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Abstract:

As computer systems grow in size and complexity, tool support is needed to facilitate the 

efficient mapping of large-scale applications onto these systems.  To help achieve this 

mapping, performance analysis tools must provide robust performance observation 

capabilities at all levels of the system, as well as map low-level behavior to high-level

program constructs.  This paper describes instrumentation and measurement strategies, 

together with a suite of performance analysis tools that implement these strategies.
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1.0 Introduction

As computer systems grow in size and complexity, tool support is needed to facilitate the 

efficient mapping of large-scale applications onto these systems.  To help achieve this 

mapping, performance analysis tools must provide robust performance observation 

capabilities at all levels of the system, as well as map low-level behavior to high-level

program constructs.  Performance observation requirements are determined by the 

performance problem being addressed and the performance evaluation methodology 

being applied.

Instrumentation of the application is necessary to capture performance data.

Instrumentation may be inserted at various stages, from source code modifications to 

compile-time to link-time to modification of executable code either statically or 

dynamically during program execution.  These instrumentation points have different 

mechanisms which vary in their ease of use and in the flexibility, level of detail, and user 

control of what data can be collected.

Performance data of various types can provide valuable insights into program behavior 

and point the way toward program transformations that will improve performance.

Profiling data shows the distribution of a metric across source-level constructs, such as 

routines, loops, and basic blocks.  In addition to timing facilities such as cycle counters, 

most modern microprocessors provide a rich set of hardware counters that capture 

functional unit, memory, and operating system events.  Profiling can be based on either 

time or various hardware-based metrics, such as cache misses, for example.  Correlations 

between profiles based on different events, as well as event-based ratios, provide derived 

information that can help to quickly identify and diagnose performance problems.  In 

addition to profiling data, capturing event traces of program events, such as message 

communication events, helps portray the temporal dynamics of application performance.

A wide range of performance problems, performance evaluation methods, and 

programming environments need to be supported.  A suite of tools, rather than one 

specific tool, can best provide the necessary flexibility in experiment design and in 
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selection and control of experiment mechanisms.  Section 2 describes the instrumentation 

mechanisms it is desirable to support.  Section 3 describes various types of 

measurements.  Both these sections include examples of how the instrumentation and 

measurement strategies are implemented in the PAPI and TAU tool suites.  Section 4 

gives application examples to illustrate how the tools use these strategies to solve 

performance problems.  Section 5 contains conclusions.

2.0 Instrumentation

To observe application performance, additional instructions or probes are typically 

inserted into a program. This process is called instrumentation. The execution of a 

program is regarded as a sequence of significant events. As events execute, they activate 

the probes which perform measurements. Thus, instrumentation exposes key 

characteristics of an execution. 

2.1 Desired Features

For wide applicability of a performance tool, it is desirable for the tool to allow 

instrumentation of applications written in several languages such as Fortran90, C++, C 

and Java. It should also support multiple compilers (vendor, commercial, free) on each 

platform and be ported to several platforms. The tool should also support different 

threading models (such as OpenMP, pthread, sproc, Java) etc. Profiling tools that insert 

instrumentation should have an option for manual overrides to provide greater flexibility. 

The tool should allow selection of events to minimize perturbation and provide facilities 

for grouping events for relating low-level events to higher levels of abstraction. Runtime 

enabling and disabling of events is another desirable feature as is online viewing of 

performance data. The TAU profiling and tracing toolkit aims to provide these and other 

features. It has three distinct phases for instrumentation, measurement and analysis as 

shown in figure 1 below. 
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Figure 1: Architecture of TAU

The source code of a program undergoes a series of transformations before it executes as 

shown in Figure 1. Instrumentation can be added to the program at any of these levels, 

each of which imposes different constraints and opportunities for extracting program

information. As information flows through these levels, different aspects of the program 

can be revealed. As we move from source code instrumentation techniques to binary 

instrumentation techniques, our focus shifts from a language specific to a more platform 

specific instrumentation approach. 

2.2 Source code instrumentation

Instrumentation at the source code level has several advantages. It allows the programmer 

to communicate higher-level domain-specific abstractions to the performance tool. This

is especially useful if a tool cannot automatically infer such information. A programmer 

can communicate such events by annotating the source code at appropriate locations with 

instrumentation calls. This is easily done at the source level, but may be significantly

more difficult elsewhere. Once the program undergoes a series of transformations to 

generate the executable code, specifying arbitrary points in the code for instrumentation 

and understanding program semantics at those points may not be possible.

