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Abstract
This paper is focused on designing efficient parallel matrix-product
algorithms for heterogeneous master-worker platforms. While
matrix-product is well-understood for homogeneous 2D-arrays of
processors (e.g., Cannon algorithm and ScaLAPACK outer prod-
uct algorithm), there are three key hypotheses that render our work
original and innovative:
- Centralized data. We assume that all matrix files originate from,
and must be returned to, the master. The master distributes data
and computations to the workers (while in ScaLAPACK, input and
output matrices are supposed to be equally distributed among par-
ticipating resources beforehand). Typically, our approach is useful
in the context of speeding up MATLAB or SCILAB clients running
on a server (which acts as the master and initial repository of files).
- Heterogeneous star-shaped platforms. We target fully hetero-
geneous platforms, where computational resources have different
computing powers. Also, the workers are connected to the master
by links of different capacities. This framework is realistic when
deploying the application from the server, which is responsible for
enrolling authorized resources.
- Limited memory. As we investigate the parallelization of large
problems, we cannot assume that full matrix column blocks can
be stored in the worker memories and be re-used for subsequent
updates (as in ScaLAPACK).

We have devised efficient algorithms for resource selection (de-
ciding which workers to enroll) and communication ordering (both
for input and result messages), and we report a set of numerical ex-
periments on a platform at our site. The experiments show that our
matrix-product algorithm has smaller execution times than existing
ones, while it also uses fewer resources.

Keywords Matrix product, limited memory, communication

1. Introduction
Matrix product is a key computational kernel in many scientific ap-
plications and it has been extensively studied on parallel architec-
tures. Two well-known parallel versions are Cannon’s algorithm [6]
and the ScaLAPACK outer product algorithm [5]. Typically, par-
allel implementations work well on 2D processor grids, because
the input matrices are sliced horizontally and vertically into square
blocks that are mapped one-to-one onto the physical resources; sev-
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eral communications can take place in parallel, both horizontally
and vertically. Even better, most of these communications can be
overlapped with (independent) computations. All these characteris-
tics render the matrix product kernel quite amenable to an efficient
parallel implementation on 2D processor grids.

However, current architectures typically take the form of hetero-
geneous clusters, which are composed of heterogeneous computing
resources, interconnected by a sparse network; there are no direct
links between any pair of workers. Therefore, an accurate estima-
tion of the communication cost requires precise knowledge of the
underlying target platform. In addition, it becomes necessary to in-
clude the cost of both the initial distribution of the matrices to the
processors and of collecting back the results. These input/output
operations have always been neglected in the analysis of the con-
ventional algorithms. This is because only Θ(n2) coefficients need
to be distributed in the beginning, and gathered at the end, as op-
posed to the Θ(n3) computations1 to be performed (where n is the
problem size). The assumption that these communications can be
ignored could have made sense on dedicated processor grids like,
say, the Intel Paragon, but it is no longer reasonable on heteroge-
neous platforms. Furthermore, when processors cannot store all the
matrices in their memory, the total volume of communication re-
quired can be larger than Θ(n2), as a same matrix element may
have to be sent several times to a same processor.

In this paper, we are not interested in adapting 2D processor
grid strategies to heterogeneous clusters, as proposed in [11, 2, 3].
Instead, we adopt a realistic application scenario, where input files
are read from a fixed repository (such as a disk on a data server).
Computations are delegated to available computational resources,
and results will be returned to the repository. This calls for a master-
worker paradigm, or more precisely for a computational scheme
where the master (the processor holding the input data) assigns
computations to other resources, the workers. In this centralized
approach, all matrix files originate from, and must be returned to,
the master. The master distributes both data and computations to
the workers (while in ScaLAPACK, input and output matrices are
supposed to be equally distributed among participating resources
beforehand). Typically, our approach is useful in the context of
speeding up MATLAB or SCILAB clients running on a server
(which acts as the master and initial repository of files).

We target fully heterogeneous master-worker platforms, where
computational resources have different computing powers, and
workers are connected to the master by links of different capacities.
This framework is realistic when deploying the application from a
server, which is responsible for enrolling authorized resources.

Finally, because we investigate the parallelization of large prob-
lems, we cannot assume that full matrix panels, or column blocks,

1 Of course, there are Θ(n3) computations if we only consider algorithms
that uses the standard way of multiplying matrices; e.g., this excludes
Strassen’s and Winograd’s algorithms.



can be stored in worker memories and re-used for subsequent up-
dates (as in ScaLAPACK). The amount of memory available in
each worker is expressed as a given number mi of buffers, where
a buffer can store a square block of matrix elements. The size q of
these square blocks is chosen so as to harness the power of Level 3
BLAS routines [5]: q = 80 or 100 on most platforms.

To summarize, the target platform is composed of several work-
ers with different computing powers, different bandwidth links
to/from the master, and different, limited, memory capacities. The
first problem is resource selection. Which workers should be en-
rolled in the execution: all of them? only the fastest computing
ones? only the fastest-communicating ones? Once participating re-
sources have been selected, there remain several scheduling prob-
lems: how to minimize the number of communications? in which
order workers should receive input data and return results? what
amount of communications can be overlapped with (independent)
computations? The main contributions of this paper are twofold:
• On the theoretical side, we have refined the existing bounds

on the volume of communications needed to perform a matrix-
product on a platform with insufficient memory to simultane-
ously store the whole three matrices.

