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Abstract:

As computer systems grow in size and complexity, tool support is needed to facilitate the
efficient mapping of large-scale applications onto these systems. To help achieve this
mapping, performance analysis tools must provide robust performance observation
capabilities at all levels of the system, as well as map low-level behavior to high-level
program constructs. This paper describes instrumentation and measurement strategies,
together with a suite of performance analysis tools that implement these strategies.
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1.0 Introduction

As computer systems grow in size and complexity, tool support is needed to facilitate the
efficient mapping of large-scale applications onto these systems. To help achieve this
mapping, performance analysis tools must provide robust performance observation
capabilities at all levels of the system, as well as map low-level behavior to high-level
program constructs. Performance observation requirements are determined by the
performance problem being addressed and the performance evaluation methodology
being applied.

Instrumentation of the application is necessary to capture performance data.
Instrumentation may be inserted at various stages, from source code modifications to
compile-time to link-time to modification of executable code either statically or
dynamically during program execution. These instrumentation points have different
mechanisms which vary in their ease of use and in the flexibility, level of detail, and user
control of what data can be collected.

Performance data of various types can provide valuable insights into program behavior
and point the way toward program transformations that will improve performance.
Profiling data shows the distribution of a metric across source-level constructs, such as
routines, loops, and basic blocks. In addition to timing facilities such as cycle counters,
most modern microprocessors provide arich set of hardware counters that capture
functional unit, memory, and operating system events. Profiling can be based on either
time or various hardware-based metrics, such as cache misses, for example. Correlations
between profiles based on different events, as well as event-based ratios, provide derived
information that can help to quickly identify and diagnose performance problems. In
addition to profiling data, capturing event traces of program events, such as message
communication events, helps portray the temporal dynamics of application performance.

A wide range of performance problems, performance evaluation methods, and
programming environments need to be supported. A suite of tools, rather than one

specific tool, can best provide the necessary flexibility in experiment design and in



selection and control of experiment mechanisms. Section 2 describes the instrumentation
mechanisms it is desirable to support. Section 3 describes various types of
measurements. Both these sections include examples of how the instrumentation and
measurement strategies are implemented in the PAPI and TAU tool suites. Section 4
gives application examplesto illustrate how the tools use these strategies to solve
performance problems. Section 5 contains conclusions.

2.0 Instrumentation

To observe application performance, additional instructions or probes are typically
inserted into a program. This processiis called instrumentation. The execution of a
program is regarded as a sequence of significant events. As events execute, they activate
the probes which perform measurements. Thus, instrumentation exposes key
characteristics of an execution.

2.1 Desired Features

For wide applicability of a performance tool, it is desirable for the tool to allow
instrumentation of applications written in several languages such as Fortran90, C++, C
and Java. It should also support multiple compilers (vendor, commercial, free) on each
platform and be ported to severa platforms. The tool should also support different
threading models (such as OpenMP, pthread, sproc, Java) etc. Profiling tools that insert
instrumentation should have an option for manual overrides to provide greater flexibility.
The tool should alow selection of events to minimize perturbation and provide facilities
for grouping events for relating low-level eventsto higher levels of abstraction. Runtime
enabling and disabling of events is another desirable feature as is online viewing of
performance data. The TAU profiling and tracing toolkit aimsto provide these and other
features. It has three distinct phases for instrumentation, measurement and analysis as
shown in figure 1 below.
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Figure 1: Architecture of TAU

The source code of a program undergoes a series of transformations before it executes as
shown in Figure 1. Instrumentation can be added to the program at any of these levels,
each of which imposes different constraints and opportunities for extracting program
information. As information flows through these levels, different aspects of the program
can be revedled. As we move from source code instrumentation techniques to binary
instrumentation techniques, our focus shifts from a language specific to a more platform
specific instrumentation approach.

2.2 Sour ce code instrumentation

Instrumentation at the source code level has several advantages. It alows the programmer
to communicate higher-level domain-specific abstractions to the performance tool. This
is especially useful if atool cannot automatically infer such information. A programmer
can communicate such events by annotating the source code at appropriate locations with
instrumentation calls. Thisis easily done at the source level, but may be significantly
more difficult elsewhere. Once the program undergoes a series of transformations to
generate the executable code, specifying arbitrary pointsin the code for instrumentation
and understanding program semantics at those points may not be possible.

