info);

2) solve L21LT
11 = A21;

call TRSM(′R′,′ L′,′ T ′,′N ′, n2, &
n1, one, AR, N, AR(n1 + 1, 1), N);

3) update A22 := A22 − L21LT
21;

call SYRK/HERK(‘U ′,′N ′, n2, n1, &
− one, AR(n1 + 1, 1), N, one, AR(1, 2), N);

4) factor UT
22U22 = A22;

call POTRF(‘U ′, n2, AR(1, 2), N, &
info);

Cholesky Solution Algorithm,

where B(LDB, nr) and LDB ≥ N (here LDB = N) :

LY = B
1) solve L11Y1 = B1;

call TRSM(′L′,′ L′,′N ′,′N ′, n1, &
nr, one, AR, N, B, N);

2) Multiply B2 = B2 − L21Y1;

call GEMM(′N ′,′N ′, n2, nr, n1,−one, &
AR(n1 + 1, 1), N, B, N, one, &

B(n1 + 1, 1), N);

3) solve L22Y2 = B2;
call TRSM(′L′,′ U ′,′ T ′,′N ′, n2, &

nr, one, AR(1, 2), N, B(n1 + 1, 1), N);

L′X = Y
1) solve LT

22X2 = Y2;

call TRSM(′L′,′ U ′,′N ′,′N ′, n2, &

nr, one, AR(1, 2), N, B(n1 + 1, 1), N);
2) Multiply Y1 = Y1 − LT

21X2;

call GEMM(′T ′,′N ′, n1, nr, n2,−one, &
AR(n1 + 1, 1), N, B(n1 + 1, 1), &

N, one, B, N);

3) solve LT
22X1 = Y1;

call TRSM(′L′,′ L′,′ T ′,′N ′, n1, &

nr, one, AR, N, B, N);

Cholesky Inversion Algorithm :
Inversion

1) invert W11 = L−1
11 ;

call TRTRI(′L′,′N ′, n1, AR, N, info);
2) Multiply L21 = −L21W11;

call TRMM(′R′,′ L′,′N ′,′N ′, n2, &

n1,−one, AR, N, AR(n1 + 1, 1), N);

3) invertV22 = U−1
22 ;

call TRTRI(′U ′,′N ′, n2, AR(1, 2), &
N, info);

4) invert V22 = U−1
22 ;

call TRMM(′L′,′ U ′,′ T ′,′N ′, n2, &
n1, one, AR(1, 2), N, AR(n1 + 1, 1), N);

Triangular matrix multiplication
1) Triang. Mult. W11 = W T

11W11;
call LAUUM(′L′, n1, AR, N, info);

2) update W11 = W11 + W T
21W21;

call SYRK/HERK(′L′,′ T ′, n1, n2, &

one, AR(n1 + 1, 1), N, one, AR, N);

3) Multiply W21 = V22W21;
call TRMM(′L′,′ U ′,′N ′,′N ′, n2, &

n1, one, AR(1, 2), N, A(n1 + 1, 1), N);
4) Triang. Mult. V11 = V11V T

11;
call LAUUM(′U ′, n2, AR(1, 2), N, info);



12 · Fred G. Gustavson, Jerzy Waśniewski, Jack J. Dongarra, and Julien Langou

Fig. 5. Eight two-dimensional arrays for storing the matrices A and AR that are
needed by the LAPACK subroutine POTRF (full format) and PFTRF RFPF re-

spectively. The leading dimension LDA is N for LAPACK, and LDAR for RFPF.

LDAR = N for N odd, and N + 1 for N even. Here N is 7 or 6. The memory needed
is LDA×N for full format and LDAR × n1 = (N + 1)N/2 for RFPF Here 49 and 36 for

full format and 28 and 21 for RFPF. The column size of RFPF is n1 = dN/2e, here 4
and 3.

5.1 The matrices A of order N and AR of size LDAR by n1, here N = 7.

5.1.1 Full Format

a1,1 � � � � � �
a2,1 a2,2 � � � � �
a3,1 a3,2 a3,3 � � � �
a4,1 a4,2 a4,3 a4,4 � � �
a5,1 a5,2 a5,3 a5,4 a5,5 � �
a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 �
a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7


,

5.1.2 RFPF

a1,1 a5,5 a6,5 a7,5

a2,1 a2,2 a6,6 a7,6

a3,1 a3,2 a3,3 a7,7

a4,1 a4,2 a4,3 a4,4

a5,1 a5,2 a5,3 a5,4

a6,1 a6,2 a6,3 a6,4

a7,1 a7,2 a7,3 a7,4


5.2 The matrices A of order N and AR of size LDAR by n1, here N = 6.

5.2.1 Full format
a1,1 � � � � �
a2,1 a2,2 � � � �
a3,1 a3,2 a3,3 � � �
a4,1 a4,2 a4,3 a4,4 � �
a5,1 a5,2 a5,3 a5,4 a5,5 �
a6,1 a6,2 a6,3 a6,4 a6,5 a6,6