• On the practical side, we have designed an algorithm for het-
erogeneous platforms which is quicker than the existing ones,
and which uses less computational resources, according to our
MPI experiments.
The rest of the paper is organized as follows. In Section 2, we

state the scheduling problem precisely, and we introduce notations.
Next, in Section 3, we proceed with the analysis of the total com-
munication volume that is needed in the presence of memory con-
straints, and we improve a well-known bound by Toledo [17, 10]. In
order to help the reader apprehend the solution for heterogeneous
platforms, we first deal with homogeneous platforms in Section 4,
and we propose a scheduling algorithm that includes resource se-
lection. Section 5 addresses the design of algorithms for heteroge-
neous platforms, which turns out to be a truly challenging algorith-
mic task. We report several MPI experiments in Section 6. Section 7
is devoted to an overview of related work. Finally, we state some
concluding remarks in Section 8.

2. Framework
Application
We deal with the computational kernel C ← C+A×B. We partition
the three matrices A, B, and C as illustrated in Figure 1. Formally:
• We use a block-oriented approach. The atomic elements that we

manipulate are not matrix coefficients but instead square blocks
of size q× q (hence with q2 coefficients). This is to harness the
power of Level 3 BLAS routines [5]. Typically, q = 80 or 100
when using ATLAS-generated routines [7].

• The input matrix A is of size nA × nAB:
- we split A into r horizontal stripes Ai, 1 ≤ i ≤ r, where
r = nA/q;
- we split each stripe Ai into t square q × q blocks Ai,k,
1 ≤ k ≤ t, where t = nAB/q.

• The input matrix B is of size nAB × nB:
- we split B into s vertical stripes Bj , 1 ≤ j ≤ s, where
s = nB/q;
- we split stripe Bj into t square q × q blocks Bk,j , 1 ≤ k ≤ t.

• We compute C = C + A × B. Matrix C is accessed (both for
input and output) by square q × q blocks Ci,j , 1 ≤ i ≤ r,
1 ≤ j ≤ s. There are r × s such blocks.
We point out that with such a decomposition, all stripes and

blocks have the same size. This will greatly simplify the analysis
of communication costs.

... ...

Bk,j
...

Ci,jAi,k

r stripes

of size q × q
t blocks

s stripes

...

...

...

r × s blocks

Figure 1. Partitioning of the three matrices A, B, and C.

Platform
We target a star network S = {P0, P1, P2, . . . , Pp}, composed
of a master P0 and of p workers Pi, 1 ≤ i ≤ p.In practice,
this star network can be a logical overlay built upon a different
physical interconnection network. Because we manipulate large
data blocks, we adopt a linear cost model, both for computations
and communications (i.e., we neglect start-up overheads). We have
the following notations:
• It takes X.wi time-units to execute a task of size X on Pi;
• It takes X.ci time units for the master P0 to send a message of

size X to Pi or to receive a message of size X from Pi.
Our star platforms are thus fully heterogeneous, both in terms

of computations and of communications. A fully homogeneous
star platform would be a star platform with identical workers and
identical communication links: wi = w and ci = c for each
worker Pi, 1 ≤ i ≤ p. Without loss of generality, we assume
that the master has no processing capability (otherwise, add a
fictitious extra worker paying no communication cost to simulate
computation at the master).

For the communication model, we adopt the one-port model [4],
which is defined as follows: 1) the master can only send data to, and
receive data from, a single worker at a given time-step; 2) a given
worker cannot start execution before it has terminated the reception
of the message from the master; similarly, it cannot start sending
the results back to the master before finishing the computation;
3) a given worker can overlap computation and communication of
independent tasks.

The one-port model is realistic. Bhat, Raghavendra, and Prasan-
na [4] advocate its use because “current hardware and software
do not easily enable multiple messages to be transmitted simul-
taneously.” Even if non-blocking, multi-threaded communication
libraries allow for initiating multiple send and receive operations,
they claim that all these operations “are eventually serialized by
the single hardware port to the network.” Experimental evidence of
this fact has recently been reported by Saif and Parashar [16], who
report that asynchronous MPI sends get serialized as soon as mes-
sage sizes exceed a hundred kilobytes. Their results hold for two
popular MPI implementations, MPICH on Linux clusters and IBM
MPI on the SP2. Note that all the MPI experiments in Section 6
obey the one-port model.

Our final assumption is related to memory capacity; we assume
that a worker Pi can only store mi blocks (either from A, B, or
C). For large problems, this memory limitation will considerably



impact the design of the algorithms, as data re-use will be greatly
dependent on the amount of available buffers.

3. Minimization of the communication volume
In this section, we derive a lower bound on the total number of
communications (sent from, or received by, the master) that are
needed to execute any matrix multiplication algorithm. Any parallel
algorithm can always be simulated on a single worker. Therefore,
since we are not interested in optimizing the execution time, but
only in minimizing the total communication volume, we only need
to consider the one-worker case. We then deal with the following
formulation of the problem:
• The master sends blocks Aik, Bkj , and Cij ,
• The master retrieves final values of blocks Cij , and
• We enforce limited memory on the worker; only m buffers are

available, which means that at most m blocks of A, B, and/or
C can simultaneously be stored on the worker.
First, we improve the lower bound on the communication vol-

ume established by Toledo et al. [17, 10]. Then, we describe an
algorithm that aims at re-using C blocks as much as possible after
they have been loaded, and we assess its performance.

Lower bound on the communication volume
To derive the lower bound, we refine an analysis due to Toledo [17].
The idea is to estimate the number of computations made thanks to
m consecutive communication steps (once again, the unit here is a
matrix block). We need some notations:
• We let αold, βold, and γold be the number of buffers used by

blocks of A, B, and C right before the beginning of the m
communication steps;

• We let αrecv , βrecv , and γrecv be the number of A, B, and C
blocks sent by the master during the m communication steps;

• Finally, we let γsend be the number of C blocks returned to the
master during these m steps.

Initially, the memory contains at most m blocks, and we consider a
sequence of m communications. Therefore:

αold + βold + γold ≤ m
αrecv + βrecv + γrecv + γsend = m

We then use Loomis-Whitney inequality [10]: in any algorithm that
uses the standard way of multiplying matrices, if NA elements of
A,NB elements of B, andNC elements of C are accessed, no more
than K computations can be done, where K =

√
NANBNC .