Another advantage of source code instrumentation is that once an instrumentation library

targets one language, it can provide portability across multiple compilers for that



language, as well as across multiple platforms. The API is independent of details below
the compiler such as operating system dependencies and object file formats. For example,
the Performance API (PAPI) project provides a portable library interface to the hardware
performance counters available on most modern microprocessors[1]. PAPI provides
both easy to use high level routines (start, stop, read, and flops calls), as well as a detailed
programmable low-level interface that provides full access to the hardware, for use by
application programmers to instrument their application source code.

Source code annotations can be inserted manually or automatically. Adding
instrumentation calls in the source code manually can be a tedious task that introduces the
possibility of instrumentation errors that can produce erroneous performance data. For
example, a user may overlap timers in the source code. While syntactic errors can be
caught during compilation, logical errorsin instrumentation may be more difficult to

detect; overlapping timers, for instance, can only be detected at runtime [2].

Some of these difficulties with source code instrumentation can be overcome by using a
preprocessor. A preprocessor isimplemented as a source-to-source trandation that tool
typically expands header files and performs macro substitutions during compilation. Such
source-to-source transformations can be used to build an instrumentor that automatically
introduces instrumentation, alleviating the burden on the programmer.

Preprocessor level instrumentation is commonly used to insert performance measurement
calls at routine entry and exit points in the source code. To do this, atool first needsto
parse the application source code and locate the semantic constructs that are to be
instrumented (such as routines, loops or individual statements). To insert code, the
instrumentor also needs an interface to the parsed internal representation of the source
code. Toolssuch as PDT [3] for C++, C and Fortran 90, Sage++ [4] for C++ and SUIF
[5] for C and Fortran provide an object-oriented class library to access the data structures
that represent the parsed intermediate form. In the TAU project, we have developed a
source-to-source instrumentor (tau_instrumentor) using PDT. It supports instrumentation
of C, C++ and FO0 programs. The instrumented source code is then compiled and linked

with the TAU performance measurement library.



Source code instrumentation requires access to the source code for instrumentation.

2.2.1 Instrumentation of system calls

While source code may not be available for some libraries, instrumentation at this level
can still be used at call-sites, or points in the application source code where the library
routines are called. Typically thisis accomplished by a preprocessor that replacesthe
library call with a call to an instrumented version. For languages such as C and C++
which have a preprocessor within the compiler, a specialized preprocessor can be
avoided. In TAU, aheader file can be used to define macros that re-define the native
library routines (e.g., open) with instrumented routines (e.g., tau_open). During
compilation, the compiler preprocessor replaces calls to proprietary library routines with
calsto the instrumented, wrapper libraries which perform measurements and call the
appropriate library routines. This scheme does not require access to the library source
code. However, it does require a minor modification (addition of a header file) to the
application sources and requires the instrumented version of the library to be linked with
the other object files and libraries. The main limitation of this approach isthat it can only
capture information about instances of library calls at specific call-sites that are
redirected. If a pre-compiled library routine makes references to awrapped routine, it is
not possible to re-direct such areference without access to its source code and re-

compiling it with the appropriate header file.

Another tactic isto use the preload mechanism of a dynamic loader to start monitoring
tools at process or thread creation time. A trap is created that calls atool initialization
routine in conjunction with executing the normal thread or process creation routine. This
tactic is used in the trapper tool distributed with PAPI.

2.3 Library level instrumentation
Wrapper interposition libraries provide a convenient mechanism for adding
instrumentation calls to libraries. A good example of this approach is found in the



Message Passing Interface (MPI) Profiling Interface [6]. MPI, a standard for inter-
process message communication, is commonly used to implement parallel SPMD
programs. As part of its definition, it includes alternative entry points for MPI routines.
The MPI Profiling Interface allows atool developer to interface with MPI callsin a
portable manner without modifying the application source code and having access to the
proprietary source code of the library implementation.

The MPI standard defines the native library routine with weak bindings and a name
shifted interface. A weak binding allows two different routines with the same name to co-
exist in abinary executable. If atool re-defines the native call, it takes precedence. In this
manner, a performance tool can provide an interposition library layer that intercepts calls
to the native MPI library by defining routines with the same name (e.g., MPI_Send).
These routines wrap performance instrumentation around a call to the name-shifted
native library routine provided by the MPI profiling interface (e.g., PMPI_Send). The
exposure of routine arguments allows a tool to track the sizes of messages and message
tagsasin TAU[7].