 ,

5.2.2 RFPF

a4,4 a5,4 a6,4

a1,1 a5,5 a6,5

a2,1 a2,2 a6,6

a3,1 a3,2 a3,3

a4,1 a4,2 a4,3

a5,1 a5,2 a5,3

a6,1 a6,2 a6,3


5.3 The matrices A of order N and AR of size LDAR by n1, here N = 7.

5.3.1 Full format

a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

� a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

� � a3,3 a3,4 a3,5 a3,6 a3,7

� � � a4,4 a4,5 a4,6 a4,7

� � � � a5,5 a5,6 a5,7

� � � � � a6,6 a6,7

� � � � � � a7,7


,

5.3.2 RFPF

a1,4 a1,5 a1,6 a1,7

a2,4 a2,5 a2,6 a2,7

a3,4 a3,5 a3,6 a3,7

a4,4 a4,5 a4,6 a4,7

a1,1 a5,5 a5,6 a5,7

a1,2 a2,2 a6,6 a6,7

a1,3 a2,3 a3,3 a7,7


5.4 The matrices A of order N and AR of size LDAR by n1, here N = 6.

5.4.1 Full format
a1,1 a1,2 a1,3 a1,4 a1,5 a1,6

� a2,2 a2,3 a2,4 a2,5 a2,6

� � a3,3 a3,4 a3,5 a3,6

� � � a4,4 a4,5 a4,6

� � � � a5,5 a5,6

� � � � � a6,6

 ,

5.4.2 RFPF

a1,4 a1,5 a1,6

a2,4 a2,5 a2,6

a3,4 a3,5 a3,6

a4,4 a4,511 a4,6

a1,1 a5,5 a5,619

a1,2 a2,2 a6,6

a1,3 a2,3 a3,3





Rectangular Full Packed Data Format (Cholesky Algorithm) · 13

Fig. 6. Eight two-dimensional arrays for storing the matrices AR and AT
R in RFPF.

The leading dimension LDAR of AR is N when N is odd and N + 1 when N is even.
For the matrix AT

R it is n1 = dN/2e. The memory needed for both AR and AT
R is

(N + 1)/2×N . This amount is 28 for N = 7 and 21 for N = 6.

6.1 RFPF for the matrices of rank odd, here N = 7 and n1 = 4

Lower triangular

LDAR = N

a1,1 a5,5 a6,5 a7,5

a2,1 a2,2 a6,6 a7,6

a3,1 a3,2 a3,3 a7,7

a4,1 a4,2 a4,3 a4,4

a5,1 a5,2 a5,3 a5,4

a6,1 a6,2 a6,3 a6,4

a7,1 a7,2 a7,3 a7,4



transpose, lda = n1
a1,1 a2,1 a3,1 a4,1 a5,1 a6,1 a7,1

a5,5 a2,2 a3,2 a4,2 a5,2 a6,2 a7,2

a6,5 a6,6 a3,3 a4,3 a5,3 a6,3 a7,3

a7,5 a7,6 a7,7 a4,4 a5,4 a6,4 a7,4


Upper triangular

LDAR = N

a1,4 a1,5 a1,6 a1,7

a2,4 a2,5 a2,6 a2,7

a3,4 a3,5 a3,6 a3,7

a4,4 a4,5 a4,6 a4,7

a1,1 a5,5 a5,6 a5,7

a1,2 a2,2 a6,6 a6,7

a1,3 a2,3 a3,3 a7,7



transpose, lda = n1
a1,4 a2,4 a3,4 a4,4 a1,1 a1,2 a1,3

a1,5 a2,5 a3,5 a4,5 a5,5 a2,2 a2,3

a1,6 a2,6 a3,6 a4,6 a5,6 a6,6 a3,3

a1,7 a2,7 a3,7 a4,7 a5,7 a6,7 a7,7



6.2 RFPF for the matrices of rank even, here N = 6 and n1 = 3.

Lower triangular

LDAR = N + 1

a4,4 a5,4 a6,415

a1,1 a5,5 a6,516

a2,1 a2,2 a6,6

a3,1 a3,2 a3,3

a4,1 a4,2 a4,3

a5,1 a5,2 a5,3

a6,1 a6,2 a6,3


transpose, lda = n1 a4,4 a1,1 a2,1 a3,1 a4,1 a5,1 a6,1

a5,4 a5,5 a2,2 a3,2 a4,2 a5,2 a6,2

a6,4 a6,5 a6,6 a3,3 a4,3 a5,3 a6,3



Upper triangular

LDAR = N + 1

a1,4 a1,5 a1,6

a2,4 a2,5 a2,6

a3,4 a3,5 a3,6

a4,4 a4,511 a4,6

a1,1 a5,5 a5,619

a1,2 a2,2 a6,6

a1,3 a2,3 a3,3


transpose, lda = n1 a1,4 a2,4 a3,4 a4,4 a1,1 a1,2 a1,3

a1,5 a2,5 a3,5 a4,5 a5,5 a2,2 a2,3

a1,6 a2,6 a3,6 a4,6 a5,6 a6,6 a3,3





14 · Fred G. Gustavson, Jerzy Waśniewski, Jack J. Dongarra, and Julien Langou

7. STABILITY OF THE RFPF ALGORITHM

The RFPF Cholesky factorization (Section 3), Cholesky solution (Section 4), and
Cholesky inversion (Section 5) algorithms are equivalent to the traditional algo-
rithms in the books [Dongarra et al. 1998; Demmel 1997; Golub and Van Loan
1996; Trefethen and Bau 1997]. The whole theory of the traditional Cholesky
factorization, solution, inversion and BLAS algorithms carries over to this three
Cholesky and BLAS algorithms described in Sections 3, 4, and 5. The error analy-
sis and stability of these algorithms is very well described in the book of [Higham
1996]. The difference between LAPACK algorithms PO, PP and RFPF3 is how
inner products are accumulated. In each case a different order is used. They are all
mathematically equivalent, and, stability analysis shows that any summation order
is stable.

8. A PERFORMANCE STUDY USING RFP FORMAT

The LAPACK library [Anderson et al. 1999] routines POTRF/PPTRF, POTRI/PPTRI,
and POTRS/PPTRS are compared with the RFPF routines PFTRF, PFTRI,
and PFTRS for Cholesky factorization (PxTRF), Cholesky inverse (PxTRI) and
Cholesky solution (PxTRS) respectively. In the previous sentence, the character ’x’
can be ’O’ (full format), ’P’ (packed format), or ’F’ (RFPF). In all cases long real
precision arithmetic (also called double precision) is used. Sometimes we also show
results for long complex precision (also called complex*16). Results were obtained
on several different computers using everywhere the vendor Level 3 and Level 2
BLAS. The sequential performance results were done on the following computers:

• Sun Fire E25K (newton): 72 UltraSPARC IV+ dual-core CPUs (1800 MHz/
2 MB shared L2-cache, 32 MB shared L3-cache), 416 GB memory (120 CPUs/368
GB). Further information at “http://www.gbar.dtu.dk/index.php/Hardware”.

• SGI Altix 3700 (Freke): 64 CPUs - Intel Itanium2 1.5 GHz/6 MB L3-cache.
256 GB memory. Peak performance: 384 GFlops. Further information at
“http://www.cscaa.dk/freke/”.

• Intel Tigerton computer (zoot): quad-socket quad-core Intel Tigerton 2.4GHz
(16 total cores) with 32 GB of memory. We use Intel MKL 10.0.1.014.

• DMI Itanium: CPU Intel Itanium2: 1.3 GHz, cache: 3 MB on-chip L3 cache.
• DMI NEC SX-6 computer: 8 CPU’s, per CPU peak: 8 Gflops, per node

peak: 64 Gflops, vector register length: 256.

The performance results are given in Figures 7 to 15.
The figures from 7 to 10 are paired. Figure 7 (double precision) and Figure 8

(double complex precision) present results for the Sun UltraSPARC IV+ computer.
Figure 9 (double precision) and Figure 10 (double complex precision) present results
for the SGI Altix 3700 computer. Figure 11 (double precision) presents results
for the Intel Itanium2 computer. Figure 12 (double precision) presents results
for the NEC SX-6 computer. Figure 13 (double precision) presents results for
the quad-socket quad-core Intel Tigerton computer using reference LAPACK-3.2.0

3full, packed and rectangular full packed.



Rectangular Full Packed Data Format (Cholesky Algorithm) · 15

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000

3500
Performance of Cholesky Factorization on SUN UltraSPARC IV+ computer, long real arithmetic

problem size

M
flo

p/
s

 

 

PFTRF N U
PFTRF N L
PFTRF T U
PFTRF T L
POTRF U
POTRF L
PPTRF U
PPTRF L

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000
Performance of Cholesky Inversion on SUN UltraSPARC IV+ computer, long real arithmetic

problem size

M
flo

p/
s

 

 

PFTRF N U
PFTRF N L
PFTRF T U
PFTRF T L
POTRF U
POTRF L
PPTRF U
PPTRF L

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000
Performance of Cholesky Solution on SUN UltraSPARC IV+ computer, long real arithmetic

problem size

M
flo

p/
s

 

 

PFTRF N U
PFTRF N L
PFTRF T U
PFTRF T L
POTRF U
POTRF L
PPTRF U
PPTRF L

Fig. 7. Performance in Mflop/s of Cholesky Factorization/Inversion/Solution on SUN Ultra-
SPARC IV+ computer, long real arithmetic. For PxTRF, nrhs = max(100, n/10).

