
Procedia Computer Science 00 (2012) 1–10

Procedia Computer
Science

International Conference on Computational Science, ICCS 2012

One-sided dense matrix factorizations on a multicore
with multiple GPU accelerators in MAGMA1

Ichitaro Yamazaki, Stanimire Tomov, and Jack Dongarra
University of Tennessee, Knoxville, TN37996, USA

{iyamazak, tomov, dongarra}@cs.utk.edu

Abstract

One-sided dense matrix factorizations are important computational kernels in many scientific and engineering
simulations. In this paper, we propose two extensions of both right-looking (LU and QR) and left-looking (Cholesky)
factorization algorithms to utilize the computing power of current heterogeneous architectures. We first describe a
new class of non-GPU-resident algorithms that factorize only a submatrix of a coefficient matrix on a GPU at a time.
We then extend the algorithms to use multiple GPUs attached to a multicore. These extensions enable the factorization
of a matrix that does not fit in the aggregated memory of the multiple GPUs at once, and provide potential of fully
utilizing the computing power of the architectures. Since data movement is expensive on the current architectures,
these algorithms are designed to minimize the data movement at multiple levels. These algorithms are now parts of
the MAGMA software package, a set of the state-of-the-art dense linear algebra routines for a multicore with GPUs.
To demonstrate the effectiveness of these algorithms, we present their performance on a single compute node of the
Keeneland system, which consists of twelve Intel Xeon processors and three NVIDIA GPUs. The performance results
show the scalable performance of our multi-GPU algorithms and the negligible overheads of our non-GPU-resident
algorithms due to the communication-avoiding techniques employed.

Keywords: dense linear algebra; one-sided factorization; GPU accelerators;

1. Introduction

Moore’s law predicted that the number of transistors on a chip would double every 18 months. This trend has
continued for more than half a century and is expected to continue through the end of the next decade. However,
to continue this trend under physical limitations (e.g., power constraint), emerging architectures are based on mul-
ticore processors like homogeneous x86-based multicore CPUs, NVIDIA GPUs, and AMD Fusion and Intel MIC
architectures. Furthermore, leading high-performance computers are based on heterogeneous architecture consisting
of these different types of processors. For example, an SGI Altix UV 100 system at the National Institute for Com-
putational Sciences (NICS) consists of 1024 cores of Intel Nehalem EX processors, with 427TB of shared memory,

1This research was supported by DoE DE-SC0003852, DoE DE-SC0004983, and Georgia Institute of Technology RA241-G1 grants. We used
resources of the Keeneland Computing Facility at the Georgia Institute of Technology, which is supported by the National Science Foundation
under Contract OCI-0910735. We also thank NVIDIA and MATLAB for supporting our research efforts.

/ Procedia Computer Science 00 (2012) 1–10 2

coupled with 8 GPUs. Another example is the Keeneland system at the Georgia Institute of Technology, whose single
compute node has two six-core Intel Xeon processors and three NVIDIA GPUs. These different types of proces-
sors on the heterogeneous architectures are adapted for particular types of tasks. For instance, GPUs are designed
to maximize the throughput of multiple tasks, and they are particularly adapted to handle tasks that exhibits strong
data or thread-level parallelism. On the other hand, a CPU is designed to minimize the latency of a single task using
deep memory-hierarchy and instruction-level parallelism. To fully utilize the computing power of such architectures,
software must be re-designed to exploit the different performance strengths of different processors.

Linear Algebra PACKage (LAPACK) [1] is a set of dense linear algebra routines for a multicore, and is commonly
used in scientific and engineering simulations. LAPACK performs most of its computation using Basic Linear Algebra
Subroutines (BLAS) [2], which implements basic vector-vector, matrix-vector, and matrix-matrix operations, which
are respectively classified as BLAS-1, BLAS-2, and BLAS-3 operations. There are implementations of BLAS that
are optimized for specific multicore architectures.

To utilize the computing power of heterogeneous architectures, Matrix Algebra on GPU and Multicore Architec-
tures (MAGMA) [3] extends LAPACK routines using a hybrid programming paradigm. One important set of such
routines implement one-sided factorization algorithms (like LU, Cholesky, and QR factorizations), which consist of
sequences of two distinct phases: a panel factorization and submatrix update. Most of the computation in the subma-
trix update is performed using BLAS-3, which exhibits more data parallelism than BLAS-1 or BLAS-2 and is ideal
for running on GPUs. On the other hand, the panel factorization is mainly based on BLAS-1 and BLAS-2, and is
often faster on a CPU [4, 5]. Hence, the current version of MAGMA stores the whole coefficient matrix on a GPU and
uses the single GPU for the submatrix update, while a multicore CPU is used for the panel factorizations. Significant
speedups have been obtained using MAGMA over a vendor-optimized LAPACK [6].

In this paper, we extend the LU, Cholesky, and QR factorization algorithms of MAGMA to further exploit the
computing power of the heterogeneous architectures. We first describe our non-GPU-resident factorization algorithms
that store only a part of the matrix on the GPU at a time. We then extend the algorithms to use multiple GPUs attached
to the multicore. These extensions enable the factorization of a matrix that does not fit in the aggregated memory of
the multiple GPUs at once, and provide potential of fully utilizing the computing power of the architecture. Since data
movement is expensive on the current architecture, these algorithms are designed to minimize the data movement at
multiple levels. To demonstrate the effectiveness of these algorithms, we show their performance on a single compute
node of the Keeneland system.