Here K =
p

(αold + αrecv)(βold + βrecv)(γold + γrecv). K is
maximized when αold + αrecv = βold + βrecv = γold + γrecv =
2
3
m, and the lower bound for the communication-to-computation

ratio is: CCRopt ≥
q

27
8m
. This bound improves upon the best-

known value
q

1
8m

derived by Ironya, Toledo, and Tiskin [10].

The maximum re-use algorithm
In the above study, the lower-bound on the communication vol-
ume is obtained when the three matrices A, B, and C are equally
accessed during a sequence of computations. This may suggest al-
locating one third of the memory to each of these matrices. In fact,
Toledo [17] uses this memory layout. He even proves that, in the
context of multiplication of square matrices of size r, his algorithm
is “asymptotically optimal” as soon as the processor cannot store in
its memory more than one sixth of one of the matrices: such an al-
gorithm must have a communication-per-computation ratio which
is Ω

“
r3√
m

”
when his algorithm has a communication to computa-

tion ratio ofO
“
r3√
m

”
. We can, however, still significantly improve

the performance of matrix multiplication in our context by reduc-

CCCC CCCC CCCC CCCCA B B B B

1 µ µ2

Figure 2. Memory layout for the maximum re-use algorithm when
m = 21: µ = 4; 1 block is used for A, µ for B, and µ2 for C.

ing the constant hidden in the order of complexity of this ratio, as
our experiments will show in Section 6.

A closer look at our problem shows that the multiplied matrices
A andB have the same behavior, which differs from the behavior of
the result matrix C. Indeed, if an element of C is no longer used, it
cannot be simply discarded from the memory as the elements of A
andB are, but it must be sent back to the master. Intuitively, sending
an element of C to a worker also costs the communication needed
to retrieve it from the worker, and is thus twice as expensive as
sending an element ofA or B. Therefore, we designed an algorithm
that reuses as much as possible the elements of C.

Cannon’s algorithm [6] and the ScaLAPACK outer product
algorithm [5] both distribute square blocks of C to the processors.
Intuitively, squares are better than elongated rectangles because
their perimeter (which is proportional to the data needed by a
worker to compute the area) is smaller for the same area. We use
the same approach here.

The maximum re-use algorithm uses the memory layout illus-
trated in Figure 2. Four consecutive execution steps are shown in
Figure 3. Assume that there are m available buffers. First we find
µ as the largest integer such that 1 + µ + µ2 ≤ m. The idea is
to use one buffer to store A blocks, µ buffers to store B blocks,
and µ2 buffers to store C blocks. In the outer loop of the algorithm,
a µ × µ square of C blocks is loaded. Once these µ2 blocks have
been loaded, they are repeatedly updated in the inner loop of the
algorithm until their final value is computed. Then the blocks are
returned to the master, and µ2 new C blocks are sent by the mas-
ter and stored by the worker. As illustrated in Figure 2, we need µ
buffers to store a row of B blocks, but only one buffer forA blocks:
A blocks are sent in sequence, each of them is used in combination
with a row of µ B blocks to update the corresponding row of C
blocks. This leads to the following sketch of the algorithm:
Outer loop: while there remain C blocks to be computed
• Store µ2 blocks of C in worker’s memory: {Ci,j | i0 ≤ i <
i0 + µ, j0 ≤ j < j0 + µ}.

• Inner loop: For each k from 1 to t:
1. Send a row of µ elements {Bk,j | j0 ≤ j < j0 + µ};
2. Sequentially send µ elements of column {Ai,k | i0 ≤ i <
i0 + µ}. For each Ai,k, update µ elements of C

• Return results to master.
The performance of one iteration of the outer loop of the maxi-

mum re-use algorithm can readily be determined:
• We need 2µ2 communications to send and retrieve C blocks.
• For each value of t:

- we need µ elements of A and µ elements of B;
- we update µ2 blocks.

In terms of block operations, the communication-to-computation
ratio achieved by the algorithm is thus

CCR =
2µ2 + 2µt

µ2t
=

2

t
+

2

µ
.

For large problems, i.e., large values of t, we see that CCR is
asymptotically close to the value CCR∞ = 2√

m
. We point out that,

in terms of data elements, the communication-to-computation ratio
is divided by a factor q. Indeed, a block consists of q2 coefficients
but an update requires q3 floating-point operations. Also, the ratio
CCR∞ achieved by the maximum re-use algorithm is lower by a
factor

√
3 than the ratio achieved by the blocked matrix-multiply
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Figure 3. Four steps of the maximum re-use algorithm, with m =
21 and µ = 4. Updated elements of C are written white on black.

algorithm of [17]. Finally, we remark that the performance of the
maximum re-use algorithm is quite close to the lower bound derived

earlier: CCR∞ = 2√
m

=
q

32
8m
.

4. Algorithms for homogeneous platforms
We now adapt the maximum re-use algorithm to fully homogeneous
platforms. We have a limitation on the memory capacity. So we
must first decide which part of the memory will be used to stock
which part of the original matrices, in order to maximize the total
number of computations per time unit.

Principle of the algorithm
We load into the memory of each worker µ blocks of A and µ
blocks of B to compute µ2 blocks of C. In addition, we need 2µ
extra buffers, split into µ buffers for A and µ for B, in order to
overlap computation and communication steps. In fact, µ buffers
for A and µ for B would suffice for each update, but we need to
prepare for the next update while computing. Overall, the number
µ2 of C blocks that we can simultaneously load into memory is
defined by the largest integer µ such that µ2 + 4µ ≤ m.