The POMP interface for OpenMP provides a performancec API target for source-to-
source instrumentation tools (e.g., Opari) allowing for instrumented OpenM P codes that
are portable across compilers and machine platforms [8]. Defined as alibrary API, the
interface exposes OpenMP execution events of interest (e.g., sequential, parallel, and
synchronization events) for performance observation, and passes OpenM P context
descriptors to inform the performance interface library of region-specific information.
The OPARI tool rewrites OpenMP directives in functionally equivalent, but source-
instrumented forms, inserting POMP performance calls where appropriate. TAU uses the
POMP interface in conjunction with OPARI for instrumentation of OpenMP programs.

2.4 Binary instrumentation

Executable images can be instrumented using binary code-rewriting techniques, often
referred to as binary editing tools or executable editing tools. Systems such as Pixie, EEL
[9] and PAT [10] include an object code instrumentor that parses an executable and



rewrites it with added instrumentation code. PAT can be used for call-site profiling and
instrumentation at the routine level as well as gathering routine level hardware
performance statistics. Pixie can count basic blocks within a routine and EEL can
instrument a routine’s control flow graph and instructions. In each case, the executable
file is re-written with the appropriate instrumentation inserted.

The advantage of binary instrumentation is that there is no need to re-compile an
application program and rewriting a binary file is mostly independent of the
programming language. Also, it is possible to spawn the instrumented parallel program
the same way as the original program, without any special modifications as are required

for runtime instrumentation [11].

2.5 Dynamic I nstrumentation

Dynamic instrumentation is a mechanism for runtime-code patching that modifies a
program during execution. DyninstAPI [12] provides an efficient, low-overhead interface
that is suitable for performance instrumentation. A tool that uses this API (also known as
a mutator) can insert code snippets into a running program (also known as a mutatee)
without re-compiling, re-linking or even re-starting the program. The mutator can either
spawn an executable and instrument it prior to its execution, or attach to a running
program. DyninstAPI inserts instrumentation code snippets in the address space of the
mutatee. The code snippets can load dynamic shared objects in the running application
andcall routines, as well as read and write application data. The DyninstAPI translates
code snippets into machine language instructions in the address space of the mutatee. It
generates code to replace an instruction in the mutatee with a branch instruction to the
instrumentation code. The replaced instruction calls a base trampoline which branches to
a mini trampoline. A mini trampoline saves the registers and executes the code snippet(s)
with appropriate arguments. Thereafter, it restores the original registers and calls the base
trampoline. The base trampoline executes a relocated instruction and returns to the
statement after the replaced instruction in the original code as described in [12].

Dynamic instrumentation overcomes some limitations of binary instrumentation by
allowing instrumentation code to be added and removed at runtime. Also, the

instrumentation can be done on a running program instead of requiring the user to re-



execute the application. The disadvantage of dynamic instrumentation is that the interface
needs to be aware of multiple object file formats, binary interfaces (32/64 bit), operating
system idiosyncrasies, as well as compiler specific information (e.g., to support template
name de-mangling in C++ from multiple C++ compilers). To maintain cross language,
cross platform, cross file format, cross binary interface portability is a challenging task
and requires a continuous porting effort as new computing platforms and multi-threaded

programming environments evolve.

TAU uses DyninstAPI to construct calls to the TAU measurement library and then insert
these calls into the executable code. Thisis done by a mutator program (tau_run). The
mutator loads the TAU dynamic shared object (the compiled TAU measurement library)
in the addresses space of the mutatee. It parses the executable imkage for symbol table
information and generates the list of modules and routines within the modules that are
appropriate for instrumentation. The user can optionally provide a selective
instrumentation list that specifies alist of routines for including or excluding from
instrumentation. TAU can instrument sequential as well as parallel (MPI) programs [11].

The dynaprof tool distributed with PAPI uses dynamic instrumentation to allow the user
to either load an executable or attach to a running executable and then dynamically insert
instrumentation probes [13] . The user can list the internal structure of the application in
order to select instrumentation points. Dynaprof inserts instrumentation in the form of
probes. Dynaprof provides a PAPI probe for collecting hardware counter data and a
wallclock probe for measuring elapsed time, both on a per-thread basis. Users may
optionally write their own probes. A probe may use whatever output format is
appropriate, for example areal time data feed to a visualization engine or a static datafile
dumped to disk at the end of the run.

3.0 Types of measur ements
Post-mortem performance evaluation tools traditionally fall into two categories: profiling
and tracing.



3.1 Profiling

Profiling characterizes the behavior of an application in terms of aggregate performance
metrics. Profiles are typically represented as a list of various metrics (such as
inclusive/exclusive wall-clock time) that are associated with program-level semantic
entities (such as routines or statements in the program). Time is a common metric, but
any monotonically increasing resource function can be used. Profiling can be
implemented by sampling or instrumentation based approaches.

Sampling-based profiling periodically records the program state, and based on
measurements made on those states, estimates the overall performance. Although
sampling-based schemes suffer from incomplete coverage of the application and their
accuracy depends on the sampling interval, they have a distinct advantage of fixed, low
instrumentation overhead and consequently reduced measurement perturbation in the

program.

In instrumentation-based profiling, measurements are triggered by the execution of
instructions added to the code to track significant events in the program (such as the entry
or exit of aroutine, the execution of abasic block or statement, the send or receipt of a
message communication operation). Typically, such profilers present the cost of
executing different routines in a program.

3.1.1 Time based measur ements

Profilers can make measurements of exclusive and inclusive time spent in a routine. For
timing, wallclock time, process virtual time or CPU time are commonly used metrics.
TAU uses PAPI to access the above timing information.

3.1.2 Hardwar e counter based measur ements

Instead of timing information, profilers can use counts from hardware performance
counters that PAPI provides. This allows profilers to present exclusive and inclusive

counts of low-level counters for each instrumented routine.

3.2Tracing
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While profiling is used to get aggregate summaries of metrics in a compact form, it
cannot highlight the time varying aspect of the execution. To study the post-mortem
spatial and temporal aspect of performance data, event tracing, that is, the activity of
capturing an event or an action that takes place in the program, is more appropriate.
Event tracing usually resultsin alog of the events that characterize the execution. Each
event in the log is an ordered tuple typically containing atime stamp, alocation (e.g.,
node, thread), an identifier that specifies the type of event (e.g., routine transition, user-
defined evetn, message communication, etc.) and event-specific information. In a parallel
execution, trace information generated on different processors must be merged. Thisis
usually based on the time-stamp which can reflect logical time or physical time. The
logical time uses local counters for each process incremented when alocal event takes
place. The physical time uses a globally synchronized real time clock. TAU can produce
event-traces that are merged and can be converted to the ALOG, SDDF, Paraver or
Vampir trace formats.

3.3 Real-time perfor mance monitoring

Post-mortem analysis of profiling data or trace files has the disadvantage that analysis
cannot begin until after program execution has finished. Real-time performance
monitoring alows usersto evaluate program performance during execution.

Real-time performance monitoring is supported by the perfometer tool that is distributed
with PAPI . By connecting the graphical display to the backend process (or processes)
running the application code that has been linked with the perfometer and PAPI libraries,
thetool provides a runtime trace of a chosen PAPI metric, as shown in figure 2 for
floating point operations per second (PAPI_FLOPS). The user may change the
performance event being measured by clicking on the appropriate button. The intent of
perfometer isto provide afast coarse-grained easy way for a developer to find out where
a bottleneck existsin a program.

11
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Figure 2. Perfometer real-time display

5.0 Examples
In this section we illustrate how PAPI and TAU can be used to understand the

performance of an application.
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Figure 3: Matrix multiply algorithm coded u g or techniqu

In the above figure 3, we see the original code (Figure A, top left) of a simple matrix
multiply algorithm. The main matrix multiply loop that computes the dot product of two
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meatrices is instrumented with TAU. When it is executed on a Pentium 111/500 MHz Xeon
processor, we can see the wallclock time (152.85 secs), the total floating point operations
(2.14 E9) and the data cache misses (1.11 E9) reported by TAU using PAPI, as shown in
figure 4 below. We can verify that the number of floating point instructions executed
matches our expected value (for problem size n=1024, 2*n"\3 = 2.1E9).
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Figure 4. Wallclock time, level 1 data cache misses and floating point instructions
executed by the original program.