The rest of the paper is organized as follows: In Sections 2 and 3, we first describe the one-sided factorization
algorithms of LAPACK and MAGMA, respectively. Then, in Sections 4 and 5, we respectively describe our non-
GPU-resident and multi-GPU factorization algorithms. The performance results are presented in Section 6, and in
Section 7, we conclude with final remarks.

2. Block-based factorization algorithms

In this section, we describe the one-sided factorization algorithms of LAPACK.

Right-looking LU and QR factorizations. An LU factorization of an m-by-n matrix A with partial pivoting is of the
form

PA = LU, (1)

where P is an m-by-m permutation matrix, L is an m-by-n unit lower-triangular matrix, and U is an n-by-n upper-
triangular matrix. The LAPACK routine xGETRF computes this LU factorization, where x can be either S, D, C, or
Z denoting either single, double, single-complex, or double-complex precision used for computing the factorization.
In LAPACK, all the matrices are stored in column-major.

The first step of xGETRF computes the factorization

P1A = P1

(
a1,1 a1,2:nb

a2:mb,1 a2:mb,2:nb

)
=

(
`1,1
`2:mb,1 I

) (
I

Â

) (
u1,1 u1,2:nb

I

)
, (2)

where P1 represents the pivoting for the first b columns of A; a1,1, `1,1, and u1,1 are the leading b-by-b submatrices of A,
L, and U, respectively; and mb and nb are the respective numbers of blocks in the row and column of A (i.e., mb = m

b

/ Procedia Computer Science 00 (2012) 1–10 3

and nb = n
b).2 This factorization (2) is computed by the following two-stage algorithm, where the corresponding

LAPACK or BLAS routines are shown in bold case:
1. Panel factorization. xGETRF2 computes an LU factorization of the leading m-by-b block column a:,1 of A

with partial pivoting; i.e.,

P1

(
a1,1

a2:nb,1

)
=

(
`1,1
`2:nb,1

) (
u1,1

)
,

where a:, j is the submatrix consisting of the ((j − 1)b + 1)-th through the (jb)-th columns of A and referred to
as the j-th panel of the factorization.

2. Submatrix update. The transformation computed by xGETRF2 is applied to the m-by-(n−b) trailing matrix a:,2:nb ,
which is the submatrix consisting of the (b + 1)-th through the n-th columns of A, i.e.,

(a) xLASWP applies the pivoting P1 to the trailing submatrix:(
a1,2:nb

a2:mb,2:nb

)
:= P1

(
a1,2:nb

a2:mb,2:nb

)
.

(b) xTRSM computes the off-diagonal blocks u1,2:nb of U:

(u1,2:nb) = (`11)−1(a1,2:nb).

(c) xGEMM updates the trailing submatrix a2:mb,2:nb :

Â := (a2:mb,2:nb) − (`2:mb,1)(u1,2:nb).

To compute the LU factorization of A, the transformation (2) is recursively applied to the (n−b)-by-(n−b) submatrix Â.
Notice that after the j-th panel factorization, the pivoting P j must be applied to both a:,1:(j−1) and a:,(j+1):nb . The
above algorithm is referred to as a right-looking algorithm since at each step, the panel is used to update the trailing
submatrix, which is on the right of the panel. The upper-triangular part of U and the strictly lower-triangular part of L
are stored in the corresponding parts of A. An additional min(n,m)-length vector is required to store the pivots P.

The QR factorization of an m-by-n matrix A is of the form

A = QR, (3)

where Q is an m-by-m orthonormal matrix, and R is an m-by-n upper-triangular matrix.
The LAPACK routine for computing the QR factorization is xGEQRF whose first step computes the factorization

A =

(
a1,1 a1,2:nb

a2:mb,1 a2:mb,2:nb

)
= H1

(
r1,1 r1,2:nb

0 Â

)
, (4)

where H1 is an m-by-m Householder matrix that transforms the 1-st panel a:,1 into a upper-triangular form (i.e., r1,1 is
upper triangular). This factorization is computed by the following two-stage right-looking algorithm:

1. Panel factorization. xGEQR2 computes the Householder matrix H1 such that

HT
1 (a:,1) =

(
r1,1
0

)
.

2. Submatrix update. The transformation computed by xGEQR2 is applied to the trailing submatrix a:,2:nb :
(a) DLARFT computes a block representation of the transformation H1, i.e.,

H1 = I − V1T1VH
1 ,

where V1 is an m-by-b matrix and T1 is a b-by-b upper-triangular matrix.
(b) DLARFB applies the transformation computed by xLARFT to the trailing submatrix:(

r1,2:nb

Â

)
:= (I − VTVH)

(
a1,2:nb

a2:mb,2:nb

)
. (5)

Then, the QR factorization of A is computed by recursively applying the transformation (4) to the submatrix Â.
The column reflectors V j are stored in the lower-triangular part of A, while R is stored in the upper-triangular part.
Additional m-by-b storage is required to store T j.

2To simplify our discussion, we assume that m and n are multiples of b, but the discussion can be easily extended to other cases.

/ Procedia Computer Science 00 (2012) 1–10 4

Left-looking Cholesky factorization. The Cholskey factorization of a Hermitian positive-definite matrix A is of the
form

A = RRH , (6)

where R is an n-by-n lower-triangular matrix with positive real diagonals. The LAPACK routine for computing the
Cholesky factor R is xPOTRF. At the j-th step of xPOTRF, the j-th block column r:, j of R is computed by updating
and factorizing the j-th panel a:, j as follows:

1. Panel update. The j-th panel a:, j is updated using the previously-computed columns r:,1, r:,2, . . . , r:, j−1 of R,
(a) xSYRK updates the diagonal block a j, j based on a symmetric low-rank updates,

(a j, j) := (a j, j) − (r j,1:(j−1))(r j,1:(j−1))H .

(b) xGEMM updates the off-diagonal blocks a(j+1):nb, j of a:, j,

(a(j+1):nb, j) := (a(j+1):nb, j) − (r(j+1):nb,1:(j−1))(r j,1:(j−1))H .

2. Panel factorization. The j-th panel a:, j is factorized,
(a) xPOTRF2 computes the Cholesky factor r j, j of the diagonal block a j, j,

(a j, j) = (r j, j)(r j, j)H .

(b) xTRSM computes the off-diagonal blocks r(j+1):nb, j,

(r(j+1):nb, j) = (r j, j)−1(a(j+1):nb, j).

This is known as a left-looking algorithm since at each step, the panel is updated using the previous columns, which
are on the left of the panel. If a right-looking algorithm is used, then to update the lower-triangular part of the trailing
matrix a2:nb,2:nb , xSYRK and xGEMM must be called on each block column of a2:nb,2:nb . On the other hand, the
left-looking algorithm updates the panel with single calls to xSYRK and xGEMM, and often exhibits more regular,
and hence efficient, data access. The Cholesky algorithm above references only the lower-triangular part of A, which
is overwritten by R. Alternatively, given the upper-triangular part of A, xPOTRF can compute RH by block-rows.

These LAPACK routines consist of block operations which can be performed using highly-tuned BLAS to improve
the data locality of accessing data through the memory hierarchy of a specific multicore architecture. In particular,
the panel factorizations are based on BLAS-1 or BLAS-2, while most of the computation in the submatrix or panel
updates is performed using BLAS-3.

3. One-sided factorizations on a multicore with a GPU

MAGMA extends the LAPACK routines to utilize the computing power of modern heterogeneous architectures.
It is based on a hybrid programming paradigm and exploits the different performance strengths of a CPU and a GPU.
For instance, during one-sided factorizations, the submatrix updates based on BLAS-3 exhibit strong data parallelism
and are ideal for performing on a GPU. On the other hand, panel factorizations are based on BLAS-1 and BLAS-2
and are often faster on a CPU. Hence, MAGMA stores the whole matrix A and updates its submatrix on the GPU
while the panel is copied to and factorized on the CPU. To be concrete, in this section, we outline the one-sided
factorization algorithms of MAGMA. The name of the MAGMA routine appends magma in front of that of the
corresponding LAPACK or BLAS routine (e.g., magma xGETRF for xGETRF). MAGMA uses the same matrix
storage as LAPACK and BLAS on the CPU (i.e., column-major), and a user can switch from LAPACK to MAGMA
by adding magma to the corresponding routine calls in most cases. Here, we focus on the amount of the data
communicated between the CPU and GPU since the communication can be expensive on the current architecture.

/ Procedia Computer Science 00 (2012) 1–10 5

Algorithm 3.1
1. copy A from CPU to GPU.
2. for j = 1, 2, . . . , nb do

a. use xGETRF to factorize panel
on CPU.

b. copy the panel from CPU to GPU.
c. apply pivoting to L on GPU.
d. use magma xGETRF to

compute u j,(j+1):nb on GPU.
e. use magma xGEMM to

update trailing submatrix on GPU.
f. copy a(j+1):nb , j+1 from GPU to CPU.
end for

3. copy LU factors from GPU to CPU.

(a) LU factorization.

Algorithm 3.3
1. copy A from CPU to GPU.
2. for j = 1, 2, . . . , nb do

a. copy r1:(j−1), j from GPU to CPU.
b. copy panel a j:nb , j from CPU to GPU.
c. use xGEQRF to factorize the panel

on CPU.
d. use xLARFT to compute T j and V j.
e. copy T j and V j from CPU to GPU.
f. use magma xLARFB to

apply the transformation on GPU.
end for

3. synchronize copying of R from step 2.a.

(b) QR factorization.

Algorithm 3.2
1. copy A from CPU to GPU.
2. for j = 1, 2, . . . , nb do

a. use magma xSYRK to
update a j, j on GPU.

b. copy a1:(j−1), j from GPU to CPU.
c. copy a j, j from GPU to CPU.
d. use magma xGEMM to

update a(j+1):nb , j on GPU.
e. use xPOTRF to compute r j, j

on CPU.
f. copy r j, j from CPU to GPU.
g. use magma xTRSM to

compute r(j+1):nb ,r on GPU.
end for

3. synchronize copying of R from step 2.b.
(c) Cholesky factorization.