(from netlib.org). Figure 14 (double precision) presents results for the quad-socket
quad-core Intel Tigerton computer using vendor LAPACK library (MKL-10.0.1.14).

Figure 15 shows the SMP parallelism of these subroutines on the IBM Power4
(clock rate: 1300 MHz; two CPUs per chip; L1 cache: 128 KB (64 KB per CPU)
instruction, 64 KB 2-way (32 KB per CPU) data; L2 cache: 1.5 MB 8-way shared
between the two CPUs; L3 cache: 32 MB 8-way shared (off-chip); TLB: 1024
entries) and SUN UltraSPARC-IV (clock rate: 1350 MHz; L1 cache: 64 kB 4-way
data, 32 kB 4-way instruction, and 2 kB Write, 2 kB Prefetch; L2 cache: 8 MB;
TLB: 1040 entries) computers respectively. They compare SMP times of PFTRF,
vendor POTRF and reference PPTRF.

The RFPF packed results greatly outperform the packed and more often than
not are better than the full results. Note that our timings do not include the cost of
sorting any LAPACK data formats to RFPF data formats and vice versa. We think
that users will input their matrix data using RFPF. Hence, this is our rationale for
not including the data transformation times.

For all our experiments, we use vendor Level 3 and Level 2 BLAS. For all our
experiments except Figure 13 and Figure 15, we use the provided vendor library
for LAPACK and BLAS.

We include comparisons with reference LAPACK for the quad-socket quad-core
Intel Tigerton machine in Figure 13. In this case, the vendor LAPACK library
packed storage routines significantly outperform the LAPACK reference implemen-
tation from netlib. In Figure 14, you find the same experiments on the same
machine but, this time, using the vendor library (MKL-10.0.1.014). We think that
MKL is using the reference implementation for Inverse Cholesky (packed and full
format). For Cholesky factorization, we see that both packed and full format rou-
tines (PPTRF and POTRF) are tuned. But even, in this case, our RFPF storage
format results are better.

When we compare RFPF with full storage, results are mixed. However, both
codes are rarely far apart. Most of the performance ratios are between 0.95 to 1.05
overall. But, note that the RFPF performance is more uniform over its versions
(four presented; the other four are for n odd ). For LAPACK full (two versions ), the
performance variation is greater. Moreover, in the case of the inversion on quad-
socket quad-core Tigerton (Figure 13 and Figure 14) RFPF clearly outperforms
both variants of the full format.



16 · Fred G. Gustavson, Jerzy Waśniewski, Jack J. Dongarra, and Julien Langou

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000

3500
Performance of Cholesky Factorization on SUN UltraSPARC IV+ computer, long complex arithmetic

problem size

M
flo

p/
s

 

 

PFTRF N U
PFTRF N L
PFTRF T U
PFTRF T L
POTRF U
POTRF L
PPTRF U
PPTRF L

0 500 1000 1500 2000 2500 3000 3500 4000
500

1000

1500

2000

2500

3000

3500
Performance of Cholesky Inversion on SUN UltraSPARC IV+ computer, long complex arithmetic

problem size

M
flo

p/
s

 

 

PFTRF N U
PFTRF N L
PFTRF T U
PFTRF T L
POTRF U
POTRF L
PPTRF U
PPTRF L

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000

3500
Performance of Cholesky Solution on SUN UltraSPARC IV+ computer, long complex arithmetic

problem size

M
flo

p/
s

 

 

PFTRF N U
PFTRF N L
PFTRF T U
PFTRF T L
POTRF U
POTRF L
PPTRF U
PPTRF L

Fig. 8. Performance in Mflop/s of Cholesky Factorization/Inversion/Solution on SUN Ultra-

SPARC IV+ computer, long complex arithmetic. For PxTRF, nrhs = max(100, n/10).