To optimize this program, we perform the loop-interchange optimization in an effort to
reduce the data cache misses. The loops and k are reversed to produce the code in
Figure (B). PAPI and TAU allow usto evaluate the effect of this change to the source
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code. Below, we show the performance data associated with this change.
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Figure 5: Metrics for loop interchange optimization

With this change, the wallclock time reduces to 73.06 secs, and we see an order of
magnitude decrease in the number of data cache misses while retaining the number of

floating point instructions.
To further reduce the data cache misses, the strip mining optimization is applied to the

original code (figure3 (C) ) by performing the computation on strips of size 128 (CACHE
in the code). The performance data obtained for this change are shown below in Figure 6.
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Figure 6: strip mining optimization data

We observe that this has a dramatic effect and reduces the number of data cache misses
from 1E9 to 8.1E6. This reduces the wallclock time from 152 secs to 14.94 secs while
keeping the same floating point instructions.

Finally, we combine the loop interchange and strip mining optimizations to produce code
in Figure 3 (D). The performance data for the main loop is shown below in figure 7.
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Figure 7: Combining loop interchange with strip mining
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We notice that the time taken reduces to 11.12 secs and the number of data cache misses
to 7.1E5.

This example illustrates how we can observe the effect of changes in the source code on
the performance of the application. To conduct this experiment TAU is configured with
PAPI to measure hardware performance counters, wallclock time and process virtual

time.

52PETSC

PETSc (The Portable, Extensible Toolkit for Scientific Computation) is a suite of data
structures and routines for the scalable (parallel) solution of scientific applications
modeled by partial differential equations. It employs the MPI standard for all message-
passing communication. To evaluate the performance of a 2-d driven cavity code that
uses a velocity-vorticity formulation and a finite difference discretization on a structured
grid, we use PAPI and TAU and PDT. The source code of PETSc is written in C. TAU’s
automatic source code instrumentation technique based on PDT is used to instrument
PETSc source code. Also, TAU’s MPI wrapper interposition library instruments all MPI
calls. This allows us to deploy instrumentation at two different levels that share the same
API for measurement. The instrumented sources are compiled and linked with the TAU
measurement library. In this case, we configure TAU to use PAPI for accessing wallclock
time and hardware performance counters. TAU provides selective instrumentation
capabilities that allow us to identify lightweight routines that have a high instrumentation
overhead. These are removed by re-instrumenting the source code and automatically
generating an exclude list that allows TAU to ignore this set of routines while
instrumenting others. This helps produce accurate performance data for the remaining

routines.
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Figure 8: Wallclock time experiment with PETSc

Figure 8 shows the exclusive wallclock time spent in all nodes. The application was run
with a grid size of 50x50 on four Pentium 111/550 MHz processors.

The floating point instructions executed by the code are shown below in Figure 9.
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Figure 9: Floating point instructions executed by the example

Here, we see that the routine MatL UFactorNumeric_SegAlJ_Inode executes 59% of
floating point instructions. To examine the cache characteristics of the code we look at

the level 1 data cache misses data produced by PAPI and TAU. These data are shown in

figure 10 below.
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Figure 10: Mean data cache misses on all nodes.

Here, we see that MatL UFactorNumeric_SegAlJ Inode takes 40% of all data cache

misses.

To see the caller-callee relationship of the code, we configure TAU to use a one level

callpath profile. The results of this experiment are shown below in figure 11.
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Figure 11. Callpath profile of PETSc shows caller-callee relationship
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Tracing shows us global timeline views where interprocess message communication is
represented by line segments as shown in Figure 12.
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Figure 12: Global timeline view of PETSc

The event-traces generated by TAU are visualized in Vampir [Vampir], a commercial
trace visualization tool from Pallas GmbH.

With the help of these two examples, we show how PAPI and TAU can be used together

to generate a wealth of performance data that can guide optimization decisions.

5.0 Conclusions

Performance analysis on today’s complex computer systems requires robust tool
capability for flexible and portable performance instrumentation and measurement. We
have described a framework for instrumentation and measurement of applications, as well
as some examples from a suite of tools that implement parts of this framework. PAPI

and TAU have been integrated to be able to produce a range of profiling data based on
both time and hardware counter metrics. We have illustrated with two examples how
such data can be used to analyze and tune application performance.
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