Figure 1: MAGMA one-sided factorization algorithms.

LU and QR factorizations. The MAGMA routine for computing an LU factorization (1) of A is magma xGETRF
whose algorithm is outlined in Figure 1(a). This algorithm first copies the matrix A from the CPU to the GPU (step 1
of Algorithm 3.1). Then, at the beginning of each step, the current panel is factorized on the CPU (step 2.a) and copied
to the GPU (step 2.b) for the submatrix update (steps 2.d and 2.e). Once the whole A is factorized, the LU factors are
copied to the CPU (step 3). As in LAPACK, A is overwritten by its LU factors on both CPU and GPU. The algorithm
communicates total of 4mn− (n2 − nb) matrix elements between the GPU and CPU, where n2 − nb is the total number
of elements in the strictly-upper block triangular parts of the panels that are not copied between the CPU and GPU.

Since the panels are factorized on the CPU, if the whole panel a:, j is copied to the CPU at step 2.f of Algorithm 3.1,
then the final copying of LU factors to the CPU (step 3) can be avoided. The reason for having step 3 in Algorithm 3.1
is that the GPU is used to apply the pivoting to the previous columns of L (step 2.d). For an efficient data access for
applying the pivoting on the GPU, the matrix is stored in row-major on the GPU, and each thread swaps an element of
a row in parallel. On the other hand, the matrix is stored in column-major on the CPU to call xGETRF. This requires
us to transpose the matrix every time the matrix is copied between the GPU and CPU, but the overall performance
is improved [7]. Furthermore, the application of pivoting is overlapped with the copying of the panel to the GPU.
Finally, to overlap the copying of the panel to the CPU and its factorization with the submatrix update, a look-ahead
of depth one is implemented, i.e., when GPU is updating the trailing submatrix using the j-th panel, the (j + 1)-th
panel is asynchronously sent to the CPU as soon as it is updated with the j-th panel. Hence, the CPU does not wait
for the completion of the remaining trailing submatrix update before starting the (j + 1)-th panel factorization.

magma xGEQRF computes the QR factorization (3) of A as in Figure 1(b), which has the same algorithmic
flow as that of magma xGETRF in Figure 3(a). In comparison to magma xGETRF, magma xGEQRF copies the
additional nb elements of T j from the CPU to the GPU, which is used to apply the transformation (5) on the GPU
(step 2.f). On the other hand, once the panel is factorized on the CPU (step 2.c), it is not updated by the later steps.
Hence, at each step, the algorithm copies the whole panel to the CPU (steps 2.a and 2.b), and avoids the final copying
of the computed factors, which is needed by magma xGETRF (step 3 of Algorithm 3.1). To overlap this copying of
R to CPU with the proceeding steps, a designated stream is used, which is synchronized only at the end (step 3). The
total of 3mn − (n2 − 2nb) matrix elements are copied between the CPU and GPU by magma xGEQRF.

Cholesky factorization. Figure 1(c) shows the pesudocode of magma xPOTRF that computes the Cholesky factor R
of A. The algorithm first copies the lower-triangular part of A from the CPU to the GPU (step 1 of Algorithm 3.2).
Then, at the beginning of the j-th step, the j-th diagonal block a j j is updated on the GPU (step 2.a of Algorithm 3.2)
and copied to the CPU for the factorization (step 2.b). While a j, j is being copied to the CPU, the GPU updates the
off-diagonal blocks a(j+1):nb, j (step 2.c). When the CPU receives a j, j, it computes its Cholesky factor r j, j (step 2.d) and
copies it back to the GPU (step 2.e). Finally, r j, j is used to compute r(j+1):nb,r on the GPU (step 2.g). To avoid explicit
synchronization, r(j+1):nb,r is computed on the same GPU stream as that is used to send r j, j. Furthermore, similarly to
magma xGEQRF, to hide the time required to copy the computed R to the CPU, at the j-th step, magma xPOTRF

/ Procedia Computer Science 00 (2012) 1–10 6

Algorithm 4.1
for J = 1, 2, . . . , nB do

1. copy A:,J from CPU to GPU, and transpose it.
2. update A:,J with previous columns (left-looking).

a. for k = 0, 1, . . . , (J − 1)Bb do

b. apply pivoting Pk to A:,J .
c. copy previous columns `:,k and u:,k

from CPU to GPU.
d. use magma xTRSM and xGEMM to

update A:,J with `:,k and u:,k on GPU.
e. end for

3. use magma xGETRF gpu to factorize A:,J ; i.e.,
PJ A:,J = L:,JU:,J (right-looking).

4. copy the LU factors of A:,J from GPU to CPU.
end for

(a) LU factorization.