0 1000 2000 3000 4000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Performance of Cholesky Factorization on SGI Altix 3700, Intel Itanium2 computer, long real arithmetic

problem size

M
flo

p/
s

 

 

PFTRF N U
PFTRF N L
PFTRF T U
PFTRF T L
POTRF U
POTRF L
PPTRF U
PPTRF L

0 1000 2000 3000 4000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Performance of Cholesky Inversion on SGI Altix 3700, Intel Itanium2 computer, long real arithmetic

problem size

M
flo

p/
s

 

 

PFTRF N U
PFTRF N L
PFTRF T U
PFTRF T L
POTRF U
POTRF L
PPTRF U
PPTRF L

0 1000 2000 3000 4000
0

1000

2000

3000

4000

5000

6000
Performance of Cholesky Solution on SGI Altix 3700, Intel Itanium2 computer, long real arithmetic

problem size

M
flo

p/
s

 

 

PFTRF N U
PFTRF N L
PFTRF T U
PFTRF T L
POTRF U
POTRF L
PPTRF U
PPTRF L

Fig. 9. Performance in Mflop/s of Cholesky Factorization/Inversion/Solution on SGI Altix 3700,
Intel Itanium 2 computer, long real arithmetic. For PxTRF, nrhs = max(100, n/10).

0 1000 2000 3000 4000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Performance of Cholesky Factorization on SGI Altix 3700, Intel Itanium2 computer, long complex arithmetic

problem size

M
flo

p/
s

 

 

PFTRF N U
PFTRF N L
PFTRF T U
PFTRF T L
POTRF U
POTRF L
PPTRF U
PPTRF L

0 1000 2000 3000 4000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Performance of Cholesky Inversion on SGI Altix 3700, Intel Itanium2 computer, long complex arithmetic

problem size

M
flo

p/
s

 

 

PFTRF N U
PFTRF N L
PFTRF T U
PFTRF T L
POTRF U
POTRF L
PPTRF U
PPTRF L

0 1000 2000 3000 4000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Performance of Cholesky Solution on SGI Altix 3700, Intel Itanium2 computer, long complex arithmetic

problem size

M
flo

p/
s

 

 

PFTRF N U
PFTRF N L
PFTRF T U
PFTRF T L
POTRF U
POTRF L
PPTRF U
PPTRF L

Fig. 10. Performance in Mflop/s of Cholesky Factorization/Inversion/Solution on SGI Altix 3700,

Intel Itanium 2 computer, long complex arithmetic. For PxTRF, nrhs = max(100, n/10).

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Performance of Cholesky Factorization on ia64 Itanium computer

problem size

M
flo

p/
s

 

 

PFTRF N U
PFTRF N L
PFTRF T U
PFTRF T L
POTRF U
POTRF L
PPTRF U
PPTRF L

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Performance of Cholesky Inversion on ia64 Itanium computer

problem size

M
flo

p/
s

 

 

PFTRI N U
PFTRI N L
PFTRI T U
PFTRI T L
POTRI U
POTRI L
PPTRI U
PPTRI L

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Performance of Cholesky Solution on ia64 Itanium computer

problem size (nrhs=100 to 400)

M
flo

p/
s

 

 

PFTRS N U
PFTRS N L
PFTRS T U
PFTRS T L
POTRS U
POTRS L
PPTRS U
PPTRS L

Fig. 11. Performance in Mflop/s of Cholesky Factorization/Inversion/Solution on ia64 Itanium
computer, long real arithmetic. For PxTRF, nrhs = max(100, n/10).



Rectangular Full Packed Data Format (Cholesky Algorithm) · 17

0 500 1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

5000

6000

7000

8000
Performance of Cholesky Factorization on SX−6 NEC computer

problem size

M
flo

p/
s

 

 

PFTRF N U
PFTRF N L
PFTRF T U
PFTRF T L
POTRF U
POTRF L
PPTRF U
PPTRF L

0 500 1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

5000

6000

7000

8000
Performance of Cholesky Inversion on SX−6 NEC computer

problem size

M
flo

p/
s

 

 

PFTRI N U
PFTRI N L
PFTRI T U
PFTRI T L
POTRI U
POTRI L
PPTRI U
PPTRI L

0 500 1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

5000

6000

7000

8000
Performance of Cholesky Solution on SX−6 NEC computer

problem size (nrhs=100 to 400)

M
flo

p/
s

 

 

PFTRS N U
PFTRS N L
PFTRS T U
PFTRS T L
POTRS U
POTRS L
PPTRS U
PPTRS L

Fig. 12. Performance in Mflop/s of Cholesky Factorization/Inversion/Solution on SX-6 NEC

computer, long real arithmetic. For PxTRF, nrhs = max(100, n/10).

