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Abstract: 
Recent versions of microprocessors exhibit performance characteristics for 32 bit 
floating point arithmetic (single precision) that is substantially higher than 64 bit 
floating point arithmetic (double precision). Examples include the Intel’s Pentium IV 
and M processors, AMD’s Opteron architectures and the IBM’s Cell processor. When 
working in single precision, floating point operations can be performed up to two 
times faster on the Pentium and up to ten times faster on the Cell over double 
precision. The performance enhancements in these architectures are derived by 
accessing extensions to the basic architecture, such as SSE2 in the case of the 
Pentium and the vector functions on the IBM Cell. The motivation for this paper is to 
exploit single precision operations whenever possible and resort to double precision 
at critical stages while attempting to provide the full double precision results. The 
results described here are fairly general and can be applied to various problems in 
linear algebra such as solving large sparse systems, using direct or iterative methods 
and some eigenvalue problems. There are limitations to the success of this process, 
such as when the conditioning of the problem exceeds the reciprocal of the accuracy 
of the single precision computations. In that case the double precision algorithm 
should be used.  
 

Introduction 

The motivation behind this work is the observation that a number of recent processor 
architectures exhibit single precision performance that is significantly higher than for double 
precision arithmetic. An example of this include the IBM Cell multiprocessor which was 
announced with a theoretical peak of 204.8 GFLOPS in single precision (32 bit floating point 
arithmetic) and a peak of only 20 GFLOPS in double precision (64 bit floating point 
arithmetic) [7]. Even the Intel x87 processor with the use of the Streaming SIMD Extensions 
(SSE) unit on the Pentium III does 4 flops/cycle for single precision, and SSE2 does 2 
flops/cycle for double. Therefore, for any processor with SSE and SSE2 (e.g. Pentium IV), 
the theoretical peak of single is twice that of double, and on a chip with SSE and without 
SSE2 (e.g. some Pentium III), the theoretical peak of single is four times that of double. AMD 
Opteron processors share the same relation between SSE and SSE2. Appendix 1 contains 
additional information on the extensions to the IA-32 instruction set. 
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Another advantage of computing in single versus double precision is that data movement is 
cut in half. This helps performance by reducing memory traffic across the bus and enabling 
larger blocks of user’s data to fit into cache. In parallel computations, the total volume of 
communication is reduced by half and the number of initiated communication is reduced as 
well (if block sizes are doubled). The effect is that the communication behaves as if the 
bandwidth is multiplied by two and latency halved by two.  
 
The use of extensions to the ISA of x86-x87 has been put into practice in a number of 
implementations of the BLAS. This provides a speed improvement of a factor of two in single 
precision compared to double precision for basic operations such as matrix multiply. Some 
experimental comparisons of SGEMM versus DGEMM on various architectures are given in 
Table 2.   
 
The motivation for this paper is to exploit single precision operations whenever possible and 
resort to double precision at critical stages while attempting to provide the full double 
precision results. 
 

Iterative refinement for Systems of Dense Linear 
Equations 
 
Iterative refinement for the solution of linear equations is a practical technique that has been 
in use for many years. Suppose Ax = b has been solved via Gaussian Elimination with partial 
pivoting and we have the standard factorization PA = LU, where L is a lower triangular 
matrix, U an upper triangular matrix, and P a permutation matrix used for pivoting. The 
iterative refinement process is: 
 

r = b – Ax 
Solve Ly = Pr 
Solve Uz = y 
x+ = x + z. 
 

As Demmel [13, pp.60] points out the iterative refinement process is equivalent to Newton’s 
method applied to f(x) = b - Ax. If we could compute the residual exactly and solve for z 
exactly we would be done in one step, which is what we expect from Newton’s method 
applied to a linear problem. 
 
We are planning to use a mixed precision iterative refinement process. That is the 
factorization, PA = LU, and the triangular solves Ly = Pr and Uz = y will be computed using 
single precision and the residual (using the original data) and updating of the solution will be 
computed using double precision. Most of the floating point operations, the factorization of 
the matrix A and the forward and back substitutions will be performed in single precision. 
Only the residual computation and solution update are performed in double precision. The 
mixed precision approach was analyzed by Wilkinson [9] and Moler [1]; they showed that, 
provided A is not too ill–conditioned, it produces a computed solution correct to the working 
precision, in this case single precision. As pointed out in Demmel [6], the behavior of the 
method depends strongly on the accuracy with which the residual is computed. The input 
variables A and b are stored in double precision εd. The basic solution method is used to solve 
Ax = b and Az = r in single precision εs. The residual is computed in double precision εd and 
the solution updated in double precision εd. 
 
Iterative refinement is a fairly well understood algorithm. For example, Higham [14] gives 
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error bounds in single precision (resp. double) for fixed precision iterative refinement 
performed in single precision arithmetic (resp. double) and Higham [14] also gives error 
bounds in single precision arithmetic for mixed precision iterative refinement (when the 
refinement is performed in double precision arithmetic). However we did not find in the 
literature any error bound in double precision arithmetic when mixed precision iterative 
refinement (single/double) is performed. 
 