Algorithm 4.2
for J = 1, 2, . . . , nB do

1. copy AJ:nB ,J from CPU to GPU.
2. update AJ:nB ,J with previous columns (left-looking).

a. for k = 0, 1, . . . , (J − 1)Bb do

b. copy previous columns r(J−1)Bb:nb ,k
from CPU to GPU.

c. a update A:,J with r(J−1)Bb:nb ,k on GPU.
for ` = 0, 1, . . . Bb − 1

use magma xSYRK to update a(J)
`,`

and xGEMM to update a(J)
`+1:nb ,`

end for

d. end for

3. use magma xPOTRF gpu to factorize A:,J ; i.e.,
AJ:nB,J = RJ:nB ,1:JRH

J,J (left-looking).
4. copy A:,J from GPU to CPU.
end for

(b) Cholesky factorization.

Figure 2: non-GPU-resident factorization algorithms.

sends the already-computed off-diagonal blocks r j,1:(j−1) of R to the CPU through a designated stream (step 2.b). Only
when the whole A is factorized, we synchronize the stream (step 3).

The j-th step of magma xPOTRF updates only the j-th panel and has much less parallelism to be exploited on
the GPU than that of magma xGETRF. However, the CPU is used only to factorize the diagonal block, and the
ratio of the computation performed on the GPU over that on the CPU is greater in magma xPOTRF. Even though
magma xGETRF overlaps the panel factorization with the submatrix update, in some cases, the GPU is idle waiting
for the completion of the panel factorization on the CPU. As a result, the panel factorization often becomes the
bottleneck. This is especially true when the ratio of the computation required by the CPU over that required by the
GPU increases at a later step of the factorization and with more GPUs used to update the submatrix (see Section 5),
Hence, magma xPOTRF may obtain greater performance than magma xGETRF on a large matrix.

MAGMA performs most of operations on the CPU and GPU through LAPACK and MAGMA BLAS [8] that are
optimized for a specific multi-core CPU and GPU architectures, respectively. However, the whole matrix A must be
stored on the GPU, and the size of A that can be factorized by MAGMA is limited by the amount of the memory
available on the GPU. To overcome this limitation, in the next two sections, we respectively describe our non-GPU-
resident and multi-GPU factorization algorithms that factorize a submatrix of A at a time and use multiple GPUs
attached to a multicore.

4. Non-GPU-resident factorization algorithms

In this section, we describe our non-GPU-resident factorization algorithms which factorize a part of a matrix A on
the GPU at a time and enable the factorization of A that is too large to fit in a GPU’s memory at once. The J-th step
of the algorithm consists of the following four stages: 1) copy from the CPU to the GPU the m-by-B submatrix A:,J
consisting of the ((J − 1)B + 1)-th through the (jB)-th column of A, 2) update A:,J with the previously-factorized
columns of A, 3) use the standard MAGMA algorithms in Section 3 to factorize A:,J , and 4) copy A:,J back to the
CPU. In our current implementation, the algorithms dynamically select B as the maximum number of columns of A
that can fit in the GPU’s memory, but B can be a user-specified parameter.

LU and QR factorizations. The new MAGMA routine magma xGETRF ngr implements a non-GPU-resident LU
factorization algorithm. The pseudocode of the algorithm is shown in Figure 2(a), where nB is the number of subma-
trices in A and Bb is the number of block columns in the submatrix (i.e., nB = n

B and Bb = B
b).3 To copy and transpose

3Our analysis assumes n is a multiple of B. If n is not a multiple of B, then in our implementation, the first nB − 1 submatrices contain B
columns, while the last submatrix contains n − (nB − 1)B columns.

/ Procedia Computer Science 00 (2012) 1–10 7

A:,J on the GPU (step 1), two GPU streams and two buffers of size m-by-b are alternately used such that transposing
the first block column on the GPU is overlapped with copying the second block column to the GPU. In comparison
to copying the entire A:,J to the GPU and then transposing it, our incremental copy-and-transpose algorithm reduces
the size of the buffer, allowing a larger value of B, and is shown to be more efficient. Then, the current submatrices
are updated using the previous submatrices (step 2). Finally, the routine magma xGETRF gpu takes AJ:nB,J , which
is stored in row-major on the GPU, and computes its LU factors using the algorithm in Section 3 (step 3).

Algorithm 4.1 does not apply the pivoting PJ to the previously-computed submatrices L:,1, L:,2, . . . , L:,J−1 of L.
There are two approaches to apply the pivoting. The first approach applies PJ to the previous submatrices on the
CPU. This computes the LU factors which are equivalent to the ones computed by LAPACK, and the LAPACK
routine xGETRS can be used for the forward and backward substitutions. The second approach applies the pivoting
to the right-hand-sides (RHSs) during the forward substitution. This is the approach used in software packages like
LINPACK [9] and PLASMA [10]. When the number of RHSs is relatively small, the second approach may be more
efficient than the first approach. However, LAPACK does not provide a routine that alternately applies the pivoting and
substitution to RHSs, and a new routine must be included in MAGMA. Finally, as discussed in Section 2, if the whole
panel is copied to the CPU at each step of magma xGETRF gpu (step 2.f of Algorithm 3.1), then the final copying of
LU factors to the CPU (step 5 of Algorithm 4.1) can be avoided. However, the pivoting for each block column of L:,J
must be applied to the previously-computed columns of L:,J on the CPU. At the j-th step of magma xGETRF ngr,
the application of the j-th pivoting to the previous columns of L:,J on the CPU might be overlapped with the trailing
submatrix update on the GPU. However, as j increases, the pivoting must be applied to more blocks in the j-th block
row of L:,J , while the computation required for the submatrix update reduces. Hence, especially when multiple GPUs
are used to update the submatrix, it becomes difficult to hide the time to apply the pivoting on the CPU.