We have to determine the number of participating workers P.
On the communication side, we know that in a round (computing
a C block entirely), the master exchanges with each worker 2µ2

blocks of C (µ2 sent and µ2 received), and sends µt blocks of A
and µt blocks of B. During this round, on the computation side,
each worker computes µ2t block updates. If we enroll too many
processors, the communication capacity of the master will be ex-
ceeded: there is a limit on the number of blocks that it can send
per time unit. On the contrary, if we enroll too few processors,
they may be overloaded. We can compute the number of proces-
sors P so that the time needed to send blocks to P processors will
be roughly equal to (or slightly greater than) the time spent by one
processor for its computations. P is the smallest integer such that
2µtc × P ≥ µ2tw. Indeed, this is the smallest value to saturate
the communication capacity of the master while sustaining the cor-
responding computations. Finally, we cannot use more processors
than available. In the context of matrix multiplication, c and w are
of the form c = q2τc and w = q3τa, where τc and τa respectively
represent the elementary communication and computation times.
Hence:

P = min


p,

‰
µq

2

τa
τc

ıff
.

Algorithm 1: Homogeneous version, master program.

µ←
¨√

4 +m− 2
˝

P← min
n
p,
˚
µw
2c

ˇo
Split matrix C into squares Ci′,j′ of µ2 q × q blocks :
Ci′,j′ = {Ci,j | (i′−1)µ+1 ≤ i ≤ i′µ, (j′−1)µ+1≤j≤j′µ}
for j′′ ← 0 to s

Pµ
by Step P do

for i′ ← 1 to r
µ

do
for idworker ← 1 to P do

j′ ← j′′ + idworker
Send block Ci′,j′ to worker idworker

for k ← 1 to t do
for idworker ← 1 to P do

j′ ← j′′ + idworker
for j ← (j′− 1)µ+ 1 to j′µ do Send Bk,j
for i← (i′ − 1)µ+ 1 to i′µ do Send Ai,k

for idworker ← 1 to P do
j′ ← j′′ + idworker
Receive Ci′,j′ from worker idworker

Algorithm 2: Homogeneous version, worker program.

for all blocks do
Receive Ci′,j′ from master
for k ← 1 to t do

for j ← (j′ − 1)µ+ 1 to j′µ do Receive Bk,j
for i← (i′ − 1)µ+ 1 to i′µ do

Receive Ai,k
for j ← (j′ − 1)µ+ 1 to j′µ do
Ci,j ← Ci,j +Ai,k.Bk,j

Return Ci′,j′ to master

For the sake of simplicity, we suppose that r is divisible by µ,
and s by Pµ. We allocate µ block columns (i.e., qµ consecutive
columns of the original matrix) of C to each processor. The algo-
rithm is made of two parts: Algorithm 1 outlines the program of the
master, while Algorithm 2 is the program of each worker.

Impact of the start-up overhead
If we follow the execution of the homogeneous algorithm, we may
wonder whether we can really neglect the input/output of C blocks.
We decide to sequentialize the sending, computing, and receiving
of the C blocks, so that each worker loses 2c time-units per block,
i.e., per tw time-units. As there are P ≤ µw

2c
+ 1 workers, the total

loss would be of 2cP time-units every tw time-units, which is less
than µ

t
+ 2c

tw
. For example, with c = 2, w = 4.5, µ = 4 and

t = 100, we enroll P = 5 workers, and the total lost is at most
4%, which is small enough to be neglected. Note that it would
be technically possible to design an algorithm where the sending
of the next block is overlapped with the last computations of the
current block, but the whole procedure would become much more
complicated.

5. Algorithms for heterogeneous platforms
We now consider the general problem, i.e., when processors are
heterogeneous in term of memory size as well as computation or
communication time. As in the previous section, mi is the number
of q× q blocks that fit in the memory of worker Pi, and we need to
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MAXIMIZE
P
i xi SUBJECT TOX

i

yici ≤ 1

∀i xiwi ≤ 1

∀i xi
µ2
i

≤ yi
2µi

Table 1. Linear program maxi-
mizing the amount of work per-
formed per time-unit.

P1 P2

ci 1 x
wi 2 2x
µi 2 2
2ci
µiwi

1
2

1
2

Table 2. Platform for which the
bandwidth centric solution is
not feasible.

load into the memory of Pi 2µi blocks of A, 2µi blocks of B, and
µ2
i blocks of C. This number of blocks loaded into memory changes

from worker to worker, as it depends on their memory capacities:
µi is the largest integer such that µ2

i + 4µi ≤ mi. To adapt our
maximum re-use algorithm to heterogeneous platforms, we first
present a steady-state-like approach and discuss its limitations. We
then introduce our algorithm for heterogeneous platforms.

Bandwidth-centric resource selection
Each worker Pi has parameters ci, wi, and µi, and each participat-
ing Pi needs a time 2µitci to receive its blocks and a time tµ2

iwi to
perform its computations. Once again, we neglect I/O for C blocks.
Consider the steady-state of a schedule. During one time-unit, Pi
receives a certain amount yi of blocks, both of A and B, and com-
putes xi C blocks. We express the constraints, in terms of commu-
nication —the master has limited bandwidth— and of computation
—a worker has limited computing power and cannot perform more
work than it receives. The objective is to maximize the amount of
work performed per time-unit. Altogether, we gather the linear pro-
gram presented in Figure 1. The optimal solution for this system is a
bandwidth-centric strategy [1]: we sort workers by non-decreasing
values of 2ci

µi
and we enroll them as long as

P 2ci
µiwi

≤ 1. In this
way, we can achieve the throughput ρ ≈

P
i enrolled

1
wi

. This solu-
tion seems to be close to the optimal. However, the problem is that
workers may not have enough memory to execute it! Consider the
example described by Table 2. Using the bandwidth-centric strat-
egy, every 8x seconds:
• P1 receives 4x blocks (x µ1 × µ1 chunks) in 4x seconds, and

computes 4x blocks in 8x seconds;
• P2 receives 4 blocks (1 µ2 × µ2 chunk) in 4x seconds, and

computes 4 blocks in 8x seconds.
But P1 computes too quickly: during the time x needed to send a
block to P2, P1 updates x

2
blocks, which requires at least

√
2x

blocks and as many buffers. As x can be arbitrary large, the
bandwidth-centric solution cannot always be realized in practice,
and we turn to another algorithm, described below. To avoid the
previous buffer problems, resource selection will be performed
through a step-by-step simulation. However, the steady-state solu-
tion is an upper bound on the performance that can be achieved.

Incremental resource selection
The different memory capacities of the workers imply that we as-
sign them chunks of different sizes. This requirement complicates
the global partitioning of the C matrix among the workers. To take
this into account, while simplifying the implementation, we decide
to assign only full matrix column blocks in the algorithm. This is
done in a two-phase approach.

In the first phase we pre-compute the allocation of blocks to
processors, using a processor selection algorithm we will describe
later. We start as if we had a huge matrix of size ∞ ×

Pn
i=1 µi.

Each time Pi is chosen by the processor selection algorithm, it

is assigned a square chunk of µ2
i C blocks. As soon as Pi has

enough blocks to fill up µi block columns of the initial matrix,
we decide that Pi will indeed execute these columns during the
parallel execution. Therefore we maintain a panel of

Pp
i=1 µi

block columns and fill them out by assigning blocks to processors.
We stop this phase as soon as all the r × s blocks of the initial
matrix have been allocated columnwise by this process. Pi will be
assigned a block column after it has been selected d r

µi
e times by

the algorithm.
In the second phase we perform the actual execution. Messages

will be sent to workers according to the previous selection process.
The first time a processor Pi is selected, it receives a square chunk
of µ2

i C blocks, which initializes its repeated pattern of operation:
the following t times, Pi receives µi A and µi B blocks, which
requires 2µici time-units.

There remains to decide which processor to select at each step of
the first phase. We have no closed-form formula for the allocation
of blocks to processors. Instead, we use an incremental algorithm to
compute which worker the next blocks will be assigned to. We have
two variants of the incremental algorithm, a global one that aims at
optimizing the overall communication-to-computation ratio, and a
local one that selects the best processor for the next stage.

Global selection algorithm. The intuitive idea, here, is to select
the processor that maximizes the ratio of the total work achieved so
far (in terms of block updates) over the completion time of the last
communication. The latter represents the time spent by the master
so far, either sending data to workers or staying idle waiting for the
workers to finish their current computations. We have:

ratio← total work achieved
completion time of last communication

Estimating computations is easy: Pi executes µ2
i block updates

per assignment. Communications are slightly more complicated to
deal with; we cannot just use the communication time 2µici of Pi
for the A and B blocks because we need to take ready times into
account: if Pi is currently busy executing work, it cannot receive
additional data too much in advance as its memory is limited.

Local selection algorithm. The global selection algorithm picks,
as the next processor, the one that maximizes the ratio of the total
amount of work assigned over the time needed to send all the
required data. On the other hand, the local selection algorithm
chooses, as destination of the i-th communication, the processor
that maximizes the ratio of the amount of work assigned by this
communication over the time during which the communication link
is used to performed this communication (i.e., the elapsed time
between the end of (i − 1)-th communication and the end of the
i-th communication). As previously, if processor Pj is the target of
the i-th communication, the i-th communication is the sending of
µj blocks of A and µj blocks of B to processor Pj , which enables
it to perform µ2

j updates.

Variants. At this point, we can have a global or a local selection
process. Each process can either make a decision only looking at
the next communication, or in a look-ahead approach. Another
variant would be to take into account the cost of initially sending µ2

i

blocks of matrix C to processor Pi the first time its receives blocks.
Overall, we thus define eight different selection algorithms (global
or local, look-ahead or not, µ2

i C costs or not). There is no reason
for one of these heuristics to always dominate the others. We will
thus consider the eight of them in our experiments.

6. MPI experiments
In this section, we aim at validating the previous theoretical results
and algorithms. We conduct a variety of MPI experiments to com-



pare our new schemes with several algorithms from the literature.
We target heterogeneous platforms, and we assess the impact of the
degree of heterogeneity (in processor speed, link bandwidth, and
memory capacity) on the performance of the various algorithms.

The code and the experimental results can be downloaded from:
http://graal.ens-lyon.fr/~jfpineau/Downloads/ppopp.tgz.

6.1 Platforms
We used a heterogeneous cluster composed of twenty-seven pro-
cessors located in Lyon. It is composed of four different homoge-
neous sets of machines. The different sets are composed of: 1) 8
SuperMicro servers 5013-GM, with processors P4 2.4 GHz; 2) 5
SuperMicro servers 6013PI, with processors P4 Xeon 2.4 GHz; 3)
7 SuperMicro servers 5013SI, with processors P4 Xeon 2.6 GHz;
4) 7 SuperMicro servers IDE250W, with processors P4 2.8 GHz.

All nodes have 1 GB of memory and are running the Linux op-
erating system. The nodes are connected with a switched 10 Mbps
Fast Ethernet network. As this platform may not be as heteroge-
neous as we would like, we sometimes artificially modify its het-
erogeneity. In order to artificially slow down a communication link,
we send the same message several times to one worker. The same
idea works for processor speeds: we ask a worker to compute a
given matrix-product several times in order to slow down its com-
putation capability. In all experiments, except the last batch, we
used nine processors: one master and eight workers.

6.2 Algorithms
We choose four different algorithms from the literature which we
compare our algorithms to. The closest work addressing our prob-
lem is Toledo’s out-of-core algorithm [17]. Hence, this work will
serve as the baseline reference. Then we will study hybrid algo-
rithms, i.e., algorithms which use our memory layout and are based
on classical principles such as round-robin, min-min [13], or a dy-
namic demand-driven approach. The first six algorithms below use
our memory allocation, the only difference between them is the or-
der in which the master sends blocks to workers.
Homogeneous algorithm (Hom) is our homogeneous algorithm.

It makes resource selection and sends blocks to the selected
workers in a round-robin fashion. When run on a heterogeneous
platform, it tries to build a very simple homogeneous platform.
As the algorithm’s only constraint is to send same size blocks to
all participating workers, for a given memory size, we consider
the homogeneous virtual platform composed of those workers
having at least that amount of memory, and we estimate the total
execution time of our homogeneous algorithm, for the targeted
matrix-product, on that virtual platform (the apparent proces-
sor speed is the minimum of the processor speeds, the apparent
communication bandwidth is the minimum of the communica-
tion bandwidths). We do this process for all the different mem-
ory sizes present in the actual platform, and we pick the virtual
platform that minimizes the total estimated execution time.

Homogeneous algorithm improved (HomI) is our homogeneous
algorithm running on a more carefully chosen homogeneous
platform. For each memory size, communication speed, and
computation speed present in an heterogeneous platform, we
consider the homogeneous virtual platform composed of those
workers having at least that performance. Then, we compute
the total execution time of our homogeneous algorithm, for the
targeted matrix-product, on that virtual platform (the apparent
processor speed is the considered processor speed, and so on).
We do this process for all the existing values, and we pick the
virtual platform that minimizes the total execution time.

Heterogeneous algorithm (Het) is our heterogeneous algorithm.
As we can have eight different versions of the resource selec-

tion, in a first step we simulate the eight versions, and then we
pick and run the best one.

Overlapped Round-Robin, Optimized Memory Layout (OR-
ROML) sends tasks to all available workers in a round-robin
fashion. It does not make any resource selection.

Overlapped Min-Min, Optimized Memory Layout (OMMO-
ML) is a static scheduling heuristic, which sends the next block
to the first worker that will finish it. As it is looking for potential
workers in a given order, this algorithm performs some resource
selection too. Theoretically, as our homogeneous resource se-
lection ensures that the first worker is free to compute when
we finish sending blocks to the others, OMMOML and Hom
should have a similar behavior on homogeneous platforms.

Overlapped Demand-Driven, Optimized Memory Layout (O-
DDOML) is a demand-driven algorithm. In our memory lay-
out, two buffers of size µi are reserved for matrix A, and two
for matrix B. In order to use the two available extra buffers (the
second for A and the second for B), one sends the next block
to the first worker which can receive it. This would be a dy-
namic version of our algorithm, if it took worker selection into
account.

Block Matrix Multiply (BMM) is Toledo’s algorithm [17]. It
splits each worker memory equally into three parts and allo-
cates one slot for a square block of A, another for a square
block of B, and the last one for a square block of C, with the
square blocks having the same size. It sends blocks to the work-
ers in a demand-driven fashion.
First a worker receives a block of C, then it receives correspond-
ing blocks of A and B in order to update C, until C is fully
computed.
Note that the six algorithms using our optimized memory layout

are considering matrices as composed of square blocks of size
q × q = 80 × 80, while BMM loads three panels, each of size
one third of the available memory, for A, B and C.

When launching an algorithm on the platform, the very first step
we do is to determine the platform’s parameters. For that purpose,
we launch a benchmark on it, in order to get the memory size, the
communication speed, and the computation speed. The different
speeds are determined by sending and computing a square block
of size q × q ten times on each worker, and computing the median
of the times obtained. This step takes between 20 and 80 seconds,
depending on the speed of the workers, and is made before each
algorithm, even ORROML, ODDOML, and BMM, which only
need the memory size. This step represents at most 2% of the total
time of execution.

In the following section, the times given takes into account the
decision process of the algorithms, i.e., the simulation of the eight
different versions of the resource selection for Het, the construction
of an homogeneous platform for Hom and HomI, etc.

6.3 Experimental results
In the first three sets of experiments, we only have one parameter
of heterogeneity, either the amount of memory, the communication
speed, or the computation speed. We test the algorithms on such
platforms with five matrices of increasing sizes. As we do not
want to change several parameters at a time, we only change the
value of parameter s (rather than, for instance, always consider
square matrices). Matrix A is of size 8000 × 8000 whereas B is
of increasing sizes 8000× 64000, 8000× 80000, 8000× 96000,
8000 × 112000, and 8000 × 128000. For all other experiments,
A is of size 8000 × 8000 and B is of size 8000 × 80000. The
heterogeneous workers have different memory capacities, which
implies that each algorithm, even BMM, assigns them chunks of
different sizes. In order to simplify the global partitioning of matrix
C, we decide to only assign workers full matrix column blocks.



As we want to assess whether the performance of any studied
algorithm depends on the matrix size, we look at the relative cost
of the algorithms rather than at their absolute execution times. The
relative cost of a given algorithm on a particular instance is equal
to the execution time, or makespan, achieved on that instance by
the algorithm, divided by the minimum makespan achieved on that
instance. Using relative cost also enables us to build statistics on
the performance of algorithms.

Besides relative cost, we take into account the number of pro-
cessors used. To assess the efficiency of a given algorithm, we
look at its relative work, which is equal, for a given instance, to
its makespan times the number of enrolled processors, divided by
the minimum of this value over all studied algorithms.

Heterogeneous memory size
Here we assess the performance of our algorithms with respect to
memory heterogeneity. We launch the algorithms on a homoge-
neous platform in terms of communication and computation capa-
bilities, but where workers have different memory capacities. We
suppose that two workers only have 256 MB of memory, four of
them 512 MB, and the last two 1024 MB.

