
An Introduction to the MPI Standard

Jack J� Dongarra

University of Tennessee and Oak Ridge National Laboratory

Steve W� Otto

Oregon Graduate Institute of Science � Technology

Marc Snir

IBM� T�J� Watson Research Center

David Walker

Oak Ridge National Laboratory

October ��� ����

�



Contents

� Introduction �

� Overview �

� Goals �

� What MPI Does and Does Not Specify �

� Point to Point Communication �

� User�de�ned Datatypes �

	 Collective Communications 


� Groups� Contexts� and Communicators ��


 Conclusions ��

A Sidebar� Implementations of MPI ��

B Sidebar� More Information on MPI� Assistance ��

C Sidebar� Library Communicator and Caching �	

�



� Introduction

The Message Passing Interface �MPI� is a portable message�passing stan�
dard that facilitates the development of parallel applications and libraries�
The standard de�nes the syntax and semantics of a core of library routines
useful to a wide range of users writing portable message�passing programs
in Fortran �� or C� MPI also forms a possible target for compilers of lan�
guages such as High Performance Fortran �	
� Commercial and free� public�
domain implementations of MPI already exist �see sidebar A�� These run on
both tightly�coupled� massively�parallel machines �MPPs�� and on networks
of workstations �NOWs��

The MPI standard was developed over a year of intensive meetings and
involved over 	� people from approximately 
� organizations� mainly from
the United States and Europe� Meeting attendance was open to the tech�
nical community� The meets where announced on various bulletin boards
and mailing lists� MPI operated on a very tight budget �in reality� it had
no budget when the �rst meeting was announced�� The Advanced Research
Projects Agency �ARPA� through the National Science Foundation �NSF�
have provided partial travel support for the U�S� academic participants� Sup�
port for several European participants was provided by the European Com�
mission through the ESPRIT project� Formal voting at the meetings was
done by a single vote per organization� In order to vote� the organization
must have had a representative at two of the last three meetings� In order
to give guidance for preparation of formal proposals� informal votes where
often taken involving everyone present� Many vendors of concurrent com�
puters were involved� along with researchers from universities� government
laboratories� and industry� This e�ort culminated in the publication of the
MPI speci�cation ��
� Other sources of information on MPI are available ��

or are under development �see sidebar B��

Researchers incorporated into MPI the most useful features of several
systems� rather than choosing one system to adopt as the standard� MPI
has roots in PVM ��� �
� Express ���
� P
 ��
� Zipcode ���
� and Parmacs ��
�
and in systems sold by IBM� Intel� Meiko� Cray Research� and Ncube�

�



� Overview

MPI is used to specify the communication among a set of processes form�
ing a concurrent program� The message�passing paradigm is attractive be�
cause of its wide portability and scalability� It is easily compatible with
both distributed�memory multicomputers and shared�memory multiproces�
sors� NOWs� and combinations of these elements� Message passing will not be
made obsolete by increases in network speeds or by architectures combining
shared and distributed�memory components�

Though much of MPI serves to standardize the �common practice� of
existing systems� MPI has gone further and de�ned advanced features such as
user�de�ned datatypes� persistent communication ports� powerful collective
communication operations� and scoping mechanisms for communication� No
previous system incorporated all these features�

� Goals

In considering MPI� it is important to understand the goals of the standard�
ization e�ort� the constraints such an endeavor implies� and the practical
constraints under which the committee operated� Some of these are listed
below�

� Design an application programming interface �not necessarily for com�
pilers or a system implementation library��

� Allow e�cient communication� Avoid memory�to�memory copying and
allow overlap of computation and communication and o�oad to com�
munication co�processor� where available�

� Allow for implementations that can be used in a heterogeneous envi�
ronment�

� Allow convenient C and Fortran �� bindings for the interface�

� Assume a reliable communication interface� the user need not cope with
communication failures� Such failures are dealt with by the underlying
communication subsystem�






� De�ne an interface that is not too di�erent from current practice� such
as PVM� NX� Express� p
� etc�� and provides extensions that allow
greater �exibility�

� De�ne an interface that can be implemented on many vendor�s plat�
forms� with no signi�cant changes in the underlying communication
and system software�

� Semantics of the interface should be language independent�

� The interface should be designed to allow for thread�safety�

� What MPI Does and Does Not Specify

The standard speci�es the form of the following�

� Point to point communications� that is� messages between pairs of pro�
cesses�

� Collective communications� communication or synchronization opera�
tions that involve entire groups of processes�

� Process groups� how they are used and manipulated�

� Communicators� a mechanism for providing separate communication
scopes for modules or libraries� Each communicator speci�es a dis�
tinct name space for processes� a distinct communication context for
messages and may carry additional� scope�speci�c information�

� Process topologies� functions that allow the convenient manipulation of
process labels� when the processes are regarded as forming a particular
topology� such as a Cartesian grid�

� Bindings for Fortran �� and ANSI C� MPI was designed so that versions
of it in both C and Fortran had straightforward syntax� In fact� the
detailed form of the interface in these two languages is speci�ed and is
part of the standard�

�



� Pro�ling interface� the interface is designed so that runtime pro�ling
or performance�monitoring tools can be joined to the message�passing
system� It is not necessary to have access to the MPI source to do this
and hence� portable pro�ling systems can be easily constructed�

� Environmentalmanagement and inquiry functions� these functions give
a portable timer� some system�querying capabilities� and the ability to
in�uence error behavior and error�handling functions�

There are many relevant aspects of parallel programming not covered by the
standard� This is also an important list and we give it below�

� shared�memory operations

� interrupt�driven messages� remote execution� and active messages

� program construction tools

� debugging support

� thread support

� process or task management

� input and output functions

The main reason for not addressing these issues was the time constraint self�
imposed by the committee� and the feeling that many of them are system
dependent� A next set of meetings focused on extending MPI will begin soon�

The remainder of this article discusses some of the more interesting fea�
tures of MPI�

� Point to Point Communication

MPI provides a set of send and receive functions that allow the communica�
tion of typed data with an associated tag� Typing of the message contents
is necessary for heterogeneous support � the type information is needed
so that correct data representation conversions can be performed as data is
sent from one architecture to another� The tag allows selectivity of messages

�



at the receiving end� one can receive on a particular tag� or one can wild�
card this quantity� allowing reception of messages with any tag� Message
selectivity on the source process of the message is also provided�

A fragment of code appears in �gure � for the example of process � send�
ing a message to process �� This code executes on both process � and process
�� The example sends a character string� MPI COMM WORLD is a default com�

municator provided upon start�up� Among other things� a communicator
serves to de�ne the allowed set of processes involved in a communication
operation� Process ranks are integers� serve to label processes� and are dis�
covered by inquiry to a communicator �see the call to MPI Comm rank����
The typing of the communication is evident by the speci�cation of MPI CHAR�
The receiving process speci�ed that the incoming data was to be placed in
msg and that it had a maximum size of �� elements� of type MPI CHAR� The
variable status� set by MPI Recv��� gives information on the source and tag
of the message and how many elements were actually received� For example�
the receiver can examine this variable to �nd out the actual length of the
character string received�

This example employed blocking send and receive functions� The send
call blocks until the send bu�er can be reclaimed �i�e�� after the send� process
� can safely over�write the contents of msg�� Similarly� the receive function
blocks until the receive bu�er actually contains the contents of the message�
MPI also provides non�blocking send and receive functions that allow the
possible overlap of message transmittal with computation� or the overlap
of multiple message transmittals with one�another� Non�blocking functions
always come in two parts� the posting functions� which begin the requested
operation� and the test�for�completion functions� which allow the application
program to discover whether the requested operation has completed�

This seems like rather a lot to say about a simple transmittal of data from
one process to another� but there is even more� To understand why� we exam�
ine two aspects of the communication� the semantics of the communication
primitives� and the underlying protocols that implement them� Consider the
previous example� on process �� after the blocking send has completed� The
question arises� if the send has completed� does this tell us anything about
the receiving process� Can we know that the receive has �nished� or even�
that it has begun�

Such questions of semantics are related to the nature of the underlying
protocol implementing the operations� If one wishes to implement a protocol

�



minimizing the copying and bu�ering of data� the most natural semantics
might be the �rendezvous� version� where completion of the send implies the
receive has been initiated �at least�� On the other hand� a protocol that
attempts to block processes for the minimal amount of time will necessarily
end up doing more bu�ering and copying of data�

The trouble is� one choice of semantics is not best for all applications�
nor is it best for all architectures� Because the primary goal of MPI is to
standardize the operations� yet not sacri�ce performance� the decision was
made to include all the major choices for point to point semantics in the
standard�

An additional� complicating factor is that the amount of space available
for bu�ering is always �nite� On some systems the amount of space available
for bu�ering may be small or non�existent� For this reason� MPI does not
mandate a minimal amount of bu�ering� and the standard is very careful
about the semantics it requires�

The above complexities are manifested in MPI by the existence ofmodes

for point to point communication� Both blocking and non�blocking commu�
nications have modes� The mode allows one to choose the semantics of the
send operation and� in e�ect� to in�uence the underlying protocol of the
transfer of data�

In standard mode the completion of the send does not necessarily mean
that the matching receive has started� and no assumption should be made
in the application program about whether the out�going data is bu�ered by
MPI� In bu
ered mode the user can guarantee that a certain amount of
bu�ering space is available� The catch is that the space must be explicitly
provided by the application program� In synchronous mode a rendezvous
semantics between sender and receiver is used� Finally� there is ready mode�
This allows the user to exploit extra knowledge to simplify the protocol
and potentially achieve higher performance� In a ready�mode send� the user
asserts that the matching receive already has been posted�

� User�de�ned Datatypes

All MPI communication functions take a datatype argument� In the simplest
case this will be a primitive type� such as an integer or �oating�point number�
An important and powerful generalization results by allowing user�de�ned

	



types wherever the primitive types can occur� These are not �types� as far as
the programming language is concerned� They are only �types� in that MPI
is made aware of them through the use of type�constructor functions� and
they describe the layout� in memory� of sets of primitive types� Through user�
de�ned types� MPI supports the communication of complex data structures
such as array sections and structures containing combinations of primitive
datatypes� Figure � gives an example of using a user�de�ned type to send
the upper�triangular part of a matrix�

� Collective Communications

Collective communications transmit data among all the processes speci�ed
by a communicator object� One function� the barrier� serves to synchronize
processes without passing data� Brie�y� MPI provides the following collective
communication functions�

� barrier synchronization across all processes

� broadcast from one process to all

� gather data from all to one

� scatter data from one to all

� allgather� like a gather� followed by a broadcast of the gather output

� alltoall� like a set of gathers in which each process receives a distinct
result

� global reduction operations such as sum� max� min� and user�de�ned
functions

� scan �or pre�x� across processes

Figure � gives a pictorial representation of broadcast� scatter� gather� all�
gather� and alltoall� Many of the collective functions also have �vector�
variants� whereby di�erent amounts of data can be sent to or received from
di�erent processes� For these� the simple picture of �gure � becomes more
complex�

�



The syntax and semantics of the MPI collective functions was designed
to be consistent with point to point communications� However� to keep
the number of functions and their argument lists to a reasonable level of
complexity� the MPI committee made collective functions more restrictive
than the point to point functions� in several ways� One restriction is that�
in contrast to point to point communication� the amount of data sent must
exactly match the amount of data speci�ed by the receiver� This was done
to avoid the need for an array of status variables as an argument to the
functions� which would otherwise be necessary for the receiver to discover
the amount of data actually received�

A major simpli�cation is that collective functions come in blocking ver�
sions only� Though a standing joke at committee meetings concerned the
�non�blocking barrier�� such functions can be quite useful� and may be in�
cluded in a future version of MPI�

A �nal simpli�cation of collective functions concerns modes� Collective
functions come in only one mode� and this mode may be regarded as anal�
ogous to the standard mode of point to point� Speci�cally� the semantics
are as follows� A collective function �on a given process� can return as soon
as its participation in the overall communication is complete� As usual� the
completion indicates that the caller is now free to access and modify locations
in the communication bu�er� It does not indicate that other processes have
completed� or even started� the operation� Thus� a collective communication
may� or may not� have the e�ect of synchronizing all calling processes� The
barrier� of course� is the exception to this statement�

The choice of semantics was done so as to allow a variety of implementa�
tions�

The user of MPI must keep these issues in mind� For example� even
though a particular implementation of MPI may provide a broadcast with the
side�e�ect of synchronization �the standard allows this�� the standard does
not require this� and hence� any program that relies on the synchronization
will be non�portable� On the other hand� a correct and portable program
must allow a collective function to be synchronizing� Though one should not
rely on synchronization side�e�ects� one must program so as to allow for it�

Though these issues and statements may seem unusually obscure� they
are merely a consequence of the desire of MPI to�

�Of course the non�blocking barrier would block at the test�for�completion call�

��



� allow e�cient implementations on a variety of architectures� and�

� be clear about exactly what is� and what is not� guaranteed by the
standard�

	 Groups
 Contexts
 and Communicators

A key feature needed to support the creation of robust� parallel libraries is
to guarantee that communication within a library routine does not con�ict
with communication extraneous to the routine� The concepts encapsulated
by an MPI communicator provide this support�

A communicator is a data object that speci�es the scope of a commu�
nication operation� that is� the group of processes involved and the commu�
nication context� Contexts partition the communication space� A message
sent in one context cannot be received in another context� Process ranks are
interpreted with respect to the process group associated with a communica�
tor� MPI applications begin with a default communicator� MPI COMM WORLD�
which has as process group the entire set of processes �of this parallel job��
New communicators are created from existing communicators and the cre�
ation of a communicator is a collective operation�

Communicators are especially important for the design of parallel software
libraries� Suppose we have a parallel� matrix multiplication routine as a
member of a library� We would like to allow distinct subgroups of processes
to perform di�erent matrix multiplications concurrently� A communicator
provides a convenient mechanism for passing into the library routine the
group of processes involved� and within the routine� process ranks will be
interpreted relative to this group� The grouping and labeling mechanisms
provided by communicators are useful� and communicators will typically be
passed into library routines that perform internal communications�

Such library routines can also create their own� unique communicator for
internal use� For example� consider an application in which process � posts
a wildcarded� non�blocking receive just before entry to a library routine�
Such �promiscuous� posting of receives is a common technique for increasing
performance� Here� if an internal communicator is not created� incorrect
behavior could result since the receive may be satis�ed by a message sent
by process � from within the library routine� if process � invokes the library

��



ahead of process �� Another example is one where a process sends a message
before entry into a library routine� but the destination process does not post
the matching receive until after exiting the library routine� In this case� the
message may be received� incorrectly� within the library routine�

These problems are avoided by proper design and usage of parallel li�
braries� One workable design is for the application program to pass com�
municators into the library routine that speci�es the group and ensures a
safe context� Another design has the library create a �hidden� and unique
communicator that is set up in a library initialization call� again leading to
correct partitioning of the message space between application and library�

Sidebar C shows how one might implement the second type of design�
Some thought shows that� as one creates separate communicators for li�
braries� it is convenient to associate these new communicators with the old
communicators from which they were derived� The MPI caching mechanism
provides a way to set up such an association� Though one can associate ar�
bitrary objects with communicators using caching� the ability to do this for
library�internal communicators is one of the most important uses of caching�

� Conclusions

A pleasant surprise for participants in the MPI e�ort was the interesting
intellectual issues that arose� This article has concentrated on some of these
interesting and di�cult issues� but for most cases� programming in MPI is
straightforward and is similar to programming with other message�passing
interfaces�

MPI does not claim to be the de�nitive answer to all needs� Indeed� our
insistence on simplicity and timeliness of the standard precludes that� We
believe the MPI interface provides a useful basis for the development of soft�
ware for message�passing environments� Besides promoting the emergence of
parallel software� a message�passing standard provides vendors with a clearly
de�ned� base set of routines that they can implement e�ciently� Hardware
support for parts of the system is also possible� and this may greatly enhance
parallel scalability�

At the �nal MPI Forum meeting in February ���
� it was decided that
plans for extending MPI should wait for more experience with the current
version� It seems clear� however� that MPI will soon be expanded in some of

��



the directions listed below�

� Parallel I�O

� Remote store�access

� Active messages

� Process startup

� Dynamic process control

� Non�blocking collective operations

� Fortran �� and C�� language bindings

� Graphics

� Real�time support

For more information� an MPI�speci�c newsgroup� comp�parallel�mpi�
now exists� The o�cial version of the speci�cation document can be obtained
from netlib �

 by sending an email message to netlib�www�netlib�orgwith
the message� �send mpi�report�ps from mpi�� A postscript �le will be mailed
back to you by the netlib server� The document may also be obtained via
anonymous ftp from www�netlib�org�mpi�mpi�report�ps� and a hypertext
version is available through the world�wide�web at
http���www�mcs�anl�gov�mpi�mpi�report�mpi�report�html�

References

��
 R� Butler and E� Lusk� Monitors� Messages� and Clusters� The P

Parallel Programming System� Parallel Computing� ����
���
� April
���
�

��
 R� Calkin� R� Hempel� H� Hoppe� and P� Wypior� Portable Programming
with the PARMACSMessage�Passing Library� Parallel Computing� Spe�

cial issue on message�passing interfaces� ���������� April ���
�

��



��
 J� Dongarra� A� Geist� R� Manchek� and V� Sunderam� Integrated PVM
Framework Supports Heterogeneous Network Computing� Computers

in Physics� ������������ April �����

�

 J� Dongarra and E� Grosse� Distribution of Mathematical Software via
Electronic Mail� Communications of the ACM� ������
����� July ��	��

��
 Message Passing Interface Forum� MPI� A Message�Passing In�
terface Standard � International Journal of Supercomputer Ap�

plications and High Performance Computing� 	���
�� ���
� Spe�
cial issue on MPI� Also available electronically� the url is
ftp���www�netlib�org�mpi�mpi�report�ps�

��
 A� Geist� A� Beguelin� J� Dongarra� W� Jiang� R� Manchek� and V� Sun�
deram� PVM� A Users� Guide and Tutorial for Networked Parallel Com�

puting� MIT Press� ���
� The book is available electronically� the url is
ftp���www�netlib�org�pvm��book�pvm�book�ps�

��
 W� Gropp� E� Lusk� and A� Skjellum� Using MPI� Portable Parallel

Programming with the Message�Passing Interface� The MIT Press� ���
�

�	
 C� Koelbel� D� Loveman� R� Schreiber� G� Steele Jr�� and M� Zosel� The
High Performance Fortran Handbook� The MIT Press� ���
�

��
 S� Otto� J� Dongarra� S� Hess�Lederman� M� Snir� and D� Walker� Mes�

sage Passing Interface� The Complete Reference� The MIT Press� �����

���
 Parasoft Corporation� Monrovia� CA� Express User�s Guide� ver�
sion ����� edition� ����� Parasoft can be reached� electronically� at
parasoft�Parasoft�COM�

���
 A� Skjellum and A� Leung� Zipcode� a Portable Multicomputer Commu�
nication Library atop the Reactive Kernel� In D� W� Walker and Q� F�
Stout� editors� Proceedings of the Fifth Distributed Memory Concurrent

Computing Conference� pages ������� IEEE Press� �����

�




A Sidebar� Implementations of MPI

MPI is available on parallel computers from Convex Computer� Cray Re�
search� IBM� Intel� Meiko� Ncube� NEC� and Silicon Graphics�

A number of public�domain MPI implementations are available and can
be found at the following locations�

� Argonne National Laboratory�Mississippi State University implemen�
tation� Available by anonymous ftp at info�mcs�anl�gov�pub�mpi�

� Edinburgh Parallel Computing Centre CHIMP implementation� Avail�
able by anonymous ftp at
ftp�epcc�ed�ac�uk�pub�chimp�release�chimp�tar�Z�

� Mississippi State University UNIFY implementation� The UNIFY sys�
tem provides a subset of MPI within the PVM environment� without
sacri�cing the PVM calls already available� Available by anonymous
ftp at ftp�erc�msstate�edu�unify�

� Ohio Supercomputer Center LAM implementation� A full MPI stan�
dard implementation for LAM� a UNIX cluster computing environment�
Available by anonymous ftp at tbag�osc�edu�pub�lam�

��



B Sidebar� More Information on MPI
 As�

sistance

The book by W� Gropp� E� Lusk� and A� Skjellum ���
� is a tutorial�level
explanation of MPI� An expanded and annotated reference manual for MPI
is being written by the authors of this article and other members of the MPI
Forum� and should be available in �����

An MPI�speci�c newsgroup� comp�parallel�mpi� exists� An abundance
of information about MPI is available through the world�wide�web� The
following is a list of URL�s containing MPI�related information�

� Netlib Repository at University of Tennessee and Oak Ridge National
Lab �http���www�netlib�org�mpi�index�html��

� Argonne National Lab �http���www�mcs�anl�gov�mpi��

� Mississippi State University� Engineering Research Center
�http���www�erc�msstate�edu�mpi��

� Ohio Supercomputer Center� LAM Project
�http���www�osc�edu�lam�html�

� Australian National University
�file���dcssoft�anu�edu�au�pub�www�dcs�cap�mpi�mpi�html�

A current version of errata for the speci�cation document ���
� can be ob�
tained from ftp���www�netlib�org�mpi�errata�ps� The complete email
associated with the MPI Forum has been archived� They are available from
netlib� Send a message to netlib�ornl�gov with the message send index

from mpi� You can also ftp them from netlib��cs�utk�edu�mpi�
So far� at least one company is o�ering professional support and consult�

ing for MPI� This is PALLAS� and they may be reached at
info�pallas�gmbh�de�

��



C Sidebar� Library Communicator and Caching

We wish to give a parallel library its own communicator� with a unique
context� The strategy is to pass in� at each invocation of the library� a
communicator that describes the process group to be used� The library
function �duplicates� it� getting a similar communicator� but one with a
unique communication context� This becomes the private� library�internal
communicator�

The MPI caching mechanism is used to make this work well� The private
communicator is associated �cached� with the communicator passed in by the
application� This means that the private communicator needs to be created
only the �rst time the library is invoked with that particular communicator as
argument� The caching hides the internal communicator from the application
and the application need not explicitly manage the internal communicators�
The reader is referred to the further sources discussed in sidebar B for details
concerning the caching mechanism�
�� static variable used as ��key�� for library ��

�� Only one per process is necessary� even if multiple ��

�� library invocations can be concurrently active� ��

extern int lib key�

�� library init� Need to invoke once by each process� ��

�� before library is used� ��

void lib init��

f

�� allocate a process	unique key ��

MPI Keyval create�MPI NULL FN� MPI NULL FN� 
lib key� �void ��NULL��

g

void lib call� MPI Comm comm� ��� �

f

int flag�

�� private communicator for library	internal communication ��

MPI Comm �private comm�

�� retrieve private communicator ��

MPI Attr get� comm� lib key� 
private comm� 
flag ��

if ��flag� f

�� get failed� this is first call and private comm ��

�� has not yet been allocated� So� do it� ��

�� Make new communicator� with same process group as comm� ��

��



private comm � �MPI Comm ��malloc�sizeof�MPI Comm���

MPI Comm Dup� comm� private comm ��

�� Cache private communicator with public one� ��

MPI Attr put� comm� lib key� �void ��private comm ��

g

�� Execute library code� using private comm for ��

�� internal communication� ��

���

g

�	



char msg�
���

int myrank� tag � ���

MPI Status status�

� � �

MPI Comm rank� MPI COMM WORLD� 
myrank �� �� find my rank ��

if �myrank �� �� f

strcpy� msg� �Hello there���

MPI Send� msg� strlen�msg���� MPI CHAR� �� tag� MPI COMM WORLD��

g else f
MPI Recv� msg� 
�� MPI CHAR� �� tag� MPI COMM WORLD� 
status ��

g

Figure �� C code� Process � sends a message to process ��

double a�����������

int disp������blocklen������i�

MPI Datatype upper�

� � �

�� compute start and size of each row ��

for �i��� i����� ��i� f

disp�i� � ��� � i � i�

blocklen�i� � ��� 	 i�

g
�� create datatype for upper triangular part ��

MPI Type indexed� ���� blocklen� disp� MPI DOUBLE� 
upper��

MPI Type commit� 
upper ��

�� �� and send it ��

MPI Send� a� �� upper� dest� tag� MPI COMM WORLD ��

Figure �� A single send transmits the upper�triangular part of a matrix� using
a user�de�ned datatype�

��



A0 A1 A2 A3 A4 A5 scatter

gather

A0

A1

A2

A3

A4

A5

A0 A1 A2 A3 A4 A5

B0 B1 B2 B3 B4 B5

C0 C1 C2 C3 C4 C5

D0 D1 D2 D3 D4 D5

E0 E1 E2 E3 E4 E5

F0 F1 F2 F3 F4 F5

A0 B0 C0 D0 E0 F0

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

A3 B3 C3 D3 E3 F3

A4 B4 C4 D4 E4 F4

A5 B5 C5 D5 E5 F5

alltoall

A0

B0

C0

D0

E0

F0

allgather

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0

data

broadcast
pr

oc
es

se
s

A0

A0

A0

A0

A0

A0

Figure �� Collective move functions illustrated for a group of six processes�
In each case� each row of boxes represents data locations in one process�
Thus� in the broadcast� initially just the �rst process contains the data A��
but after the broadcast all processes contain it�

��


