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The TOMS paper ”A Fully Portable High Performance Minimal Storage Hybrid Format Cholesky
Algorithm” by Andersen, Gunnels, Gustavson, Reid, and Waśniewski, used a level 3 Cholesky
kernel subroutine instead of level 2 LAPACK routine POTF2. We discuss the merits of this
approach and show that its performance over POTRF is considerably improved on a variety of
common platforms when POTRF is solely restricted to calling POTF2.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra –
Linear Systems (symmetric and Hermitian); G.4 [Mathematics of Computing]: Mathematical
Software

General Terms: Algorithms, BLAS, Performance

Additional Key Words and Phrases: real symmetric matrices, complex Hermitian matrices, pos-
itive definite matrices, Cholesky factorization and solution, recursive algorithms, novel packed
matrix data structures.

1. INTRODUCTION

We consider the Cholesky factorization of a symmetric positive definite matrix
where the data has been stored using Block Packed Hybrid Format (BPHF) [An-
dersen et al. 2005; Gustavson et al. 2007]. We will examine the case where the
matrix A is factored into LLT , where L is a lower triangular matrix. See also
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1a. Lower Packed Format
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1b. Lower Blocked Hybrid Format
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Fig. 1. Lower Packed and Blocked Hybrid Formats

do j = 1, l ! l = dn/nbe
do k = 1, j − 1

Ajj = Ajj − LjkLT
jk ! Call of Level-3 BLAS SYRK

do i = j + 1, l
Aij = Aij − LikLT

jk ! Call of Level-3 BLAS GEMM

end do
end do
LjjLT

jj = Ajj ! Call of LAPACK subroutine POTRF

do i = j + 1, l
LijLT

jj = Aij ! Call of Level-3 BLAS TRSM

end do
end do

Fig. 2. LLT Implementation for Lower Blocked Hybrid Format. The BLAS calls take the forms
SYRK(’U’,’T’,...), GEMM(’T’,’N’,...), POTRF(’U’,...), and TRSM(’L’,’U’,’T’,...).

papers [Herrero and Navarro 2006; Herrero 2007]. We will show that the imple-
mentation can be structured to use matrix-matrix operations and take advantage
of the Level 3 BLAS and thereby achieving high performance. This implementa-
tion has a parallel in the LAPACK routine, which is not based on Level 3 BLAS
operations [Gustavson 2003]. A form of register blocking is used for the Level-3
kernel routines of this paper.

The performance numbers presented in Section 3 bear out that the Level-3 based
factorization kernels for Cholesky improves performance over the traditional Level-
2 routines used by LAPACK. Put another way the use of square block (SB) format
allows one to utilize Level-3 BLAS kernels. Hence, one can rewrite the LAPACK
implementation which uses a standard row column format with Level-3 BLAS to
using SB format with Level-3 BLAS kernels. This paper suggests a change direction
for LAPACK software in the multi-core era of computing. This is the main point
of our paper.

1.1 Introduction to BPHF

In designing the Level-3 BLAS, [Dongarra et al. 1990] the authors did not specify
packed storage schemes for symmetric, Hermitian or triangular matrices. The rea-
soning given at the time was ‘such storage schemes do not seem to lend themselves
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do i = 1, l ! l = dn/nbe
Aii = Aii −

∑i−1

k=1
(UT

kiUki) ! Call of Level-3 BLAS SYRK

UT
ii Uii = Aii ! Call of LAPACK subroutine POTF2

Aij = Aij −
∑i−1

k=1
(UT

kiUkj),∀j > i ! Single call of Level-3 BLAS GEMM

UT
ii Uij = Aij , ∀j > i ! Single call of Level-3 BLAS TRSM

end do

Fig. 3. LAPACK Cholesky Implementation for Upper Full Format. The BLAS calls take the
forms SYRK(’U’,’T’,...), POTF2(’U’,...), GEMM(’T’,’N’,...), and TRSM(’L’,’U’,’T’,...).

to partitioning into blocks ... Also packed storage is required much less with large
memory machines available today’. The BPHF algorithm demonstrates that pack-
ing is possible without loss of performance. While memories continue to get larger,
the problems that are solved get larger too and there will always be an advantage
in saving storage.