(a) Cost of algorithms.

(b) Efficiency of algorithms.

Figure 4. Heterogeneous memory.

Figure 4(a) presents the relative cost of the algorithms, whose
general shape is very similar for all five matrix sizes. ODDOML
and our heterogeneous algorithm Het have the best makespans.
At the other end of the spectrum, OMMOML is twice as bad. In
between, Hom, HomI, ORROML, and BMM are roughly twenty
percent slower. To give an idea of execution times, Het needs about
2000 seconds to compute the product of the smallest matrices, and
about 3500 seconds for the largest.

The variations in the cost of BMM can easily be justified. The
memory layout used in BMM is different from the other algo-
rithms. Therefore the size of the matrix chunks used by BMM are
different. The matrices are rather small (to be able to evaluate a
significant number of algorithms on a significant number of plat-
forms). Hence we observe some non negligible side effects (matrix
size divided by chunk size not being a multiple of the number of

processors used). Therefore, for a given platform, some memory
sizes are more favorable for BMM than for the algorithms using
our memory layout. We will see throughout our experiments on
heterogeneous platforms that even if sometimes these side effects
help BMM achieve reasonable cost, it may also have a very bad
cost in some other situations..

The ranking of the algorithms is quite different when we look at
the relative work (Figure 4(b)). First we have OMMOML, which
only uses two workers, and is thus very thrifty, at the expense of
its absolute cost. Then we have HomI, Het, Hom, and ODDOML.
Hom relative work is always better than that of ODDOML: Hom
is performing some resource selection contrarily to ODDOML,
which always uses all the processors. And HomI is even better
than Hom, thanks to a better platform selection. This is also the
reason why the gap between the relative work of Het and that
of ODDOML is significantly larger than the gap between their
relative costs. Finally, we have ORROML and BMM, which do
not achieve an efficient makespan and make no resource selection,
and thus achieve very bad relative work.

Heterogeneous communication links
We now assess the performance of our algorithms when commu-
nication links have heterogeneous capabilities. The target platform
is composed of two workers with a 10Mbps communication link,
four workers with a 5Mbps communication link, and the last two
have a 1Mbps communication link.

(a) Cost of algorithms.

(b) Efficiency of algorithms.

Figure 5. Heterogeneous communication links.

Figure 5(a) shows the relative cost. The superiority of our het-
erogeneous algorithm over BMM is clear.

Het, HomI, and OMMOML have excellent makespans, and
make a good resource selection, as seen on Figure 5(b)). The
first figure also shows the gap between HomI and Hom: Hom
performs close to ODDOML, while HomI achieves a close to
best makespan. This figure underlines the importance of carefully
choosing the processors on which launching the algorithm: Hom
only uses two processors because of the platform parameters and
the way it extracts a homogeneous platform. BMM has the worst



makespan and makes no resource selection, which explains its
worse relative work. BMM achieves a makespan that is 70 to 90
percent worse than the best one. Concerning execution times, Het
needs about 2500 seconds to compute the product of the smallest
matrices, and about 5000 seconds for the largest.

Heterogeneous computations
Here we assess the performance of our algorithms when compu-
tation capabilities are heterogeneous. Workers have homogeneous
communications and memory capacities, but different computation
speeds. The platform is composed of two fast workers of speed S,
four workers of speed S/2 and two workers of speed S/4.

(a) Cost of algorithms.

(b) Efficiency of algorithms.

Figure 6. Heterogeneous computations.

In Figure 6(a), we see the relative cost obtained during this set
of experiments. BMM performs rather well, but its makespan is
larger than that of Het. Moreover, looking at the relative work in
Figure 6(b), we see that the gap between the algorithms becomes
larger, as our algorithms enroll fewer resources during execution.
Among the other algorithms, we see that ODDOML performs
well. If we look at the relative work, we also see that Het uses
more and more processors as matrix size increases. During these
experiments, Het needs about 2000 seconds to compute the product
of the smallest matrices, and about 4000 seconds for the largest.

Fully heterogeneous platforms
We now consider fully heterogeneous platforms. Communication
links, computation capabilities, and memory capacities can take
two different values, which leads to eight possibilities, one per
worker. We build that way two different platforms by fixing the
ratio between the small and large values for each characteristics to
either 2 in the first setting or 4 in the second one (first two columns
in Figures 7(a) and 7(b)). In order to show that our heterogeneous
algorithm works on any heterogeneous platform, we also randomly
create ten different platforms (last ten columns on the same fig-
ures). The ratio between minimum and maximum values of com-
munication links, computation capacities, and memory size is up to
four. MatrixA is of size 8000×8000 and B of size 8000×80000.

(a) Cost of algorithms.

(b) Efficiency of algorithms.

Figure 7. Fully heterogeneous platforms.

The results of these experiments are summarized on Fig-
ures 7(a) and 7(b). We see that Het achieves the best makespan
for all but two of the 12 platforms, and in the remaining cases is no
more than 9% and 2% away from the best studied algorithm. All
the other algorithms are, at least once, more than 41% away from
the best solution. For example, ORROML can be up to 88% worse
than the best achieved makespan. Only ODDOML achieves rea-
sonable makespans on average but, as it does not select resources,
its relative work is far worse. The relative work of Het is the best
among all algorithms except HomI, and the unusable OMMOML,
whose makespan can be 215% away from the best solution. But
even if our improved homogeneous algorithm performs a good re-
source selection, the makespan it achieves can be up to 80% larger
than the best makespan, and is 34% larger on average. According
to the experiments, Het needs between 2700 seconds and 6000
seconds.