Another advantage of source code instrumentation is that once an instrumentation library 

targets one language, it can provide portability across multiple compilers for that 
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language, as well as across multiple platforms. The API is independent of details below 

the compiler such as operating system dependencies and object file formats. For example, 

the Performance API (PAPI) project provides a portable library interface to the hardware 

performance counters available on most modern microprocessors [1].  PAPI provides 

both easy to use high level routines (start, stop, read, and flops calls), as well as a detailed 

programmable low-level interface that provides full access to the hardware, for use by 

application programmers to instrument their application source code.

Source code annotations can be inserted manually or automatically. Adding 

instrumentation calls in the source code manually can be a tedious task that introduces the 

possibility of instrumentation errors that can produce erroneous performance data. For 

example, a user may overlap timers in the source code. While syntactic errors can be 

caught during compilation, logical errors in instrumentation may be more difficult to 

detect; overlapping timers, for instance, can only be detected at runtime [2].

Some of these difficulties with source code instrumentation can be overcome by using a 

preprocessor. A preprocessor is implemented as a source-to-source translation that tool 

typically expands header files and performs macro substitutions during compilation. Such 

source-to-source transformations can be used to build an instrumentor that automatically 

introduces instrumentation, alleviating the burden on the programmer. 

Preprocessor level instrumentation is commonly used to insert performance measurement 

calls at routine entry and exit points in the source code. To do this, a tool first needs to 

parse the application source code and locate the semantic constructs that are to be 

instrumented (such as routines, loops or individual statements). To insert code, the 

instrumentor also needs an interface to the parsed internal representation of the source 

code. Tools such as PDT [3] for C++, C and Fortran 90, Sage++ [4] for C++ and SUIF 

[5] for C and Fortran provide an object-oriented class library to access the data structures 

that represent the parsed intermediate form. In the TAU project, we have developed a 

source-to-source instrumentor (tau_instrumentor) using PDT. It supports instrumentation 

of C, C++ and F90 programs. The instrumented source code is then compiled and linked 

with the TAU performance measurement library. 
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Source code instrumentation requires access to the source code for instrumentation. 

2.2.1 Instrumentation of system calls

While source code may not be available for some libraries, instrumentation at this level 

can still be used at call-sites, or points in the application source code where the library 

routines are called. Typically this is accomplished by a preprocessor that replaces the 

library call with a call to an instrumented version. For languages such as C and C++ 

which have a preprocessor within the compiler, a specialized preprocessor can be 

avoided. In TAU, a header file can be used to define macros that re-define the native 

library routines (e.g., open) with instrumented routines (e.g., tau_open). During 

compilation, the compiler preprocessor replaces calls to proprietary library routines with 

calls to the instrumented, wrapper libraries which perform measurements and call the 

appropriate library routines. This scheme does not require access to the library source 

code. However, it does require a minor modification (addition of a header file) to the 

application sources and requires the instrumented version of the library to be linked with 

the other object files and libraries. The main limitation of this approach is that it can only 

capture information about instances of library calls at specific call-sites that are 

redirected. If a pre-compiled library routine makes references to a wrapped routine, it is 

not possible to re-direct such a reference without access to its source code and re-

compiling it with the appropriate header file. 

Another tactic is to use the preload mechanism of a dynamic loader to start monitoring 

tools at process or thread creation time.  A trap is created that calls a tool initialization 

routine in conjunction with executing the normal thread or process creation routine.  This 

tactic is used in the trapper tool distributed with PAPI.

2.3 Library level instrumentation

Wrapper interposition libraries provide a convenient mechanism for adding 

instrumentation calls to libraries. A good example of this approach is found in the 
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Message Passing Interface (MPI) Profiling Interface [6]. MPI, a standard for inter-

process message communication, is commonly used to implement parallel SPMD 

programs. As part of its definition, it includes alternative entry points for MPI routines. 

The MPI Profiling Interface allows a tool developer to interface with MPI calls in a 

portable manner without modifying the application source code and having access to the 

proprietary source code of the library implementation. 

The MPI standard defines the native library routine with weak bindings and a name 

shifted interface. A weak binding allows two different routines with the same name to co-

exist in a binary executable. If a tool re-defines the native call, it takes precedence. In this 

manner, a performance tool can provide an interposition library layer that intercepts calls 

to the native MPI library by defining routines with the same name (e.g., MPI_Send). 

These routines wrap performance instrumentation around a call to the name-shifted

native library routine provided by the MPI profiling interface (e.g., PMPI_Send). The 

exposure of routine arguments allows a tool to track the sizes of messages and message 

tags as in TAU[7].

The POMP interface for OpenMP provides a performancec API target for source-to-

source instrumentation tools (e.g., Opari) allowing for instrumented OpenMP codes that 

are portable across compilers and machine platforms [8]. Defined as a library API, the 

interface exposes OpenMP execution events of interest (e.g., sequential, parallel, and

synchronization events) for performance observation, and passes OpenMP context 

descriptors to inform the performance interface library of region-specific information. 