0 5000 10000 15000 20000
0

10

20

30

40

50

60
Performance of Cholesky Factorization on Intel Tigerton computer (ref. LAPACK)

problem size

G
flo

p/
s

 

 

PFTRF N U
PFTRF N L
PFTRF T U
PFTRF T L
POTRF U
POTRF L
PPTRF U
PPTRF L

0 5000 10000 15000 20000
0

5

10

15

20

25

30

35

40

45

50
Performance of Cholesky Inversion on Intel Tigerton computer (ref LAPACK)

problem size

G
flo

p/
s

 

 

PFTRI N U
PFTRI N L
PFTRI T U
PFTRI T L
POTRI U
POTRI L
PPTRI U
PPTRI L

0 5000 10000 15000 20000
0

100

200

300

400

500

600

700

800
Performance of Cholesky Solution on Intel Tigerton computer (ref LAPACK)

problem size (nrhs=100)

M
flo

p/
s

 

 

PFTRS N U
PFTRS N L
PFTRS T U
PFTRS T L
POTRS U
POTRS L
PPTRS U
PPTRS L

Fig. 13. Performance of Cholesky Factorization/Inversion/Solution on quad-socket quad-core
Intel Tigerton computer, long real arithmetic. We use reference LAPACK-3.2.0 (from netlib) and

MKL-10.0.1.014 multithreaded BLAS. For the solution phase, nrhs is fixed to 100 for any n.

Due to time limitation, the experiment was stopped for the packed storage format inversion at
n = 4000.

0 5000 10000 15000 20000
0

10

20

30

40

50

60

70

80

90

100
Performance of Cholesky Factorization on Intel Tigerton computer (MKL)

problem size

G
flo

p/
s

 

 
PFTRF N U
PFTRF N L
PFTRF T U
PFTRF T L
POTRF U
POTRF L
PPTRF U
PPTRF L

0 5000 10000 15000 20000
0

5

10

15

20

25

30

35

40

45

50
Performance of Cholesky Inversion on Intel Tigerton computer (MKL)

problem size

G
flo

p/
s

 

 

PFTRI N U
PFTRI N L
PFTRI T U
PFTRI T L
POTRI U
POTRI L
PPTRI U
PPTRI L

0 5000 10000 15000 20000
0

20

40

60

80

100

120

140

160

180

200
Performance of Cholesky Solution on Intel Tigerton computer (MKL)

problem size (nrhs=100)

M
flo

p/
s

 

 

PFTRS N U
PFTRS N L
PFTRS T U
PFTRS T L
POTRS U
POTRS L
PPTRS U
PPTRS L

Fig. 14. Performance of Cholesky Factorization/Inversion/Solution on quad-socket quad-core
Intel Tigerton computer, long real arithmetic. We use MKL-10.0.1.014 multithreaded LAPACK

and BLAS. For the solution phase, nrhs is fixed to 100 for any n. Due to time limitation, the
experiment was stopped for the packed storage format inversion at n = 4000.



18 · Fred G. Gustavson, Jerzy Waśniewski, Jack J. Dongarra, and Julien Langou

0 5 10 15
0

5

10

15

20

25

30

35

40
Scalabilty of Cholesky Factorization on an IBM Power 4 computer

number of processors

G
flo

p/
s

 

 

PFTRF N L
POTRF L
PPTRF L

0 5 10 15
0

5

10

15

20

25

30
Scalabilty of Cholesky Factorization on a SUN UltraSPARC−IV computer

number of processors

G
flo

p/
s

 

 

PFTRF N L
POTRF L
PPTRF L

Fig. 15. Performance in Gflop/s of Cholesky Factorization on IBM Power 4 (left) and SUN

UltraSPARC-IV (right) computer, long real arithmetic, with a different number of Processors,

testing the SMP Parallelism. The implementation of PPTRF of sunperf does not show any SMP
parallelism. UPLO = ’L’. N = 5, 000 (strong scaling experiment).

9. INTEGRATION IN LAPACK

As mentioned in the introduction, as of release 3.2 (November 2008), LAPACK
supports a preliminary version of RFPF. Ultimately, the goal would be for RFPF
to support as many functionnalities as full format or standard packed format does.
The 44 routines included in release 3.2 for RFPF are given in Table 1. The names
for the RFPF routines follow the naming nomenclature used by LAPACK. We
have added the format description letters: PF for Symmetric/Hermitian Positive
Definite RFPF (PO for full, PP for packed), SF for Symmetric RFPF (SY for full,
SP for packed), HF for Hermitian RFPF (HE for full, HP for packed), and TF for
Triangular RFPF (TR for full, TP for packed).

Currently, for the complex case, we assume that the transpose complex-conjugate
part is stored whenever the transpose part is stored in the real case. This corre-
sponds to the theory developed in this present manuscript. In the future, we will
want to have the flexibility to store the transpose part (as opposed to transpose
complex conjugate) whenever the transpose part is stored in the real case. In
particular, this feature will be useful for complex symmetric matrices.

