
An Introduction to the MPI Standard

Jack J� Dongarra

University of Tennessee and Oak Ridge National Laboratory

Steve W� Otto

Oregon Graduate Institute of Science � Technology

Marc Snir

IBM� T�J� Watson Research Center

David Walker

Oak Ridge National Laboratory

October ��� ����

�



Contents

� Introduction �

� Overview �

� Goals �

� What MPI Does and Does Not Specify �

� Point to Point Communication �

� User�de�ned Datatypes �

	 Collective Communications 


� Groups� Contexts� and Communicators ��


 Conclusions ��

A Sidebar� Implementations of MPI ��

B Sidebar� More Information on MPI� Assistance ��

C Sidebar� Library Communicator and Caching �	

�



� Introduction

The Message Passing Interface �MPI� is a portable message�passing stan�
dard that facilitates the development of parallel applications and libraries�
The standard de�nes the syntax and semantics of a core of library routines
useful to a wide range of users writing portable message�passing programs
in Fortran �� or C� MPI also forms a possible target for compilers of lan�
guages such as High Performance Fortran �	
� Commercial and free� public�
domain implementations of MPI already exist �see sidebar A�� These run on
both tightly�coupled� massively�parallel machines �MPPs�� and on networks
of workstations �NOWs��

The MPI standard was developed over a year of intensive meetings and
involved over 	� people from approximately 
� organizations� mainly from
the United States and Europe� Meeting attendance was open to the tech�
nical community� The meets where announced on various bulletin boards
and mailing lists� MPI operated on a very tight budget �in reality� it had
no budget when the �rst meeting was announced�� The Advanced Research
Projects Agency �ARPA� through the National Science Foundation �NSF�
have provided partial travel support for the U�S� academic participants� Sup�
port for several European participants was provided by the European Com�
mission through the ESPRIT project� Formal voting at the meetings was
done by a single vote per organization� In order to vote� the organization
must have had a representative at two of the last three meetings� In order
to give guidance for preparation of formal proposals� informal votes where
often taken involving everyone present� Many vendors of concurrent com�
puters were involved� along with researchers from universities� government
laboratories� and industry� This e�ort culminated in the publication of the
MPI speci�cation ��
� Other sources of information on MPI are available ��

or are under development �see sidebar B��

Researchers incorporated into MPI the most useful features of several
systems� rather than choosing one system to adopt as the standard� MPI
has roots in PVM ��� �
� Express ���
� P
 ��
� Zipcode ���
� and Parmacs ��
�
and in systems sold by IBM� Intel� Meiko� Cray Research� and Ncube�
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� Overview

MPI is used to specify the communication among a set of processes form�
ing a concurrent program� The message�passing paradigm is attractive be�
cause of its wide portability and scalability� It is easily compatible with
both distributed�memory multicomputers and shared�memory multiproces�
sors� NOWs� and combinations of these elements� Message passing will not be
made obsolete by increases in network speeds or by architectures combining
shared and distributed�memory components�

Though much of MPI serves to standardize the �common practice� of
existing systems� MPI has gone further and de�ned advanced features such as
user�de�ned datatypes� persistent communication ports� powerful collective
communication operations� and scoping mechanisms for communication� No
previous system incorporated all these features�

� Goals

In considering MPI� it is important to understand the goals of the standard�
ization e�ort� the constraints such an endeavor implies� and the practical
constraints under which the committee operated� Some of these are listed
below�

� Design an application programming interface �not necessarily for com�
pilers or a system implementation library��

� Allow e�cient communication� Avoid memory�to�memory copying and
allow overlap of computation and communication and o�oad to com�
munication co�processor� where available�

� Allow for implementations that can be used in a heterogeneous envi�
ronment�

� Allow convenient C and Fortran �� bindings for the interface�

� Assume a reliable communication interface� the user need not cope with
communication failures� Such failures are dealt with by the underlying
communication subsystem�






� De�ne an interface that is not too di�erent from current practice� such
as PVM� NX� Express� p
� etc�� and provides extensions that allow
greater �exibility�

� De�ne an interface that can be implemented on many vendor�s plat�
forms� with no signi�cant changes in the underlying communication
and system software�

� Semantics of the interface should be language independent�

� The interface should be designed to allow for thread�safety�

� What MPI Does and Does Not Specify

The standard speci�es the form of the following�

� Point to point communications� that is� messages between pairs of pro�
cesses�

� Collective communications� communication or synchronization opera�
tions that involve entire groups of processes�

� Process groups� how they are used and manipulated�

� Communicators� a mechanism for providing separate communication
scopes for modules or libraries� Each communicator speci�es a dis�
tinct name space for processes� a distinct communication context for
messages and may carry additional� scope�speci�c information�

� Process topologies� functions that allow the convenient manipulation of
process labels� when the processes are regarded as forming a particular
topology� such as a Cartesian grid�

� Bindings for Fortran �� and ANSI C� MPI was designed so that versions
of it in both C and Fortran had straightforward syntax� In fact� the
detailed form of the interface in these two languages is speci�ed and is
part of the standard�
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� Pro�ling interface� the interface is designed so that runtime pro�ling
or performance�monitoring tools can be joined to the message�passing
system� It is not necessary to have access to the MPI source to do this
and hence� portable pro�ling systems can be easily constructed�

� Environmentalmanagement and inquiry functions� these functions give
a portable timer� some system�querying capabilities� and the ability to
in�uence error behavior and error�handling functions�

There are many relevant aspects of parallel programming not covered by the
standard� This is also an important list and we give it below�

� shared�memory operations

� interrupt�driven messages� remote execution� and active messages

� program construction tools

� debugging support

� thread support

� process or task management

� input and output functions

The main reason for not addressing these issues was the time constraint self�
imposed by the committee� and the feeling that many of them are system
dependent� A next set of meetings focused on extending MPI will begin soon�

The remainder of this article discusses some of the more interesting fea�
tures of MPI�

� Point to Point Communication

MPI provides a set of send and receive functions that allow the communica�
tion of typed data with an associated tag� Typing of the message contents
is necessary for heterogeneous support � the type information is needed
so that correct data representation conversions can be performed as data is
sent from one architecture to another� The tag allows selectivity of messages
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at the receiving end� one can receive on a particular tag� or one can wild�
card this quantity� allowing reception of messages with any tag� Message
selectivity on the source process of the message is also provided�

A fragment of code appears in �gure � for the example of process � send�
ing a message to process �� This code executes on both process � and process
�� The example sends a character string� MPI COMM WORLD is a default com�

municator provided upon start�up� Among other things� a communicator
serves to de�ne the allowed set of processes involved in a communication
operation� Process ranks are integers� serve to label processes� and are dis�
covered by inquiry to a communicator �see the call to MPI Comm rank����
The typing of the communication is evident by the speci�cation of MPI CHAR�
The receiving process speci�ed that the incoming data was to be placed in
msg and that it had a maximum size of �� elements� of type MPI CHAR� The
variable status� set by MPI Recv��� gives information on the source and tag
of the message and how many elements were actually received� For example�
the receiver can examine this variable to �nd out the actual length of the
character string received�

This example employed blocking send and receive functions� The send
call blocks until the send bu�er can be reclaimed �i�e�� after the send� process
� can safely over�write the contents of msg�� Similarly� the receive function
blocks until the receive bu�er actually contains the contents of the message�
MPI also provides non�blocking send and receive functions that allow the
possible overlap of message transmittal with computation� or the overlap
of multiple message transmittals with one�another� Non�blocking functions
always come in two parts� the posting functions� which begin the requested
operation� and the test�for�completion functions� which allow the application
program to discover whether the requested operation has completed�

This seems like rather a lot to say about a simple transmittal of data from
one process to another� but there is even more� To understand why� we exam�
ine two aspects of the communication� the semantics of the communication
primitives� and the underlying protocols that implement them� Consider the
previous example� on process �� after the blocking send has completed� The
question arises� if the send has completed� does this tell us anything about
the receiving process� Can we know that the receive has �nished� or even�
that it has begun�

Such questions of semantics are related to the nature of the underlying
protocol implementing the operations� If one wishes to implement a protocol
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minimizing the copying and bu�ering of data� the most natural semantics
might be the �rendezvous� version� where completion of the send implies the
receive has been initiated �at least�� On the other hand� a protocol that
attempts to block processes for the minimal amount of time will necessarily
end up doing more bu�ering and copying of data�

The trouble is� one choice of semantics is not best for all applications�
nor is it best for all architectures� Because the primary goal of MPI is to
standardize the operations� yet not sacri�ce performance� the decision was
made to include all the major choices for point to point semantics in the
standard�

An additional� complicating factor is that the amount of space available
for bu�ering is always �nite� On some systems the amount of space available
for bu�ering may be small or non�existent� For this reason� MPI does not
mandate a minimal amount of bu�ering� and the standard is very careful
about the semantics it requires�

The above complexities are manifested in MPI by the existence ofmodes

for point to point communication� Both blocking and non�blocking commu�
nications have modes� The mode allows one to choose the semantics of the
send operation and� in e�ect� to in�uence the underlying protocol of the
transfer of data�

In standard mode the completion of the send does not necessarily mean
that the matching receive has started� and no assumption should be made
in the application program about whether the out�going data is bu�ered by
MPI� In bu
ered mode the user can guarantee that a certain amount of
bu�ering space is available� The catch is that the space must be explicitly
provided by the application program� In synchronous mode a rendezvous
semantics between sender and receiver is used� Finally� there is ready mode�
This allows the user to exploit extra knowledge to simplify the protocol
and potentially achieve higher performance� In a ready�mode send� the user
asserts that the matching receive already has been posted�

� User�de�ned Datatypes

All MPI communication functions take a datatype argument� In the simplest
case this will be a primitive type� such as an integer or �oating�point number�
An important and powerful generalization results by allowing user�de�ned

	



types wherever the primitive types can occur� These are not �types� as far as
the programming language is concerned� They are only �types� in that MPI
is made aware of them through the use of type�constructor functions� and
they describe the layout� in memory� of sets of primitive types� Through user�
de�ned types� MPI supports the communication of complex data structures
such as array sections and structures containing combinations of primitive
datatypes� Figure � gives an example of using a user�de�ned type to send
the upper�triangular part of a matrix�

� Collective Communications

Collective communications transmit data among all the processes speci�ed
by a communicator object� One function� the barrier� serves to synchronize
processes without passing data� Brie�y� MPI provides the following collective
communication functions�

� barrier synchronization across all processes

� broadcast from one process to all

� gather data from all to one

� scatter data from one to all

� allgather� like a gather� followed by a broadcast of the gather output

� alltoall� like a set of gathers in which each process receives a distinct
result

� global reduction operations such as sum� max� min� and user�de�ned
functions

� scan �or pre�x� across processes

Figure � gives a pictorial representation of broadcast� scatter� gather� all�
gather� and alltoall� Many of the collective functions also have �vector�
variants� whereby di�erent amounts of data can be sent to or received from
di�erent processes� For these� the simple picture of �gure � becomes more
complex�
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The syntax and semantics of the MPI collective functions was designed
to be consistent with point to point communications� However� to keep
the number of functions and their argument lists to a reasonable level of
complexity� the MPI committee made collective functions more restrictive
than the point to point functions� in several ways� One restriction is that�
in contrast to point to point communication� the amount of data sent must
exactly match the amount of data speci�ed by the receiver� This was done
to avoid the need for an array of status variables as an argument to the
functions� which would otherwise be necessary for the receiver to discover
the amount of data actually received�

A major simpli�cation is that collective functions come in blocking ver�
sions only� Though a standing joke at committee meetings concerned the
�non�blocking barrier�� such functions can be quite useful� and may be in�
cluded in a future version of MPI�

A �nal simpli�cation of collective functions concerns modes� Collective
functions come in only one mode� and this mode may be regarded as anal�
ogous to the standard mode of point to point� Speci�cally� the semantics
are as follows� A collective function �on a given process� can return as soon
as its participation in the overall communication is complete� As usual� the
completion indicates that the caller is now free to access and modify locations
in the communication bu�er� It does not indicate that other processes have
completed� or even started� the operation� Thus� a collective communication
may� or may not� have the e�ect of synchronizing all calling processes� The
barrier� of course� is the exception to this statement�

The choice of semantics was done so as to allow a variety of implementa�
tions�

The user of MPI must keep these issues in mind� For example� even
though a particular implementation of MPI may provide a broadcast with the
side�e�ect of synchronization �the standard allows this�� the standard does
not require this� and hence� any program that relies on the synchronization
will be non�portable� On the other hand� a correct and portable program
must allow a collective function to be synchronizing� Though one should not
rely on synchronization side�e�ects� one must program so as to allow for it�

Though these issues and statements may seem unusually obscure� they
are merely a consequence of the desire of MPI to�

�Of course the non�blocking barrier would block at the test�for�completion call�
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� allow e�cient implementations on a variety of architectures� and�

� be clear about exactly what is� and what is not� guaranteed by the
standard�

	 Groups
 Contexts
 and Communicators

A key feature needed to support the creation of robust� parallel libraries is
to guarantee that communication within a library routine does not con�ict
with communication extraneous to the routine� The concepts encapsulated
by an MPI communicator provide this support�

A communicator is a data object that speci�es the scope of a commu�
nication operation� that is� the group of processes involved and the commu�
nication context� Contexts partition the communication space� A message
sent in one context cannot be received in another context� Process ranks are
interpreted with respect to the process group associated with a communica�
tor� MPI applications begin with a default communicator� MPI COMM WORLD�
which has as process group the entire set of processes �of this parallel job��
New communicators are created from existing communicators and the cre�
ation of a communicator is a collective operation�

Communicators are especially important for the design of parallel software
libraries� Suppose we have a parallel� matrix multiplication routine as a
member of a library� We would like to allow distinct subgroups of processes
to perform di�erent matrix multiplications concurrently� A communicator
provides a convenient mechanism for passing into the library routine the
group of processes involved� and within the routine� process ranks will be
interpreted relative to this group� The grouping and labeling mechanisms
provided by communicators are useful� and communicators will typically be
passed into library routines that perform internal communications�

Such library routines can also create their own� unique communicator for
internal use� For example� consider an application in which process � posts
a wildcarded� non�blocking receive just before entry to a library routine�
Such �promiscuous� posting of receives is a common technique for increasing
performance� Here� if an internal communicator is not created� incorrect
behavior could result since the receive may be satis�ed by a message sent
by process � from within the library routine� if process � invokes the library
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ahead of process �� Another example is one where a process sends a message
before entry into a library routine� but the destination process does not post
the matching receive until after exiting the library routine� In this case� the
message may be received� incorrectly� within the library routine�

These problems are avoided by proper design and usage of parallel li�
braries� One workable design is for the application program to pass com�
municators into the library routine that speci�es the group and ensures a
safe context� Another design has the library create a �hidden� and unique
communicator that is set up in a library initialization call� again leading to
correct partitioning of the message space between application and library�

Sidebar C shows how one might implement the second type of design�
Some thought shows that� as one creates separate communicators for li�
braries� it is convenient to associate these new communicators with the old
communicators from which they were derived� The MPI caching mechanism
provides a way to set up such an association� Though one can associate ar�
bitrary objects with communicators using caching� the ability to do this for
library�internal communicators is one of the most important uses of caching�

� Conclusions

A pleasant surprise for participants in the MPI e�ort was the interesting
intellectual issues that arose� This article has concentrated on some of these
interesting and di�cult issues� but for most cases� programming in MPI is
straightforward and is similar to programming with other message�passing
interfaces�

MPI does not claim to be the de�nitive answer to all needs� Indeed� our
insistence on simplicity and timeliness of the standard precludes that� We
believe the MPI interface provides a useful basis for the development of soft�
ware for message�passing environments� Besides promoting the emergence of
parallel software� a message�passing standard provides vendors with a clearly
de�ned� base set of routines that they can implement e�ciently� Hardware
support for parts of the system is also possible� and this may greatly enhance
parallel scalability�

At the �nal MPI Forum meeting in February ���
� it was decided that
plans for extending MPI should wait for more experience with the current
version� It seems clear� however� that MPI will soon be expanded in some of
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the directions listed below�

� Parallel I�O

� Remote store�access

� Active messages

� Process startup

� Dynamic process control

� Non�blocking collective operations

� Fortran �� and C�� language bindings

� Graphics

� Real�time support

For more information� an MPI�speci�c newsgroup� comp�parallel�mpi�
now exists� The o�cial version of the speci�cation document can be obtained
from netlib �

 by sending an email message to netlib�www�netlib�orgwith
the message� �send mpi�report�ps from mpi�� A postscript �le will be mailed
back to you by the netlib server� The document may also be obtained via
anonymous ftp from www�netlib�org�mpi�mpi�report�ps� and a hypertext
version is available through the world�wide�web at
http���www�mcs�anl�gov�mpi�mpi�report�mpi�report�html�
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A Sidebar� Implementations of MPI

MPI is available on parallel computers from Convex Computer� Cray Re�
search� IBM� Intel� Meiko� Ncube� NEC� and Silicon Graphics�

A number of public�domain MPI implementations are available and can
be found at the following locations�

� Argonne National Laboratory�Mississippi State University implemen�
tation� Available by anonymous ftp at info�mcs�anl�gov�pub�mpi�

� Edinburgh Parallel Computing Centre CHIMP implementation� Avail�
able by anonymous ftp at
ftp�epcc�ed�ac�uk�pub�chimp�release�chimp�tar�Z�

� Mississippi State University UNIFY implementation� The UNIFY sys�
tem provides a subset of MPI within the PVM environment� without
sacri�cing the PVM calls already available� Available by anonymous
ftp at ftp�erc�msstate�edu�unify�

� Ohio Supercomputer Center LAM implementation� A full MPI stan�
dard implementation for LAM� a UNIX cluster computing environment�
Available by anonymous ftp at tbag�osc�edu�pub�lam�
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B Sidebar� More Information on MPI
 As�

sistance

The book by W� Gropp� E� Lusk� and A� Skjellum ���
� is a tutorial�level
explanation of MPI� An expanded and annotated reference manual for MPI
is being written by the authors of this article and other members of the MPI
Forum� and should be available in �����

An MPI�speci�c newsgroup� comp�parallel�mpi� exists� An abundance
of information about MPI is available through the world�wide�web� The
following is a list of URL�s containing MPI�related information�

� Netlib Repository at University of Tennessee and Oak Ridge National
Lab �http���www�netlib�org�mpi�index�html��

� Argonne National Lab �http���www�mcs�anl�gov�mpi��

� Mississippi State University� Engineering Research Center
�http���www�erc�msstate�edu�mpi��

� Ohio Supercomputer Center� LAM Project
�http���www�osc�edu�lam�html�

� Australian National University
�file���dcssoft�anu�edu�au�pub�www�dcs�cap�mpi�mpi�html�

A current version of errata for the speci�cation document ���
� can be ob�
tained from ftp���www�netlib�org�mpi�errata�ps� The complete email
associated with the MPI Forum has been archived� They are available from
netlib� Send a message to netlib�ornl�gov with the message send index

from mpi� You can also ftp them from netlib��cs�utk�edu�mpi�
So far� at least one company is o�ering professional support and consult�

ing for MPI� This is PALLAS� and they may be reached at
info�pallas�gmbh�de�
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C Sidebar� Library Communicator and Caching

We wish to give a parallel library its own communicator� with a unique
context� The strategy is to pass in� at each invocation of the library� a
communicator that describes the process group to be used� The library
function �duplicates� it� getting a similar communicator� but one with a
unique communication context� This becomes the private� library�internal
communicator�

The MPI caching mechanism is used to make this work well� The private
communicator is associated �cached� with the communicator passed in by the
application� This means that the private communicator needs to be created
only the �rst time the library is invoked with that particular communicator as
argument� The caching hides the internal communicator from the application
and the application need not explicitly manage the internal communicators�
The reader is referred to the further sources discussed in sidebar B for details
concerning the caching mechanism�
�� static variable used as ��key�� for library ��

�� Only one per process is necessary� even if multiple ��

�� library invocations can be concurrently active� ��

extern int lib key�

�� library init� Need to invoke once by each process� ��

�� before library is used� ��

void lib init��

f

�� allocate a process	unique key ��

MPI Keyval create�MPI NULL FN� MPI NULL FN� 
lib key� �void ��NULL��

g

void lib call� MPI Comm comm� ��� �

f

int flag�

�� private communicator for library	internal communication ��

MPI Comm �private comm�

�� retrieve private communicator ��

MPI Attr get� comm� lib key� 
private comm� 
flag ��

if ��flag� f

�� get failed� this is first call and private comm ��

�� has not yet been allocated� So� do it� ��

�� Make new communicator� with same process group as comm� ��
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private comm � �MPI Comm ��malloc�sizeof�MPI Comm���

MPI Comm Dup� comm� private comm ��

�� Cache private communicator with public one� ��

MPI Attr put� comm� lib key� �void ��private comm ��

g

�� Execute library code� using private comm for ��

�� internal communication� ��

���

g
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char msg�
���

int myrank� tag � ���

MPI Status status�

� � �

MPI Comm rank� MPI COMM WORLD� 
myrank �� �� find my rank ��

if �myrank �� �� f

strcpy� msg� �Hello there���

MPI Send� msg� strlen�msg���� MPI CHAR� �� tag� MPI COMM WORLD��

g else f
MPI Recv� msg� 
�� MPI CHAR� �� tag� MPI COMM WORLD� 
status ��

g

Figure �� C code� Process � sends a message to process ��

double a�����������

int disp������blocklen������i�

MPI Datatype upper�

� � �

�� compute start and size of each row ��

for �i��� i����� ��i� f

disp�i� � ��� � i � i�

blocklen�i� � ��� 	 i�

g
�� create datatype for upper triangular part ��

MPI Type indexed� ���� blocklen� disp� MPI DOUBLE� 
upper��

MPI Type commit� 
upper ��

�� �� and send it ��

MPI Send� a� �� upper� dest� tag� MPI COMM WORLD ��

Figure �� A single send transmits the upper�triangular part of a matrix� using
a user�de�ned datatype�
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Figure �� Collective move functions illustrated for a group of six processes�
In each case� each row of boxes represents data locations in one process�
Thus� in the broadcast� initially just the �rst process contains the data A��
but after the broadcast all processes contain it�
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