The OPARI tool rewrites OpenMP directives in functionally equivalent, but source-

instrumented forms, inserting POMP performance calls where appropriate. TAU uses the 

POMP interface in conjunction with OPARI for instrumentation of OpenMP programs.

2.4 Binary instrumentation

Executable images can be instrumented using binary code-rewriting techniques, often 

referred to as binary editing tools or executable editing tools. Systems such as Pixie, EEL 

[9] and PAT [10] include an object code instrumentor that parses an executable and 
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rewrites it with added instrumentation code. PAT can be used for call-site profiling and 

instrumentation at the routine level as well as gathering routine level hardware 

performance statistics. Pixie can count basic blocks within a routine and EEL can 

instrument a routine’s control flow graph and instructions. In each case, the executable 

file is re-written with the appropriate instrumentation inserted. 

The advantage of binary instrumentation is that there is no need to re-compile an 

application program and rewriting a binary file is mostly independent of the 

programming language. Also, it is possible to spawn the instrumented parallel program 

the same way as the original program, without any special modifications as are required 

for runtime instrumentation [11].

2.5 Dynamic Instrumentation

Dynamic instrumentation is a mechanism for runtime-code patching that modifies a 

program during execution. DyninstAPI [12] provides an efficient, low-overhead interface 

that is suitable for performance instrumentation. A tool that uses this API (also known as 

a mutator) can insert code snippets into a running program (also known as a mutatee) 

without re-compiling, re-linking or even re-starting the program. The mutator can either 

spawn an executable and instrument it prior to its execution, or attach to a running 

program. DyninstAPI inserts instrumentation code snippets in the address space of the 

mutatee. The code snippets can load dynamic shared objects in the running application 

andcall routines, as well as read and write application data. The DyninstAPI translates 

code snippets into machine language instructions in the address space of the mutatee. It 

generates code to replace an instruction in the mutatee with a branch instruction to the 

instrumentation code. The replaced instruction calls a base trampoline which branches to 

a mini trampoline. A mini trampoline saves the registers and executes the code snippet(s) 

with appropriate arguments. Thereafter, it restores the original registers and calls the base 

trampoline. The base trampoline executes a relocated instruction and returns to the 

statement after the replaced instruction in the original code as described in [12].

Dynamic instrumentation overcomes some limitations of binary instrumentation by 

allowing instrumentation code to be added and removed at runtime. Also, the 

instrumentation can be done on a running program instead of requiring the user to re-



9

execute the application. The disadvantage of dynamic instrumentation is that the interface 

needs to be aware of multiple object file formats, binary interfaces (32/64 bit), operating 

system idiosyncrasies, as well as compiler specific information (e.g., to support template 

name de-mangling in C++ from multiple C++ compilers). To maintain cross language,

cross platform, cross file format, cross binary interface portability is a challenging task 

and requires a continuous porting effort as new computing platforms and multi-threaded

programming environments evolve. 

TAU uses DyninstAPI to construct calls to the TAU measurement library and then insert 

these calls into the executable code. This is done by a mutator program (tau_run). The 

mutator loads the TAU dynamic shared object (the compiled TAU measurement library) 

in the addresses space of the mutatee. It  parses the executable imkage for symbol table 

information and generates the list of modules and routines within the modules that are 

appropriate for instrumentation. The user can optionally provide a selective 

instrumentation list that specifies a list of routines for including or excluding from 

instrumentation. TAU can instrument sequential as well as parallel (MPI) programs [11].

The dynaprof tool distributed with PAPI uses dynamic instrumentation to allow the user 

to either load an executable or attach to a running executable and then dynamically insert 

instrumentation probes [13] .  The user can list the internal structure of the application in 

order to select instrumentation points.  Dynaprof inserts instrumentation in the form of 

probes.   Dynaprof provides a PAPI probe for collecting hardware counter data and a 

wallclock probe for measuring elapsed time, both on a per-thread basis.  Users may 

optionally write their own probes.  A probe may use whatever output format is 

appropriate, for example a real time data feed to a visualization engine or a static data file 

dumped to disk at the end of the run.

3.0 Types of measurements

Post-mortem performance evaluation tools traditionally fall into two categories: profiling

and tracing. 



10

3.1 Profiling

Profiling characterizes the behavior of an application in terms of aggregate performance 

metrics. Profiles are typically represented as a list of various metrics (such as 

inclusive/exclusive wall-clock time) that are associated with program-level semantic 

entities (such as routines or statements in the program). Time is a common metric, but 

any monotonically increasing resource function can be used. Profiling can be 

implemented by sampling or instrumentation based approaches.