10. SUMMARY AND CONCLUSIONS

This paper describes RFPF as a standard minimal full format for representing both
symmetric and triangular matrices. Hence, from a user point of view, these matrix
layouts are a replacement for both the standard formats of DLA, namely full and
packed storage. These new layouts possess three good features: they are efficient,
they are supported by Level 3 BLAS and LAPACK full format routines, and they
require minimal storage.

11. ACKNOWLEDGMENTS

The results in this paper were obtained on seven computers, an IBM, a SGI, two
SUNs, Itanium, NEC, and Intel Tigerton computers. The IBM machine belongs to
the Center for Scientific Computing at Aarhus, the SUN machines to the Danish



Rectangular Full Packed Data Format (Cholesky Algorithm) · 19

functionality routine names and calling sequence

Cholesky factorization CPFTRF DPFTRF SPFTRF ZPFTRF

(TRANSR,UPLO,N,A,INFO)

Multiple solve after PFTRF CPFTRS DPFTRS SPFTRS ZPFTRS

(TRANSR,UPLO,N,NR,A,B,LDB,INFO)

Inversion after PFTRF CPFTRI DPFTRI SPFTRI ZPFTRI

(TRANSR,UPLO,N,A,INFO)

Triangular inversion CTRTRI DTRTRI STRTRI ZTRTRI
(TRANSR,UPLO,DIAG,N,A,INFO)

Sym/Herm matrix norm CLANHF DLANSF SLANSF ZLANHF

(NORM,TRANSR,UPLO,N,A,WORK)

Triangular solve CTFSM DTFSM STFSM ZTFSM

(TRANSR,SIDE,UPLO,TRANS,DIAG,M,N,ALPHA,A,B,LDB)

Sym/Herm rank-k update CHFRK DSFRK SSFRK ZHFRK

(TRANSR,UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C)

Conv. from TP to TF CTPTTF DTPTTF STPTTF ZTPTTF
(TRANSR,UPLO,N,AP,ARF,INFO)

Conv. from TR to TF CTRTTF DTRTTF STRTTF ZTRTTF
(TRANSR,UPLO,N,A,LDA,ARF,INFO)

Conv. from TF to TP CTFTTP DTFTTP STFTTP ZTFTTP

(TRANSR,UPLO,N,ARF,AP,INFO)

Conv. from TF to TR CTFTTR DTFTTR STFTTR ZTFTTR

(TRANSR,UPLO,N,ARF,A,LDA,INFO)

Table 1. LAPACK 3.2 RFPF routines.

Technical University, the Itanium and NEC machines to the Danish Meteorological
Institute, and the Intel Tigerton machine to the Innovative Computing Laboratory
at the University of Tennessee.

We would like to thank Bernd Dammann for consulting on the SUN systems;
Niels Carl W. Hansen for consulting on the IBM and SGI systems; and Bjarne Stig An-
dersen for obtaining the results on the Itanium and NEC computers. We thank
IBMers John Gunnels who worked earlier on the HFPF format and JP Fasano
who was instrumental in getting the source code released by the IBM Open Source
Committee. We thank Allan Backer for discussions about an older version of this
manuscript.

REFERENCES

Agarwal, R. C., Gustavson, F. G., and Zubair, M. 1994. Exploiting functional paral-
lelism on power2 to design high-performance numerical algorithms. IBM Journal of Re-
search and Development 38, 5 (September), 563–576.

Andersen, B. S., Gunnels, J. A., Gustavson, F., and Waśniewski, J. 2002. A Recursive
Formulation of the Inversion of symmetric positive definite Matrices in Packed Storage Data

Format. In J. Fagerholm, J. Haataja, J. Järvinen, M. Lyly, and P. R. V. Savolainen
Eds., Proceedings of the 6th International Conference, PARA 2002, Applied Parallel Com-
puting, Number 2367 in Lecture Notes in Computer Science (Espoo, Finland, June 2002),

pp. 287–296. Springer.

Andersen, B. S., Gustavson, F. G., Reid, J. K., and Waśniewski, J. 2005. A Fully

Portable High Performance Minimal Storage Hybrid Format Cholesky Algorithm. ACM
Transactions on Mathematical Software 31, 201–227.

Andersen, B. S., Gustavson, F. G., and Waśniewski, J. 2001. A Recursive Formulation
of Cholesky Facorization of a Matrix in Packed Storage. ACM Transactions on Mathemat-
ical Software 27, 2 (Jun), 214–244.



20 · Fred G. Gustavson, Jerzy Waśniewski, Jack J. Dongarra, and Julien Langou

Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J. J.,

Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D.
1999. LAPACK Users’ Guide (Third ed.). Society for Industrial and Applied Mathemat-

ics, Philadelphia, PA.

Barker, V. A., Blackford, L. S., Dongarra, J. J., Croz, J. D., Hammarling, S., Mari-

nova, M., Waśniewski, J., and Yalamov, P. 2001. LAPACK95 Users’ Guide (first
ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA.