We pack the matrix by using a blocked hybrid format in which each block is
held contiguously in memory. This usually avoids the data copies, see [Gustavson
et al. 2007], that are inevitable when Level-3 BLAS are applied to matrices held
conventionally in rectangular arrays. Note, too, that many data copies may be
needed for the same submatrix in the course of a Cholesky factorization [Gustavson
1997; Gustavson 2003; Gustavson et al. 2007].

We show an example of standard lower packed format in Fig. 1a, with blocks
of size 3 superimposed. Fig. 1 shows where each matrix element is stored within
the array that holds it. It is apparent that the blocks of Fig. 1a are not suitable
for passing to the BLAS since the stride between elements of a row is not uniform.
We therefore rearrange each trapezoidal block column so that it is stored by blocks
with each block in row-major order, as illustrated in Fig. 1b. If the matrix order
is n and the block size is nb, this rearrangement may be performed efficiently in
place with the aid of a buffer of size n×nb. Unless the order is an integer multiple
of the block size, the final block will be shorter than the rest. We further assume
that the block size is chosen so that a block fits comfortably in level-1 cache.

We factorize the matrix A as defined in Fig. 1b using the algorithm defined in
Fig. 2. This is standard blocked based algorithm similar to the LAPACK algorithm
and it is also described more fully in [Andersen et al. 2005; Gustavson 2003].

2. THE KERNEL ROUTINE

Each of the computation lines in the Fig. 2 can be implemented by a single call of a
Level-3 BLAS [Dongarra et al. 1990] or LAPACK [Anderson et al. 1999] subroutine
POTRF. However, we found it better to make a direct call to an equivalent ‘kernel’
routine that is fast because it has been specially written for matrices that are held in
contiguous memory and are of a form and size that permits efficient use of the level-
1 cache. Please compare Fig. 3 and 4; see also, [Andersen et al. 2005; Gustavson
2003]

Another possibility is to use a block algorithm with a very small block size kb,
designed to fit in registers. To avoid procedure call overheads for a very small
computations, we replace all calls to BLAS by in-line code. This means that it is
not advantageous to perform a whole block row of GEMM updates at once and a



4 · Fred G. Gustavson, Jerzy Waśniewski and Jack J. Dongarra

do i = 1, l ! l = dn/kbe
Aii = Aii −

∑i−1

k=1
(UT

kiUki) ! Like Level-3 BLAS SYRK

UT
ii Uii = Aii ! Cholesky factorization of block

do j = i + 1, n

Aij = Aij −
∑i−1

k=1
(UT

kiUkj) ! Like Level-3 BLAS GEMM

UT
ii Uij = Aij ! Like Level-3 BLAS TRSM

end do
end do

Fig. 4. Cholesky Kernel Implementation for Upper Full Format.

DO k = 1, ii - 1

aki = a(k,ii)

akj = a(k,jj)

t11 = t11 - aki*akj

aki1 = a(k,ii+1)

t21 = t21 - aki1*akj

akj1 = a(k,jj+1)

t12 = t12 - aki*akj1

t22 = t22 - aki1*akj1

END DO

Fig. 5. Code corresponding to GEMM.

whole block row of TRSM updates at once (see last two lines of the loop in Fig. 3).
This leads to the algorithm summarized in Fig. 4.

We have found the tiny block size kp = 2 to be suitable. The key loop is the one
that corresponds to GEMM. For this, the code of Fig. 5 is suitable. The block Ai,j

is held in the four variables, t11, t12, t21, and t22. We reference the underlying
array directly, with Ai,j held from a(ii,jj). It may be seen that a total of 8
local variables are involved, which hopefully the compiler will arrange to be held in
registers. The loop involves 4 memory accesses and 8 floating-point operations.