Stewart [8] provides an error analysis of iterative refinement. This analysis can be adapted to 
our context and the details are provided Appendix 2. The bottom line is that we can achieve 
the same accuracy using this approach as if we have computed the solution fully in 64 bit 
floating point precision, provided that the matrix is not too badly conditioned. 
 
The impact of this result is that if the factorization, and the forward and back substitutions are 
performed in single precision and the residual and update for the solution are performed in 
double precision, then the iterative refinement process will, as long as the matrix is not too 
badly conditioned, produce the same accuracy in the computed solution as if the double 
precision computation has been performed on the factorization, and the forward and back 
substitutions. The disadvantage is that we must retain a copy of the original matrix to 
compute the residual. So, the space cost is increased by 1.5 and the potential saving of 
computational time is a factor of 2 (assuming single precision computations are twice as fast 
as double precision computations). 
 
It is important to note that we are computing a correction to the solution, z, and then use that 
correction to update the solution, x+. A key point is that, while the correction is computed in 
single precision, the update is computed using double precision.  
 
An aspect of iterative refinement is that slow convergence of the process is an indicator of ill-
conditioning. Rice [12, pp.98] provides a bound for the maximum number of iterations used 

in iterative refinement can be bound by: ⎟
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t is log10 of the precision (t~16), and k is log10 of the condition number of the matrix 
(k=log10(κ )). We can extend this formula in the context of mixed precision iterative 
refinement with the following formula  
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where dt  is log10 of the double precision (t~16),  and st  is log10 of the double precision (t~8). 
Eq. (1) indicates that the maximum number of iterations becomes infinite when 

st10⋅κ comes close to 1 as expected. 
 
To verify the tightness of the bound Eq. (1), we have taken 150 random matrices with 
condition numbers from 1 to 810 , and size from n=[100 250 500], and for each of them we 
have plotted with blue crosses in Figure 1 the number of iterations needed by iterative 
refinement to converge with respect to the condition number (see Section Practical 
Implementation for a rigorous definition of convergence). The red curve is the bound Eq (1). 
We observe that this bound is tight. 
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Figure 1: The bound in Eq (1) (red curve) and the number of iterations needed by DSGESV with 

respect to the condition number (blue crosses) for various matrices.  

 

Practical Implementation 
A practical implementation of the method can be found at http://www.cs.utk.edu/~julie/iter-
ref. The code is in Fortran 77 and uses LAPACK and the BLAS routines. The iterative 
refinement is stopped either if the number of iteration exceeds ITERMAX (=30 by default), or 
if 
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If the iterative refinement procedure does not succeed, that is fails to converge, then the 
procedure will automatically switch to solving the system of linear equations using double 
precision arithmetic.  

Some Numerical Experiments  

Testing 
The driver routine, DSGESV, given in Appendix 3 successfully passed the LAPACK testing 
for DGESV. This consists of 147 matrices and 3 numerical tests are checked. Since those 
matrices are most of the time pathological, it is a good exercise for the routine to check if it is 
able to switch to a double precision solve when necessary. Out of those 147 matrices, 15 
matrices have a condition number close to 1510 , so the iterative refinement does not converge. 
18 matrices produce overflow when converted from double to single, and 18 matrices fail in 
the single LU factorization. For all those matrices DSGESV switches, as expected, to 
DGESV. The 96 remaining matrices converge fine with iterative refinement. 

LAPACK Kernels used 
In Table 1, we give the description of the LAPACK kernels used. 
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Subroutine names Description 
[S,D]GEMM Single/Double precision matrix-matrix multiply 
[S,D]GETRF Single/Double precision LU factorization routine 
[S,D]GETRS Single/Double precision backward and forward solve routine 
[S,D]GESV Solve a linear system of equations = [S,D]GETRF + [S,D]GETRS 
DGEMV Double precision matrix-vector multiply 
DSGESV Single precision LU factorization followed by double precision 

iterative refinement = SGETRF + ITER.(DGEMV+SGETRS) 

Table 1: Description of the different LAPACK kernels used in DSGESV and DGESV 

 Performance Results 
 
The first set of experiments show the performance of the sequential algorithm on a number of 
systems. In the third and fourth columns of Table 2, for each system, we report the ratio of 
the time to perform SGEMM (Single precision Matrix-Matrix multiply for GEneral matrices) 
over the time to perform DGEMM (Double precision Matrix-Matrix multiply for GEneral 
matrices) and the ratio of the time to perform SGETRF (Single precision LU Factorization for 
GEneral matrices) over the time to perform DGETRF (Double precision LU Factorization for 
GEneral matrices). As claimed in the introduction this ratio is often 2 (Katmai, Coppermine, 
Northwood, Prescott, Opteron, UltraSPARC, X1), which means single are twice as fast as 
double. Then in the fifth and sixth columns we report the results for DGSEV over DSGESV. 
The results from Table 1 show that this method can be very effective on a number, but 
not all, architectures. The Intel Pentium, AMD Opteron, Sun UltraSPARC, Cray X1, 
and IBM Power PC architectures, all exhibits a significant benefit from the use of 
single precision. Systems such as the Intel Itanium, SGI Octane, and IBM Power3 do 
not show the benefits.   
It is to note that single precision computation is significantly slower than double 
precision computation on Intel Itanium 2. 
 
 

Architecture (BLAS) n DGEMM 
/SGEMM 

DGETRF 
/SGETRF 

DGESV 
/DSGESV 

# iter 

Intel Pentium III Coppermine (Goto) 3500 2.10 2.24 1.92 4 
Intel Pentium III Katmai (Goto) 3000 2.12 2.11 1.79 4 
Sun UltraSPARC IIe (Sunperf)  3000 1.45 1.79 1.58 4 
Intel Pentium IV Prescott (Goto) 4000 2.00 1.86 1.57 5 
Intel Pentium IV-M Northwood (Goto) 4000 2.02 1.98 1.54 5 
AMD Opteron (Goto) 4000 1.98 1.93 1.53 5 
Cray X1 (libsci) 4000 1.68 1.54 1.38 7 
IBM Power PC G5 (2.7 GHz) (VecLib) 5000 2.29 2.05 1.24 5 
Compaq Alpha EV6 (CXML) 3000 0.99 1.08 1.01 4 
IBM SP Power3 (ESSL) 3000 1.03 1.13 1.00 3 
SGI Octane (ATLAS) 2000 1.08 1.13 0.91 4 
Intel Itanium 2 (Goto and ATLAS) 1500 0.71    
 

Table 2:  Ratio of execution times (speedup) for DGEMM/SGEMM (m=n=k), 
DGETRF/SGETRF and DGESV/DSGESV on various architectures, the number of iterations of 

iterative refinement in DSGESV is given in the last column.  
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Figure 2: Performance comparison and gain versus DGESV for DSGESV and its kernels on 

three different machines. 

 
In Figure 2, the left graphs show the performance in GFLOPS of various kernels. All the 
single precision-based routines are in dashed lines while the double-precision based routines 
are represented with solid lines. Ultimately one wants to compare the dashed blue line 
(DSGESV) with the solid blue line (DGESV). One can see that the performance of the 
DSGESV (dashed blue line) comes close to the performance of SGETRF (red dashed line). 
The difference between DSGESV and SGETRF is mainly due to the )( 2nO components in the 
iterative refinement; those terms turn out to be in general small but not negligible. 
 
The graphs on the right gives the percent of the most important kernels versus DGETRF. The 
blue line represents DGESV and is close to 100% (i.e. DGETRS is negligible with respect to 
DGETRF). The black line (DSGESV) is the sum of the green line (SGETRF), the magenta 
line (SGETRS), the cyan line (DGEMV), and the red line (conversion double-single, copies, 
DAXPY, …). We observe that the )( 2nO  operations in iterative refinement take up to 10% 
of the time of DGETRF an )( 3nO  operation. This phenomenon is due to the fact that 
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iterative refinement uses kernels that are hard to optimized; SGETRS, DGEMV and Level 1 
BLAS). As can be expected, as n increases the performance of DSGESV becomes close to the 
performance of SGETRF. 
 
The penalty of this method is that storage is increased by a factor 1.5 over what is required for 
the standard double precision solution method. The performance enhancements primarily 
come about when the speed of single precision arithmetic is significantly greater than double 
precision arithmetic.  
 
The next set of experiments is for a parallel implementation along the lines of ScaLAPACK 
[11]. In this case n is in general fairly large and, as we can observe in Table 3 or Figure 3, 
the cost of the iterative refinement )( 2nO  becomes negligible with respect to PDGETRF 

)( 3nO . Using PDSGESV is almost twice (1.83) as fast as opposed to using PDGESV for the 
same accuracy. 
 
 

Architecture (BLAS-MPI) # procs n PDGETRF 
/PSGETRF 

PDGESV 
/PDSGESV 

# 
iter 

AMD Opteron (Goto – OpenMPI MX) 32 22627 1.85 1.79 6
AMD Opteron (Goto – OpenMPI MX) 64 32000 1.90 1.83 6

Table 3:  Performance comparison between PDGETRF/PSGETRF and PDGESV/PDSGESV on 
an AMD Opteron cluster with Myrinet interconnects, the number of iterations of the refinement 

technique in PDSGESV is given in the last column.  

 

 
Figure 3:  Performance comparison between PDGETRF/PSGETRF and PDGESV/PDSGESV on 

an AMD Opteron cluster with Myrinet interconnects. 

 
 

Quadruple Precision 
 
As an extension to this study, we present in this section results for iterative refinement in 
quadruple precision on an Intel Xeon 3.2GHz. The iterative refinement code computes a 
condition number estimate; the input matrices are random matrices with uniform distribution. 
For quadruple precision arithmetic, we use the reference BLAS compiled with ’ifort -O3’ the 
Intel Fortran compiler (with -O3 optimization flags on) since we do not have an optimized 
BLAS in quadruple precision. Results are presented in Table 4. The obtained accuracy is of 
about 10-32 for QGETRF and QDGETRF as expected. No more than 3 steps of iterative 
refinement are needed. The speedup goes from 10 for a matrix of size 100 to close to 100 for 
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a matrix of size 1000. In Table 5, we give the time for the different kernels used in QGESV 
and QDGESV. Interestingly enough the time for QDGESV is dominated by QGEMV and not 
DGETRF!  
 
 

 QGESV QDGESV  
n   time (s) time (s) speedup   

100  0.29  0.03  9.5   
200  2.27  0.10  20.9   
300  7.61  0.24  30.5   
400  17.81  0.44  40.4   
500  34.71  0.69  49.7   
600  60.11  1.01  59.0   
700  94.95  1.38  68.7   
800  141.75  1.83  77.3   
900  201.81  2.33  86.3   

1000 276.94 2.92  94.8   
  

Table 4:  Iterative refinement in quadruple precision on a Intel Xeon 3.2GHz.  
 
 

driver name  time (s) kernel name time (s)   
QGESV  201.81  QGETRF  201.1293 

  QGETRS  0.6845 
QDGESV  2.33  DGETRF  0.3200 

  DGETRS  0.0127 
  DLANGE  0.0042 
  DGECON  0.0363 
  QGEMV 1.5526 
  ITERREF 1.9258 

Table 5:  Time for the various kernels in the quadruple accuracy versions. 

Extensions 
The ideas expressed here for solving systems for general dense problems can be extended to 
the case of solving symmetric positive definite matrices using Cholesky factorization, dealing 
with linear least squares problems with the QR factorization. In addition the iterative 
refinement concept can be applied to eigenvalue/singular value computation (see [2,3,4,5]). 
Applying these ideas to sparse matrices is also an option that will be pursued in the future. 
 
To summarize, the main benefit comes from performing the bulk of the computation in single 
precision where the rate of execution is usually higher, perhaps by a factor of 2 and achieving 
the same accuracy as if the entire computation was performed in double precision. The 
disadvantage is that the storage requirements are increased by a factor of 1.5 and the input 
need to be not too ill conditioned. 
 

Conclusion 
Exploiting 32 bit floating point arithmetic for performance reasons and obtaining full 
precision (64 bit results) are desirable goals. The results described here are fairly general and 
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can be applied to various problems in linear algebra such as solving dense and large sparse 
systems using direct or iterative methods and some eigenvalue problems. There are 
limitations to the success of this process, such as when the conditioning of the problem 
exceeds the reciprocal of the accuracy of the single precision computations. In that case the 
double precision algorithm should be used.  
 
The use of these techniques will have application on the IBM Cell and perhaps extend to 
Graphical Processing Units (GPUs), such as Nvidia and ATI, where 32 bit floating point 
arithmetic is native and performed extremely fast. These GPUs may not even have 64 bit 
floating point hardware and as such the 64 bit operations would have to be emulated in 
software. 
 

Notes and Comments 

The authors would like to thank Clint R. Whaley for insightful comments on machine 
hardware specification. Neither equilibration nor scaling is performed in the routine 
DSGESV. Adding equilibration and scaling will certainly enhanced the range of applicability 
of the method. This remains to be evaluated. 
 

References 
 
[1] Moler, C. B.: Iterative Refinement in Floating Point. J. ACM (2) (1967) 316–321. 
[2] Dongarra, J. J.: Algorithm 589: SICEDR: A FORTRAN Subroutine for Improving 

the Accuracy of Computed Matrix Eigenvalues. ACM Transactions on Mathematical 
Software. (4) (1982) 371–375. 

[3] Dongarra, J. J., Moler, C. B., and Wilkinson, J. H.: Improving the Accuracy of 
Computed Eigenvalues and Eigenvectors. SIAM Journal on Numerical Analysis. (1) 
(1983) 23–45. 

[4] Dongarra, J. J.: Improving the Accuracy of Computed Singular Values. SIAM Journal 
on Scientific and Statistical Computing. (4) (1983) 712–719. 

[5] Dongarra, J. J., Geist, G. A., and Romine, C. H.: Algorithm 710: FORTRAN 
Subroutines for Computing the Eigenvalues and Eigenvectors of a General Matrix by 
Reduction to General Tridiagonal Form. ACM Transactions on Mathematical 
Software. (4) (1992) 392–400. 

[6] Demmel, J., Hida, Y., Kahan, W., Li, X. S., Mukherjee, S., and Riedy, E. J.: Error 
Bounds from Extra Precise Iterative Refinement. Technical Report No. UCB/CSD-
04-1344, LAPACK Working Note 165August 2004.  

[7] Kahle, J. A., Day, M. N., Hofstee, H. P., Johns, C. R., Maeurer, T. R., and Shippy, D.: 
Introduction to the Cell multiprocessor. IBM J. Res. and Dev. (4/5) (2005) 589–604. 