The total number of matrix elements copied between the CPU and GPU by Algorithm 4.1 is

4mn − (n2 − nb) +

nB∑
J=1

(J − 1)mB =

(
4 +

nB − 1
2

)
mn − n2 + nb. (7)

If the final copying of the LU factors to the CPU is avoided, then the number of copied elements is reduced by n2+nb
2 .

Note that the number of submatrices, nB, appears in (7), but the block size B does not. Hence, the total communication
volume is minimized by setting B to be the maximum number of columns of A, which can fit in the GPU’s memory.4

The routine magma xGEQRF ngr implements our non-GPU resident QR factorization algorithm. Since both
magma xGEQRF ngr and magma xGETRF ngr are right-looking algorithms, magma xGEQRF ngr follows the
same algorithmic flow as Algorithm 4.1. In comparison to magma xGETRF ngr, magma xGEQRF ngr copies
from the CPU to the GPU extra matrix elements of triangular factors T j of the previous submatrices, which are then
used to update the current submatrix. Hence, the total number of matrix elements copied between the CPU and GPU
by magma xGEQRF ngr is given by

3mn − (n2 − 2nbb2) +

nB∑
J=1

(J − 1)(m + b)B =

(
3 +

nB − 1
2

)
mn − n2 +

nB + 3
2

nb.

In order to reduce the memory requirement, the triangular factors T j of the previous block reflectors are recomputed
on the CPU at each J-th step of the algorithm.

Cholesky factorization. Figure 2(b) shows the pseudocode of our non-GPU-resident algorithm that computes the
Cholesky factor R and is implemented in the routine magma xPOTRF ngr. In the pseudocode, to update only
the lower-triangular part of A, each block-column of A:,J is updated by a previously-computed block column of L
at a time (step 2.c), where a(J)

i, j is the (i, j)-th block of AJ:nB,J (i.e., a(J)
i, j = a(J−1)Bb+i,(J−1)Bb+ j). Then, the routine

magma xPOTRF gpu uses the algorithm in Section 3 to compute the Cholesky factor of the submatrix AJ:nB,J which
is already on the GPU.

4If n is not a multiple of B, then in our implementation, the first nB − 1 submatrices have B columns, and the last submatrix contains the
remaining n − (nB − 1)B columns. Hence, the formula (7) can be easily extended to the case where n is not a multiple of B. However, the total
communication volume between the CPU and GPU may be reduced if the first submatrix contains these remaining columns instead of the last
submatrix.

/ Procedia Computer Science 00 (2012) 1–10 8

������
������
������
������

������
������
������
������

1) _xTRSM

2) _xGEMM

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����������

�������
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

����������

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������

������
������
������

1) xGETRF

2) _xTRSM

3) _xGEMM

(a) LU factorization.

�����
�����
�����
�����

����
����
����

����
����
����

��������������

��������������

����
����
����
����1) _xGEMM 2) _xSYRK

3) _xGEMM

��
��
��
��

������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
����

���
���
���
��������

������
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

2) xPOTRF

4) xTRSM

1) xSYRK

3) xGEMM

(b) Cholesky factorization.

Figure 3: multi-GPU factorization in non-GPU-resident algorithm. For each figure (a) or (b), the left figure shows the updates with the previous
columns, and the right figure shows the factorization of the submatrix. MAGMA routines are identified by the underscore, , in front of their names.

At step 1 of Algorithm 4.2, a single stream is used to asynchronously send the lower-triangular part of A:,J to the
GPU one block-column at a time. After all the columns are sent, the stream is synchronized before the submatrix
update with the previous columns (step 2.c). The total number of matrix elements copied between the CPU and GPU
is given by

n2 + 3nb +

nB−1∑
J=0

JBb−1∑
j=0

b(n − jb) = n2 + 3nb +

(
nB +

Bb
2

) nB−1∑
J=0

J −
B2

2

nB−1∑
J=0

J2

=

(
nB

2
+

1
3

)
n2 +

(
B
12

+
11b
4

)
n.

At the J-th step, only the ((J − 1)Bb)-th through the nb-th block rows of L:,1:(J−1) are copied to the GPU.

5. Multiple-GPU factorization algorithms

In this section, we describe our multi-GPU factorization algorithms that take advantage of multiple GPUs attached
to a multicore. In these algorithms, as before, the panel is factorized on the CPU, but the submatrix is now updated
using multiple GPUs. For the discussion, here, we use Ā to denote the matrix that is factorized by our multi-GPU
algorithm. These multi-GPU algorithms are used to factorize the submatrix AJ:nB,J in the non-GPU-resident algorithms
in Section 4; i.e., Ā = AJ:nB,J .

LU and QR factorizations. magma xGETRF mgpu implements our multi-GPU LU factorization algorithm that
distributes the matrix Ā in a column-wise 1D block-cyclic layout. Figure 3(a) illustrates the algorithm. At the j-th
step, the GPU owning the (j + 1)-th panel performs the look-ahead and asynchronously sends the next panel to the
CPU for the factorization (steps 2.e and 2.f of Algorithm 3.1). After the panel factorization is completed on the
CPU, the panel is asynchronously sent to all the GPUs (steps 2.b and 2.c). Then, each GPU applies the pivoting and
updates their local trailing submatrix independently from each other (steps 2.d, 2.e and 2.f). Only the GPU owning the
(j + 1)-th block column of Ā can store the panel in its local storage of Ā, and the other GPUs store the panel in their
local buffers. We alternately use two buffers to store the panels on each GPU so that copying of the next panel can be
started before the completion of the submatrix update with the current panel. We also use GPU streams to maximize
the parallelism and to overlap communications and computations. For instance, during the look-ahead, one stream is
used to update the next block column, and another is used to update the remaining trailing submatrix.

To update the current submatrix with the previous submatrices in our non-GPU-resident LU algorithm (step 3 of
Algorithm 4.1), each block column of the previous submatrices is first sent to all the GPUs. Then, the GPUs apply the
pivoting and perform the update with the block column to their local submatrices in parallel. The copying of previous
block to the GPU is overlapped with the application of the pivoting. As before, our multi-GPU QR factorization
algorithm follows the same algorithmic flow as our multi-GPU LU factorization algorithm.

/ Procedia Computer Science 00 (2012) 1–10 9

0 1 2 3 4 5

x 10
4

0

100

200

300

400

500

600

700

800

900

Matrix Size

G
fl
o

p
/s

DGETRF

1 GPU

2 GPUs

3 GPUs

35840

30720
27136 23808

18176 15360 13568 11776

0 1 2 3 4 5

x 10
4

0

100

200

300

400

500

600

700

800

900

Matrix Size

G
fl
o

p
/s

DPOTRF

1 GPU

2 GPUs

3 GPUs 36352

27136 2432031232

1356818176 15616 12032

0 0.5 1 1.5 2 2.5 3

x 10
4

100

200

300

400

500

600

700

800

Matrix Size

G
fl
o

p
/s

DGEQRF

1 GPU

2 GPUs

3 GPUs

Figure 4: Performance of non-GPU resident multi-GPU factorization algorithms.

Cholesky factorization. Since only one block-column is updated and factorized at each step of the right-looking
Cholesky factorization, our multi-GPU Cholesky algorithm distributes the matrix Ā among GPUs in a row-wise 1D
block-cyclic layout (see Figure 3(b)). At the beginning of the j-th step, the GPU owning the j-th diagonal block
updates the diagonal block (step 2.a of Algorithm 3.2). Since all the blocks required for the diagonal update (i.e., those
in the j-th block row) are on this GPU, this step does not require any communication. Then, the updated diagonal
block is sent to the CPU for the factorization (steps 2.b and then 2.d). After the completion of the factorization, the
resulting Cholesky factor is asynchronously sent to all the GPUs (step 2.e).

Since the off-diagonal blocks r(j+1):n j, j of the j-th block column is distributed among multiple GPUs, each GPU
requires the j-th block row r j,1:(j−1) to update r(j+1):n j, j (step 2.c). Hence, when the block r j, j−1 is computed at the end of
the (j− 1)-th step (step 2.f), the block row r j,1:(j−1) is sent to the CPU. Then, at the beginning of the j-th step, the CPU
waits for this j-th block row and broadcasts to all the GPUs (except to the one owning the j-th row). This copying
of the block row to the GPUs is overlapped with the diagonal updates on the GPU. Furthermore, updating of the
off-diagonal block is overlapped with the copying of the diagonal block to the CPU, panel factorization, and copying
of the Cholesky factor back to the GPUs. Once a GPU receives the Cholesky factor, it independently computes the
off-diagonal blocks of r:, j (step 2.f).

To use multiple GPUs in our non-GPU-resident Cholesky algorithm, each block column of the diagonal subma-
trix a(J)

`,`
is updated at a time using magma xSYRK on the diagonal block and magma xGEMM on the off-diagonal

block (step 2.c of Algorithm 2.c). Once the diagonal submatrix is updated, the remaining part of Ā can be updated
with a single call to magma xGEMM.

6. Performance results

Here, we show the performance of the proposed algorithms on a compute node of the Keeneland system [11]. For
our experiments, we used all of the twelve Intel Xeon 5660 processors and three Tesla M2070 GPUs available on a
single compute node. Even though each GPU has only 6GB of memory, our non-GPU-resident algorithms enable the
factorization of the matrix that does not fit in the aggregated GPUs’ memory. However, total page-cache available
on a CPU, which can be allocated using CudaHostAlloc, is 18GB, and the largest matrix that can be stored in the
cache-page had the dimension of about 4500. Figure 4 shows the Gflop/s obtained by our algorithms in double preci-
sion, where the user has provided the matrix A stored on the CPU and allocated the memory to store A on the GPUs.
The numbers above markers are the numbers of the columns in the submatrices, nB, used by our non-GPU-resident
algorithms (i.e., for the markers without the numbers, the whole matrix fit in the GPUs’ memory). We see that in
comparison to using one GPU (equivalent to the released version of MAGMA), for DGETRF, DPOTRF, and DGE-
QRF, our multi-GPU algorithms respectively obtained the speedups of up to 2.0, 1.9, and 2.0 using two GPUs, and
the speedups of up to 2.9, 2.6, and 2.9 using three GPUs. Furthermore, our non-GPU-resident algorithms maintained
the high-performance of our multi-GPU algorithms even though they had to reload the previous submatrices to GPUs
to factor each submatrix.