We also tried accumulating a block of size 1×4 in the inner GEMM loop of the
unblocked code (kp = 1). Each execution of the loop involves the same number of
floating-point operations (8) as for the 2×2 case, but requires 5 reals to be loaded
from cache instead of 4. We were not surprised to find that it ran slower on our
platforms. However, on Intel, ATLAS [Whaley et al. 2000] uses a 1×4 kernel with
extreme unrolling with good effect. Thus we were somewhat surprised that 1×4
unrolling also did poorly on our Intel platform.

On some processors, faster execution is possible by having an inner GEMM loop
that updates Ai,j and Ai,j+1. The variables aki and aki1 need only be loaded
once, so we now have 6 memory accesses and 16 floating-point operations and need
14 local variables, hopefully in registers.

We found that this algorithm gave very good performance (see next section).
Our implementation of this kernel is available in the TOMS Algorithm paper [Gus-
tavson et al. 2007], but alternatives should be considered. Further, every computer
hardware vendor is interested in having good and well-tuned software libraries.

We recommend that all the alternatives of the BPHF paper [Andersen et al. 2005]
be compared. Our kernel routine is available if the user is not able to perform such a
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comparison procedure or has no time for it. Finally, note that LAPACK [Anderson
et al. 1999], AtlasBLAS [Whaley et al. 2000], GotoBLAS [Goto and van de Geijn
2008a; Goto and van de Geijn 2008b], and the development of computer vendor
software are ongoing activities. The implementation that is the slowest today might
be the fastest tomorrow.

3. PERFORMANCE

Mat Ven Recur dpotf2 2x2 w. fma 1x4 2x4 2x2
ord dor sive 7 flops 8 flops 16 flops 6 flops

lap lap lap ker lap ker lap ker lap ker lap ker

1 2 3 4 5 6 7 8 9 10 11 12 13

Newton: SUN UltraSPARC IV+, 1800 MHz, dual-core, Sunperf BLAS
40 759 547 490 437 1239 1257 1004 1012 1515 1518 1299 1317
64 1101 1086 738 739 1563 1562 1291 1295 1940 1952 1646 1650
72 1183 978 959 826 1509 1626 1330 1364 1764 2047 1582 1733

100 1264 1317 1228 1094 1610 1838 1505 1541 1729 2291 1641 1954

Freke: SGI - Intel Itanium2, 1.5 GHz/6, SGI BLAS
40 396 652 399 408 1493 1612 1613 1769 2045 2298 1511 1629
64 623 1206 624 631 2044 2097 1974 2027 2723 2824 2065 2116
72 800 1367 797 684 2258 2303 2595 2877 2945 3424 2266 2323

100 1341 1906 1317 840 2790 2648 2985 3491 3238 4051 2796 2668

Huge: IBM Power6, 4.7 GHz, DualCore, ESSL BLAS
40 5716 1796 1240 1189 3620 3577 2914 4002 4377 5903 3508 4743
64 8021 3482 1265 1293 5905 6019 5426 5493 7515 7700 6011 5907
72 8289 3866 1622 1578 5545 5178 5205 4601 6416 6503 5577 4841

100 9371 5423 3006 2207 7018 5938 6699 6639 7632 8760 7050 6487

Battle: 2×Intel Xeon, CPU @ 1.6 GHz, Atlas BLAS
40 333 355 455 461 818 840 781 799 806 815 824 846
64 489 483 614 620 1015 1022 996 1005 1003 1002 1071 1077
72 616 627 648 700 914 1100 898 1105 903 1090 936 1163

100 883 904 883 801 1093 1191 1080 1248 1081 1210 1110 1284

Nala: 2×AMD Dual Core Opteron 265 @ 1.8 GHz, Atlas BLAS
40 350 370 409 397 731 696 812 784 773 741 783 736
64 552 539 552 544 925 909 1075 1064 968 959 944 987
72 568 570 601 568 871 909 966 1065 901 964 926 992