[8] Stewart, G. W.: Introduction to Matrix Computations. Academic Press, New York, 
1973. 

[9] Wilkinson, J. H.: The Algebraic Eigenvalue Problem. Oxford, U.K.: Clarendon, 1965. 
[10] Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J. W., Dongarra, J. J., 

Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D.: 
LAPACK Users' Guide. SIAM, third edition, 1999. http://www.netlib.org/lapack/. 

[11]  Blackford, L. S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J. W., Dhillon, I., 
Dongarra, J. J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., and  
Whaley, R. C.: ScaLAPACK Users' Guide. SIAM Press, 1997. 

[12] Rice, J. R.: Matrix Computations and Numerical Software. New York, Mc Graw-Hill, 
1981. 

[13] Demmel, J. W.: Applied Numerical Linear Algebra. SIAM Press, 1997. 
[14] Higham, N. J.: Accuracy and Stability of Numerical Algorithms. 2nd Edition. SIAM 



 10

Press, 2002. 

Appendix 1 

Here is a summary of the x86-x87 ISA Extensions: 

MMX  
Set of "MultiMedia eXtensions" to the x86 ISA. Mainly new instructions for integer 
performance, and maybe some prefetch. For Intel, all chips starting with the 
PentiumMMX processor possess these extensions. For AMD, all chips starting with 
the K6 possess these extensions.  

SSE  
Streaming SIMD (Single Instruction Multiple Data) Extensions. SSE is a superset of 
MMX (i.e., a chip with SSE automatically possesses MMX) These instructions are 
used to speed up single precision (32 bit) floating point arithmetic. By operating on 4 
single precision values with one instruction, they allow for a theoretical peak of 4 
FLOPs (FLoating point OPerations) every cycle (eg, a 500Mhz PIII can theoretically 
perform 2GFLOPS (2 billion FLoating point Operations Per Second)). The results 
returned by SSE are IEEE compliant (as are classical x86 floating point results). For 
Intel, all chips listed starting with the Pentium III possess SSE extensions. For AMD, 
all chips starting from Athlon4 possess SSE.  

3DNow!  
AMD's extension to MMX that does almost the exact same thing SSE does, except 
the single precision arithmetic is not IEEE compliant (i.e. it is not as fault-tolerant as 
x86 arithmetic). It is also a superset of MMX (but not of SSE; 3DNow! was released 
before SSE). It is supported only on AMD, starting with the K6-2 chip.  

Enhanced 3DNow!  
An extension to 3DNow! starting with the Athlon onward. Some additional prefetch 
commands.  

3DNow! Professional  
AMD's extension that is essentially Enhanced 3DNow! + SSE. Available on AMD 
chips starting with the Athlon4.  

SSE2  
Additional instructions that perform double precision floating arithmetic. Allows for 
2 double precision FLOPs every cycle. For Intel, supported on the Pentium 4 and for 
AMD, supported on the Opteron. 
 
 

The following table lists some of the some of the processors, and the constant to multiply the 
cycle time by to get peak performance (an entry of 0 indicates that processor does not have 
the given ISA extension). 
 

Processor x87 SSE 3DNOW!
Pentium 1 0 0

Pentium II 1 0 0
Pentium III 1 4 0
Pentium 4 1 4 0

Athlon 2 0 4
Enhanced Athlon 2 0 4

Athlon4 2 4 4
AthlonMP 2 4 4
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For double precision (64 bit) arithmetic the table is given below. 

Processor x87 SSE2
Pentium 1 0

Pentium II 1 0
Pentium III 1 0
Pentium 4 1 2

Athlon 2 0
Enhanced Athlon 2 0

Athlon4 2 0
AthlonMP 2 0
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Appendix 2 
 
We reproduce and expand here a classical proof about iterative refinement. Original proofs 
can be found in  Stewart “Introduction to Matrix Computations” page 200-205 or Stewart 
“Matrix Algorithms: Volume I: Basic Decompositons” page 221-223 or Higham 
“Accuracy and Stability of Numerical Algorithms”, 2nd edition, Chapter 12, page 231-
243.  
 
Originality of the proof given here is two folds: 

1. while most of the error analysis results on iterative refinement are given in term of the 
lower accurate precision, we provide here error analysis in term of the higher accurate 
precision, 

2. To keep the analysis simple, we provide normwise error bounds (as opposed to 
Higham for example who deals with componentwise error bounds), we believe that 
the resulting proof is less powerful in term of results but is more easily readable for a 
standard and non expert reader. Extending the results to componentwise error bound 
can be done following Higham proof. 
 

Algorithm and floating-point arithmetic relations 
 

We are considering the iterative refinement algorithm 
  

Initialize 1x  
for k= 1, 2, … 

  (1) kk Axbr −=  ( εd ) 

  (2) Solve kk rAd =  ( εs ) 
  (3) kkk dxx +=+1  ( εd ) 
 end for 
 
performed in floating-point arithmetic where the residual kr  (step 1) and the new approximate 
solution 1+kx  (step 3) are computed using double precision ( εd ) arithmetic,  and the 

correction vector kd  (step 2) is computed using in single precision ( εs ) arithmetic.   
 
We assume that step 2 is performed using a backward stable algorithm for example Gaussian 
elimination with partial pivoting, the GMRES iterative method, … Backward stability implies 
that there exists kH such that  

(1) kkk rdHA =+ )(   where AnH sk εφ )(≤ , 

where )(nφ  is a reasonably small function of n . In other words, Equation (1) states that the 
computed solution kd is an exact solution for an approximated problem. 
 
Step 1 and step 3 are performed in double precision arithmetic and thus the classical error 
bounds hold: 

(2) kkkk eAxbAxbflr +−≡−= )(   where )()(1 bxAne kdk +⋅≤ εϕ , 

(3) kkkkkk fdxdxflx ++≡+=+ )(1   where )()(2 kkdk dxnf +≤ εϕ . 
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Results and interpretation 
Using Equation (1), (2) and (3),  for any k, we will prove that 

(4) xxxxx FkFk βα +−≤− +1 , 

where α and β  are defined as 

(5) ( ) dddd
s

s
F AnnnAn

An
An εκϕεϕεϕεκϕ

εκφ
εκφα )()()(12)()()(2
)()(1

)()(
2121 ++++

−
=

 
(6) ( ) ddddF AnnnAn εκϕεϕεϕεκϕβ )()()(14)()()(4 2121 +++= . 

 
Note that Fα  and Fβ  are of the form 

(7) sFF An εκψα )()(=  and dFF An εκρβ )()(= . 
 
For Equation (4) to hold, we will need to assume that the matrix A  is not too-ill 
conditioned with respect to the single precision ( εs ) arithmetic used, namely we will 
assume that 

(8) ( )( ) 1)()(1)()( 1 <− −
sFsF AnAn εκψεκρ . 

This results is proved in Section Forward Error Analysis. 
 

 
Assuming 1<Fα , it will then follow that  

(9) xxxxx
F

k
F

F
k

Fk α
αβα
−
−

+−≤− + 1
1

11 , 

and so kx  converges to kk
xx

+∞→
≡ lim~  where 

( ) x
An

Anxxxxx
sF

dF
FFkk εκψ

εκραβ
)()(1

)()(1~lim 1

−
=−≤−=− −

+∞→
. 

This last result is a standard result for the iterative refinement algorithm. This result states that 
assuming 2

sd εε <  , so that sdF An εεκρ <)()( , one can drive the forward error to the 
level: 

(10) )(lim s
k

k
O

x
xx

ε≤
−

+∞→
. 

Fα is the rate of convergence and depends on the condition number of the matrix A ( )(Aκ ) 
and the single precision used ( εs ). Fβ  is the limiting accuracy of the method and depends on 
the double precision used ( εd ).  
 
Result (6) is of interest in mixed precision iterative refinement when one wants to reduce the 
forward error with respect to the single precision used ( εs ). However in our case, we are 
interested in double precision ( εd ) accuracy, thus we will write: 

(11) 
s

dk

k An
An

x
xx

εκψ
εκρ
)()(1

)()(lim
−

≤
−

+∞→
. 

Unfortunately this bound offers nothing surprising and states that one can not reduce the 
forward error less than the machine precision used time the condition number. To have more 
insight in the iterative refinement procedure we will need to move to backward error analysis. 
 
(In practice we would have liked to get rid of the forward analysis of the iterative refinement 
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algorithm since it leads us to a bound that we feel uninteresting in our case. However we will 
need the forward analysis to bound || xk || and || dk || in term of || xk+1 ||, which turns to be 
useful in the backward analysis.) 
 
Regarding the backward error analysis we will prove in Section Backward Error 
Analysis that 

(12) B
k

k
B

k

k

xA
Axb

xA
Axb

βα +
⋅

−
⋅≤

⋅
−

+

+

1

1 , 

where  

(13) d
s

s
B n

An
An γεϕ

εκφ
γεκφα )(2

)()(1
)()(

1+
−

= , 

(14) ( )( )( ) ddB nnn εεϕγϕγϕβ 1
221 )(121)()(4 −−++= . 

 
Note that Bα  and Bβ  are of the form 

(15) sBB An εκψα )()(=  and dBB n ερβ )(= . 
For Equation (11) to hold, we will need to assume that the matrix A  is not too-ill 
conditioned with respect to the single precision ( εs ) arithmetic used, namely we will 
assume that 

(16) ( )( ) 1)()(1)()()()( 1 <−+ −
sFsFsF AnAnAn εκψεκρεκψ , and 

(17) ( )( ) 1)()(1)( 1 <− −
sBdB Ann εκψερ . 

 
Bα is the rate of convergence and depends on the condition number of the matrix A ( )(Aκ ) 

and the single precision used ( εs ). Bβ  is the limiting accuracy of the method and depends on 
the double precision used ( εd ). 
 
At convergence we have  

(18) ( ) d
sB

B
BB

k

k

k An
n

xA
Axb

ε
εκψ

ραβ
)()(1

)(1lim 1

−
=−=

⋅
− −

+∞→
. 

Equation (15) means that the solver is normwise backward stable. 
This analysis also confirms the heuristic about for the numbers of steps needed to converge. 

Forward error analysis 
 
From Stewart [Matrix Algorithms, Vol. 1, Ch. 1, Th 4.18], we know that if  

2/1)()( <sAn εκφ then )( kHA +  is nonsingular and  

(19) 11 )()( −− +=+ AFIHA kk  where 1
)()(1

)()(
<

−
≤

s

s
k An

AnF
εκφ

εκφ
. 

From Equation (1) and Equation (3) we have 

kkkkk frHAxxxx −+−−=− −
+

1
1 )( , 

then using Equation (2) and Equation (18), we get 

kkkkkk feAxbAFIxxxx −+−+−−=− −
+ )()( 1

1 , 
rearranging a litltle bit, we have 

kkkkkk feAxxFIxxxx −+−+−−=− −
+ ))(( 1

1 , 
 and this finally gives us:  
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kkkkkk feAFIxxFxx −+−−−=− −
+

1
1 )()( . 

Taking the norms of both sides and using the fact that 1<F  gives us 

 kkkkk feAxxFxx +⋅⋅+−⋅≤− −
+

1
1 2 . 

 
Using Equation (2) and Equation (3), we get 

(20) )()()()(2 2
1

11 kkdkdkkk dxnbxAAnxxFxx +++⋅⋅+−⋅≤− −
+ εϕεϕ

. 
In Equation (20), (21), and (22), we are going to bound kx , bxA k +⋅  and kd  

respectively by kxx −  and x . Next step will be to inject those three bounds in 
Equation (19), and then we will be done with our final result on forward error. 
 
Triangle inequality gives us  

(21) xxxx kk +−≤ . 

Then using the fact that bAx = ,  
(22) xAxxAbxA kk ⋅⋅+−⋅≤+⋅ 2  . 

Finally using Equation (1) and Equation (4), 

kkkkkk rArAFIrHAd ⋅≤+=+= −−− 111 2)()(  . 
Since from Equation (2) we have 

( ) )()(1 1 bxAnexAbr kdkk +⋅⋅+≤+⋅+≤ εϕ , 
using Equation (20) in this latter inequality we obtain 

(23) ( ) ( )xxxAnd kdk ⋅+−⋅⋅+⋅≤ 2)()(12 1 κεϕ . 
 
Injecting Equation (20), (21), and (22) in Equation (19) leads us to our first result: 

( ) kdddd
s

s
k xxAnnnAn

An
Anxx −⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++++

−
≤− + εκϕεϕεϕεκϕ

εκφ
εκφ )()()(12)()()(2
)()(1

)()(
21211

    ( )( ) xAnnnAn dddd ⋅++++ εκϕεϕεϕεκϕ )()()(14)()()(4 2121 . 

If we define Fα and Fβ as 

(24) ( ) dddd
s

s
F AnnnAn

An
An εκϕεϕεϕεκϕ

εκφ
εκφα )()()(12)()()(2
)()(1

)()(
2121 ++++

−
=

, 
(25) ( ) ddddF AnnnAn εκϕεϕεϕεκϕβ )()()(14)()()(4 2121 +++= , 

 
then we find that  

xxxxx FkFk βα +−≤− +1 , 
where sF An εκψα )()(=  and dF An εκρβ )()(= . 

Bound on || xk || and || dk || in term of || xk+1 || 
A result that will be useful later is to note that, assuming 01 =x  for simplicity and 
without loss of too much generality, from Equation (9),  we can write the two 
following inequalities: 
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xx
F

k
F

F
k

Fk ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

++≤
−

−

α
αβα

1
11

1
1 , 

1

1

1
11 +

−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−−≤ k
F

k
F

F
k

F xx
α
αβα . 

Assuming that 1
1

<
−

+
F

F
F α

βα , we get  

 1

1
1

1
11

1
11

+

−
−

⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

++
≤ k

F

k
F

F
k

F

F

k
F

F
k

F

k xx

α
αβα

α
αβα

, 

and, by defining  

 γ

α
αβα

α
αβα

γ ≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

++
≡

−
−

F

k
F

F
k

F

F

k
F

F
k

F

k

1
11

1
11

1
1

, 

we have, for any k ,  
(26) 1+⋅≤ kk xx γ . 

Using Equation (3) we have 
( ) kdkdkkkkk dnxnxfxxd εϕεϕ )()(1 2211 +++≤−−= ++ , 

so with Equation (26) this gives us 
(27) ( ) ( ) 12

1
2 )(1)(1 +

− ++−≤ kddk xnnd γεϕγεϕ . 
 
Note that here we have assumed  

(28) 1
1

<
−

+
F

F
F α

βα . 

 

Backward error analysis 

  
From Stewart [Matrix Algorithms, Vol. 1, Ch. 1, Th 4.18], we know that if  

2/1)()( <sAn εκφ then )( kHA +  is nonsingular and  

(29) )()( 11
kk GIAHA +=+ −−  where 1

)()(1
)()(

<
−

≤
s

s
k An

AnG
εκφ

εκφ
. 

( Note: 
As Stewart mentioned, the )( kXI +  matrix can be put on the left or on the right side of A. 
See Equation (19) for the left side and Equation (29) for the right side. Here the proof. 

Since 11 <−
kHA , we have ( )

k

k
k HA

HAA
HA 1

11
1

1 −

−−
−

−

⋅
<+  (see Stewart). 

For the right side (Equation (29)), one goes as 
111111 )()))((()( −−−−−− +−=++−=−+ kkkkk HAHAHAHAAIAHA , 
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)()( 11
kk GIAHA +=+ −−  where 1)( −+−= kkk HAHG  . 

For the right side (Equation (19)), one goes as 
111111 )())(()()( −−−−−− +−=+−+=−+ AHHAAHAIHAAHA kkkkk , 

11 )()( −− +=+ AFIHA kk  where kkk HHAF 1)( −+−= . 
 
 
From Equation (1) and Equation (3) we have 

kkkkk frHAxxxx −+−−=− −
+

1
1 )( , 

then using Equation (2) and Equation (29), we get 

kkkkkk feAxbGIAxxxx −+−+−−=− −
+ ))((1

1 , 
multiplying (on the left A ) we finally get  

kkkkkk AfeGIAxbGAxb −+−−−=− + )()(1 . 

Taking the norms of both sides and using the fact that 1<F  gives us 

 kkkkk fAeAxbGAxb ⋅+⋅+−⋅≤− + 21 . 
Using Equation (2) and Equation (3) we have 

( ) kddkdkkk dAnbnxAnnAxbGAxb ⋅⋅+⋅+⋅⋅++−⋅≤− + εϕεϕεϕϕ )()(2)()(2 21211

. 
Assuming Equation (28) holds, we can use Equation (26) (we recall : 1+⋅≤ kk xx γ ), 

Equation (27) (we recall: ( ) ( ) 12
1

2 )(1)(1 +
− ++−≤ kddk xnnd γεϕγεϕ ). Using the fact 

that kk xAAxbb ⋅+−=  we get: 

( ) kdkk AxbnGAxb −⋅+≤− + εϕ )(2 11  

( ) ( )( ) 12
1

2221 )(1)(1)()()(4 +
− ⋅⋅++−+++ kddd xAnnnnn εγεϕγεϕϕγϕγϕ . 

So finally 

 B
k

k
B

k

k

xA
Axb

xA
Axb

βα +
⋅

−
⋅≤

⋅
−

+

+

1

1 , 

where  
 

d
s

s
B n

An
An γεϕ

εκφ
γεκφα )(2

)()(1
)()(

1+
−

= , 

( )( )( ) ddB nnn εεϕγϕγϕβ 1
221 )(121)()(4 −−++= . 
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Appendix 3: Algorithm 
Algorithm DSGESV Mixed precision iterative refinement 
 

Input: A∈Rn*n
(64), b∈Rn

(64)  (64-bit precision) 
Output: x∈Rn

(64)  accurate in 64-bit precision (in the backward error sense) 
 
Make 32-bit precision copy of A and b 
A(32), b(32)← A, b 
Compute LU factorization in 32-bit precision: L(32) U(32) ≈ P(32)A(32) 
L(32), U(32), P(32) ← SGETRF(A(32)) 
Apply back-solve in 32-bit precision with 32-bit precision factors 
x(1)

(32) ← SGETRS(L(32), U(32), P(32), b(32)) 
Promote the solution from 32-bit precision to 64-bit precision 
x(1) ← x(1)

(32) 
i ← 0 
repeat 
 i ← i+1 
 Compute residual in 64-bit precision 
 r(i) ← b - Ax(i) 
 Demote the residual from 64-bit precision to 32-bit precision 
 r(i)

(32) ← r(i)
 

 Back-solve on 32-bit precision residual and 32-bit precision factors 
 z(i)

(32) ← SGETRS(L(32), U(32), P(32), r(i)
(32) ) 

 Promote the correction from 32-bit precision to 64-bit precision 
 z(i) ← z(i)

(32) 
 Update solution in 64-bit precision 
 x(i+1) ← x(i) + z(i) 
until (||r(i)||2 < min( 4 , sqrt(n) / 6) ε ||A||fro ||x(i)||2)  or  (i > 30) 
 
if (||r(i)||2  ≥ min( 4 , sqrt(n) / 6) ε ||A||fro ||x(i)||2) then 
 Refinement procedure failed to converge 
 Compute solution in 64-bit precision using LU factorization 
 x(i+1) ← DGESV(A, b) 
end if 

 