Real platform
In this set of experiments, we use almost all the processors of our
platform. We do not modify the communication speed nor the com-
putation speed of the workers. We take five processors of each of
the four sets of machines, which gives us a rather homogeneous
platform. We either use this platform “as is” (August 2007 config-
uration of Figure 8(a)) or we limit the amount of memory avail-
able on each processor to its value before the last memory upgrade
(November 2006 configuration of Figure 8(b)). The actual platform
was then:
• 5 SuperMicro servers 5013-GM, with processors P4 2.4 GHz

with 256 MB of memory;
• 5 SuperMicro servers 6013PI, with processors P4 Xeon 2.4

GHz with 1 GB of memory;
• 5 SuperMicro servers 5013SI, with processors P4 Xeon 2.6

GHz with 1 GB of memory;
• 5 SuperMicro servers IDE250W, with processors P4 2.8 GHz

with 256 MB of memory.



We use an extra processor as the master. The matrix is of size
8000× 8000 for A and 8000× 320000 for B.

(a) August 2007 configuration

(b) November 2006 configuration

Figure 8. Real platform.

The results of these experiments are summarized in Figure 8.
The results on the actual platform are similar to those obtained on
homogeneous platforms [14]. All the algorithms but BMM have
similar makespan. All algorithms making resource selection use
eleven workers among the twenty available, which explains why
they achieve similar relative work.

The results of the experiments on the older version of the plat-
form are very similar to the ones previously obtained on mem-
ory heterogeneous platforms. ODDOML and our heterogeneous
algorithm Het achieve the best makespans. Then we have OR-
ROML, our homogeneous algorithms, BMM, and finally OM-
MOML which is 60% worse than Het. The execution time is
around 7800 seconds for Het. If we look at resource selection,
Het uses only the ten workers which have 1 GB of memory, and
achieves a makespan close to ODDOML’s, which uses the whole
platform. On another side, Hom, HomI, OMMOML use six work-
ers with small memories. All other algorithms use the whole plat-
form. We can thus see the impact of the resource selection on the
relative work of the algorithms.

Summary
Figure 9 summarizes all our MPI experiments. Figures 9(a) and 9(b)
respectively present the relative cost and the relative work obtained
for each experiment by our heterogeneous algorithm (Het), by
Toledo’s algorithm (BMM), and by the best of the dynamic heuris-
tics using our memory layout (ODDOML). The results show the
superiority of our memory allocation. Furthermore, if we add the
resource selection of Het, not only do we achieve, most of the
time, the best makespan, but also the best relative work as we also

spare resources. Using our memory layout (ODDOML) rather than
Toledo’s (BMM) enables us to gain 19% of execution time on av-
erage. When this is combined with resource selection, this enables
us to gain additionally 10%, which is 27% against Toledo’s run-
ning time. We achieve this significant gain while sparing resources.
Our Het algorithm is on average 1% away from the best achieved
makespan. At worst Het is 14% away from the best makespan,
ODDOML 61%, and BMM 128%. Moreover, we have seen that
80% of the time, the performance of Het was in fact obtained
thanks to a global resource selection.

The steady-state approach described in Section 5 gives us an
upper-bound on the best achievable throughput. This upper-bound
is very optimistic as it assumes unbounded memories and does not
take into account the communication costs due to the elements of
matrix C. This upper bound is nevertheless on average only 2.29
times greater than the throughput achieved by Het (and at worst is
3.42 times greater). Therefore, considering this upper-bound tells
us that our Het algorithm not only has good relative cost when
compared to the other algorithms, but also has very good absolute
cost.

Altogether, we have thus been able to design an efficient, thrifty,
and reliable algorithm.

(a) Relative Cost.

(b) Relative work.

Figure 9. Summary of experiments.



7. Related work
As already mentioned, the design of parallel algorithms for limited
memory processors is very similar to the design of out-of-core rou-
tines for classical parallel machines. On the theoretical side, Hong
and Kung [9] investigate the I/O complexity of several computa-
tional kernels in their pioneering paper. Toledo [17] proposes a nice
survey on the design of out-of-core algorithms for linear algebra,
including dense and sparse computations. We refer to [17] for a
complete list of implementations. The design principles followed
by most implementations are introduced and analyzed by Dongarra
et al. [8].

A similar thread of work, although in a different context,
deals with reconfigurable architectures, either pipelined bus sys-
tems [12], or FPGAs [18]. In the latter approach, tradeoffs must be
found to optimize the size of the on-chip memory and the available
memory bandwidth, leading to partitioned algorithms that re-use
data intensively.

Please see the companion research report of this paper [14] for
an overview or relevant literature dealing with (i) load balancing
techniques on heterogeneous platforms; (ii) linear algebra algo-
rithms on heterogeneous clusters; (iii) models for heterogeneous
platforms; and (iv) master-worker scheduling on grid platforms.
This research report also subsumes our previous work focusing on
homogeneous platforms [15].

8. Conclusion
The main contributions of this paper are the following:
1. On the theoretical side, we have derived a new, tighter, bound on

the minimal volume of communications needed to multiply two
matrices. From this lower bound, we have defined an efficient
memory layout, i.e., an algorithm to share the memory available
on the workers among the three matrices.

2. On the practical side, starting from our memory layout, we have
designed an algorithm for homogeneous platforms whose per-
formance is quite close to the communication volume lower
bound. We have extended this algorithm to deal with hetero-
geneous platforms. Please refer to the companion research re-
port [14] for a discussion on how to adapt the approach for LU
factorization.

3. Through MPI experiments, we have shown that our algorithm
for heterogeneous platforms has far better performance than so-
lutions using the memory layout proposed in [17]. Furthermore,
this static heterogeneous algorithm has slightly better perfor-
mance than dynamic algorithms using the same memory layout,
but uses fewer processors, and has a far better worst case. It is
therefore a very good candidate for deploying applications on
heterogeneous platforms.
It would be interesting to assess whether our memory layout

could prove useful in the context of out-of-core algorithms for
heterogeneous platforms.
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