100 710 686 759 651 942 1037 972 1231 949 1093 950 1114

Zook: 4×Intel Xeon Quad Core E7340 @ 2.4 GHz, Atlas BLAS
40 497 515 842 844 1380 1451 1279 1294 1487 1502 1416 1412
64 713 710 1143 1146 1675 1674 1565 1565 1837 1841 1674 1674
72 863 874 1203 1402 1522 1996 1492 1877 1633 2195 1527 1996

100 1232 1234 1327 1696 1533 2294 1503 2160 1563 2625 1530 2285

1 2 3 4 5 6 7 8 9 10 11 12 13

Table 1. Performance in Mflop/s of the Kernel Cholesky Algorithm. Comparison between dif-
ferent computers and different versions of subroutines.

We consider orders 40, 64, 72, and 100 since these will typically allow the com-
putation to fit comfortably in level-1 cache.

Table 1 contain comparison numbers in Mflop/s. There are results for six com-
puters inside the table: SUN UltraSPARC IV+, SGI - Intel Itanium2, IBM Power6,
Intel Xeon, AMD Dual Core Opteron, and Intel Xeon Quad Core.
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The table has 13 columns. The first column shows the matrix order. The second
column contains results of the vendor Cholesky routine of DPOTRF, the third one
has results of the Recursive Algorithm [Andersen et al. 2001]. The columns from
4th to 13th contain results of Cholesky routine using one of the kernel routine, and
results when the kernel is called directly instate DPOTRF. There are five kernel
routines:

(1) The LAPACK kernel routine DPOTF2: The column 4th has results of DPOTRF,
and column 5th of DPOTF2 (compiled routines).

(2) The 2×2 blocking kernel routine specialized for the operation FMA (a×b + c)
using 7 floating point (fp) registers (this 2×2 blocking kernel routine replaces
the DPOTF2): The performance results are stored in columns 6th and 7th
respectively.

(3) The 1×4 blocking kernel routine only optimized for the case mod(n, 4) (n is
the matrix order) using 8 fp registers (this 1×4 blocking kernel routine replaces
the DPOTF2): the results are stored in 8th and 9th columns respectively.

(4) The 2×4 blocking kernel routine using 16 fp registers (this 2×4 blocking kernel
routine replaces the DPOTF2): the results are stored in 10th and 11th columns
respectively.

(5) The 2×2 (see Fig. 5) blocking kernel routine not specialized for the operation
FMA using 6 floating point (fp) registers (this 2×2 blocking kernel routine
replaces the DPOTF2): The performance results are stored in columns 12th
and 13th respectively.

It may be seen that the blocked code with blocks of sizes 2×4 (column number
11) is remarkably successful for Sun (Newton), SGI (Freke), IBM (Huge) and quad
core Xeon (Zook) computers. In all these four cases, it significantly outperforms the
compiled LAPACK code and the recursive algorithm. It outperforms the vendor’s
optimized codes except on the IBM (Huge) platform. The kernel 2×2 (not prepared
for the FMA operation; column number 13) is superior for the Battle computer. The
kernel 1×4 (column number 9) is superior for the duel core AMD (Nala) computer.
All the superior results are colored in red.

For further details please see the sections 6 and 7.1 of [Andersen et al. 2005].
The code of all kernel subroutines, except POTF2, is available in [Gustavson et al.
2007]. The code of POTF2 is from the LAPACK package [Anderson et al. 1999].

4. SUMMARY AND CONCLUSIONS

(1) The purpose of our paper is to promote the new Block Packed Data Format
storage or variants thereof. These variants of BPHF algorithm use slightly more
than n×(n + 1)/2 matrix elements of computer memory and always work not
slower than the full format data storage algorithms. The full format algorithms
store (n−1)×n/2 matrix elements in the computer memory but never reference
them.

(2) This paper isn’t an original paper. It contains the results and part of the text
from the TOMS paper [Andersen et al. 2005]. However, its results are currently
so important that we think we should again repeat them.
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The performance results in Table 1 are replaced with numbers obtained on
more novel computers.
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