Buttari, A., Langou, J., Kurzak, J., and Dongarra, J. 2007. A class of parallel tiled
linear algebra algorithms for multi-core architectures. Tech rep. ut-cs-07-0600, Department

of Electrical Engineering and Computer Science of the University of Tennessee.

Chan, E., Quintana-Ort́ı, E., Quintana-Ort́ı, G., and van de Geijn, R. 2007. Super-

matrix out-of-order scheduling of matrix operations for smp and multi-core architectures.
In SPAA 07, Proceedings of the 19th ACM Symposium on Parallelism in Algorithms and

Architecture (2007), pp. 116–125.

Demmel, J. W. 1997. Applied Numerical Linear Algebra. SIAM, Philadelphia.

Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W. 1979. Linpack Users’

Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

Dongarra, J. J., Du Croz, J., Duff, I. S., and Hammarling, S. 1990a. Algorithm 679:

A set of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Soft. 16, 1 (March),
18–28.

Dongarra, J. J., Du Croz, J., Duff, I. S., and Hammarling, S. 1990b. A Set of Level
3 Basic Linear Algebra Subprograms. ACM Trans. Math. Soft. 16, 1 (March), 1–17.

Dongarra, J. J., Du Croz, J., Hammarling, S., and Hanson, R. J. 1988. An Extended

Set of Fortran Basic Linear Algebra Subroutines. ACM Trans. Math. Soft. 14, 1 (March),

1–17.

Dongarra, J. J., Duff, I. S., Sorensen, D. C., and van der Vorst, H. A. 1998. Nu-

merical Linear Algebra for High Performance Computers. SIAM, Society for Industrial and
Applied Mathematics, Philadelphia.

Elmroth, E., Gustavson, F. G., Kagstrom, B., and Jonsson, I. 2004. Recursive Blocked

Algorithms and Hybrid Data Structures for Dense Matrix Library Software. SIAM Re-

view 46, 1 (March), 3–45.

Golub, G. and Van Loan, C. F. 1996. Matrix Computations (Third ed.). Johns Hopkins
University Press, Baltimore, MD.

Gunnels, J. A. and Gustavson, F. G. 2004. A new array format for symmetric and
triangular matrices. In J. W. J.J. Dongarra, K. Madsen Ed., Applied Parallel Computing,

State of the Art in Scientific Computing, PARA 2004 , Volume LNCS 3732 (Springer-

Verlag, Berlin Heidelberg, 2004), pp. 247–255. Springer.

Gustavson, F. G. 2003. High Performance Linear Algebra Algorithms using New Gen-
eralized Data Structures for Matrices. IBM Journal of Research and Development 47, 1

(January), 823–849.

Gustavson, F. G., Gunnels, J., and Sexton, J. 2007. Minimal Data Copy for Dense

Linear Algebra Factorization. In Applied Parallel Computing, State of the Art in Scientific
Computing, PARA 2006 , Volume LNCS 4699 (Springer-Verlag, Berlin Heidelberg, 2007),
pp. 540–549. Springer.

Gustavson, F. G. and Jonsson, I. 2000. Minimal storage high performance cholesky via
blocking and recursion. IBM Journal of Research and Development 44, 6 (Nov), 823–849.

Gustavson, F. G., Reid, J. K., and Waśniewski, J. 2007. Algorithm 865: Fortran 95

Subroutines for Cholesky Factorization in Blocked Hybrid Format. ACM Transactions on
Mathematical Software 33, 1 (March), 5.

Gustavson, F. G. and Waśniewski, J. 2007. Rectangular full packed format for LAPACK
algorithms timings on several computers. In Applied Parallel Computing, State of the Art

in Scientific Computing, PARA 2006 , Volume LNCS 4699 (Springer-Verlag, Berlin Heidel-
berg, 2007), pp. 570–579. Springer.



Rectangular Full Packed Data Format (Cholesky Algorithm) · 21

Herrero, J. R. 2006. A Framework for Efficient Execution of Matrix Computations. Ph.

D. thesis, Universitat Politècnica de Catalunya.

Higham, N. J. 1996. Accuracy and Stability of Numerical Algorithms. SIAM.

IBM. 1997. Engineering and Scientific Subroutine Library for AIX (Version 3, Volume 1

ed.). IBM. Pub. number SA22–7272–0.

Lawson, C. L., Hanson, R. J., Kincaid, D., and Krogh, F. T. 1979. Basic Linear Algebra

Subprograms for Fortran Usage. ACM Trans. Math. Soft. 5, 308–323.

Trefethen, L. N. and Bau, D. 1997. Numerical Linear Algebra. SIAM, Philadelphia.