Finally, Figure 5 shows the trace of our multi-GPU LU factorization. The pink trace reprsents the panel factor-
ization on the CPU (step 2.a of Algorithm 3.1). The remaining three pairs of traces represent the submatrix updates

/ Procedia Computer Science 00 (2012) 1–10 10

Figure 5: Trace of multi-GPU LU algorithm (n = 10, 000).

using two streams on each of the three GPUs (one for look-aheads and the other for remaining submatrix updates).
Green, blue, and red traces represent steps 2.c, 2.d, and 2.e of Algorithm 3.1, respectively, while the orange trace is
the copying of the panels between the CPU and GPUs. Using two streams, copying the panel was overlapped with
the remaining submatrix updates. Furthermore, initially, the panel factorization was completely hidden behind the
submatrix updates, while at a later step, it was more expensive than the submatrix update, and the GPUs had to wait
for the completion of the panel factorization. For a larger matrix, the panel factorization can be hidden behind the
submatrix updates for a greater number of steps.

7. Conclusion

We described a non-GPU-resident and multi-GPU extensions of one-sided factorization algorithms of MAGMA.
Our performance results on the Keeneland system have shown that these algorithms can factorizes a matrix which does
not fit in the aggregated memory of multiple GPUs, and provide the potential of fully utilizing the computing power of
a compute node. We are currently studying several techniques to further optimize the performance of the algorithms.
For instance, in many cases, especially when multiple GPUs are used, panel factorization on the CPU can be the
bottleneck. To overcome this, we are investigating the integration of panel factorization algorithms (e.g., [12, 13]),
which are more scalable than that of LAPACK on a multicore. Other optimization techniques include look-ahead of
depth greater than one on the CPU to reduce the idling time of the CPU, and usage of GPU streams to eliminate explicit
synchronizations. We are also extending two-sided factorization algorithms of MAGMA to use multiple GPUs.

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney,
D. Sorensen, LAPACK Users’ guide, 3rd Edition, Society for Industrial and Applied Mathematics, 1999.

[2] C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh, Basic Linear Algebra Subprograms for FORTRAN usage, ACM Trans. Math. Soft. 5
(1979) 308–323.

[3] S. Tomov, R. Nath, P. Du, J. Dongarra, MAGMA version Users’ guide, available at http://icl.eecs.utk.edu/magma/ (2009).
[4] M. Baboulin, J. Dongarra, S. Tomov, Some issues in dense linear algebra for multicore and special purpose architectures, Tech. Rep. UT-CS-

08-200, University of Tennessee (2008).
[5] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, E. S. Quintana-Orti, Solving dense linear systems on graphics processors, in: Euro-Par 2008

Parallel Processing, Vol. 5168 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2008, pp. 739–748.
[6] S. Tomov, R. Nath, H. Ltaief, J. Dongarra, Dense linear algebra solvers for multicore with GPU accelerators, in: Proceedings of IEEE

International Parallel and Distributed Processing Symposium (IPDPS), 2010.
[7] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, J. Langou, H. Ltaief, S. Tomov, LU factorization for accelerator-based systems, in: 9th

ACS/IEEE International Conference on Computer Systems and Applications (AICCSA 11), 2011.
[8] R. Nath, S. Tomov, J. Dongarra, An improved magma gemm for fermi graphics processing units, Int. J. High Perform. Comput. Appl. 24

(2010) 511–515.
[9] J. Dongarra, J. Bunch, C. Moler, G. Stewart, LINPACK Users’ Guide, Society for Industrial and Applied Mathematics, 1979.

[10] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, J. Langou, H. Ltaief, P. Luszczek, A. YarKhan, PLASMA version Users’ guide,
available at http://icl.eecs.utk.edu/plasma/.

[11] J. Vetter, R. Glassbrook, J. Dongarra, K. Schwan, B. Loftis, S. McNally, J. Meredith, J. Rogers, P. Roth, K. Spafford, S. Yalamanchili,
Keeneland: Bringing heterogeneous gpu computing to the computational science community, IEEE Computing in Science and Engineering
13 (2011) 90–5, available also at http://dx.doi.org/10.1109/MCSE.2011.83.

[12] M. Horton, S. Tomov, J. Dongarra, A class of hybrid lapack algorithms for multicore and gpu architectures, in: Proceedings of Symposium
for Application Accelerators in High Performance Computing (SAAHPC), 2011.

[13] J. Dongarra, M. Faverge, H. Ltaief, P. Luszczek, Achieving numerical accuracy and high performance using recursive tile LU factorization,
Tech. rep., Innovative Computing Laboratory, University of Tennessee (2011).