Sampling-based profiling periodically records the program state, and based on 

measurements made on those states, estimates the overall performance. Although 

sampling-based schemes suffer from incomplete coverage of the application and their 

accuracy depends on the sampling interval, they have a distinct advantage of fixed, low 

instrumentation overhead and consequently reduced measurement perturbation in the 

program.

In instrumentation-based profiling, measurements are triggered by the execution of 

instructions added to the code to track significant events in the program (such as the entry 

or exit of a routine, the execution of a basic block or statement, the send or receipt of a 

message communication operation). Typically, such profilers present the cost of 

executing different routines in a program. 

3.1.1 Time based measurements

Profilers can make measurements of exclusive and inclusive time spent in a routine. For 

timing, wallclock time, process virtual time or CPU time are commonly used metrics. 

TAU uses PAPI to access the above timing information. 

3.1.2 Hardware counter based measurements

Instead of timing information, profilers can use counts from hardware performance 

counters that PAPI provides. This allows profilers to present exclusive and inclusive

counts of low-level counters for each instrumented routine. 

3.2 Tracing
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While profiling is used to get aggregate summaries of metrics in a compact form, it 

cannot highlight the time varying aspect of the execution. To study the post-mortem

spatial and temporal aspect of performance data, event tracing, that is, the activity of 

capturing an event or an action that takes place in the program, is more appropriate. 

Event tracing usually results in a log of the events that characterize the execution. Each

event in the log is an ordered tuple typically containing a time stamp, a location (e.g., 

node, thread), an identifier that specifies the type of event (e.g., routine transition, user-

defined evetn, message communication, etc.) and event-specific information. In a parallel 

execution, trace information generated on different processors must be merged. This is 

usually based on the time-stamp which can reflect logical time or physical time. The 

logical time uses local counters for each process incremented when a local event takes 

place. The physical time uses a globally synchronized real time clock. TAU can produce 

event-traces that are merged and can be converted to the ALOG, SDDF, Paraver or 

Vampir trace formats. 

3.3 Real-time performance monitoring

Post-mortem analysis of profiling data or trace files has the disadvantage that analysis 

cannot begin until after program execution has finished.  Real-time performance 

monitoring allows users to evaluate program performance during execution.

Real-time performance monitoring is supported by the perfometer tool that is distributed 

with PAPI .  By connecting the graphical display to the backend process (or processes) 

running the application code that has been linked with the perfometer and PAPI libraries, 

the tool provides a runtime trace of a chosen PAPI metric, as shown in figure 2 for 

floating point operations per second (PAPI_FLOPS).  The user may change the 

performance event being measured by clicking on the appropriate button.  The intent of 

perfometer is to provide a fast coarse-grained easy way for a developer to find out where 

a bottleneck exists in a program.
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 Figure 2.  Perfometer real-time display

5.0 Examples
In this section we illustrate how PAPI and TAU can be used to understand the 

performance of an application. 

5.1 Matrix Multiply 

Figure 3: Matrix multiply algorithm coded using four techniques

In the above figure 3, we see the original code (Figure A, top left) of a simple matrix 

multiply algorithm. The main matrix multiply loop that computes the dot product of two 
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matrices is instrumented with TAU. When it is executed on a Pentium III/500 MHz Xeon 

processor, we can see the wallclock time (152.85 secs), the total floating point operations 

(2.14 E9) and the data cache misses (1.11 E9) reported by TAU using PAPI, as shown in 

figure 4 below. We can verify that the number of floating point instructions executed 

matches our expected value (for problem size n=1024, 2*n^3 = 2.1E9). 

Figure 4: Wallclock time, level 1 data cache misses and floating point instructions 
executed by the original program. 

To optimize this program, we perform the loop-interchange optimization in an effort to 

reduce the data cache misses. The loops j and k are reversed to produce the code in 

Figure (B). PAPI and TAU allow us to evaluate the effect of this change to the source 
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code. Below, we show the performance data associated with this change. 

Figure 5: Metrics for loop interchange optimization

With this change, the wallclock time reduces to 73.06 secs, and we see an order of 

magnitude decrease in the number of data cache misses while retaining the number of 

floating point instructions. 

To further reduce the data cache misses, the strip mining optimization is applied to the 

original code (figure3 (C) ) by performing the computation on strips of size 128 (CACHE 

in the code). The performance data obtained for this change are shown below in Figure 6.
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Figure 6: strip mining optimization data

We observe that this has a dramatic effect and reduces the number of data cache misses 

from 1E9 to 8.1E6. This reduces the wallclock time from 152 secs to 14.94 secs while 

keeping the same floating point instructions. 

Finally, we combine the loop interchange and strip mining optimizations to produce code 

in Figure 3 (D). The performance data for the main loop is shown below in figure 7. 

Figure 7: Combining loop interchange with strip mining
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We notice that the time taken reduces to 11.12 secs and the number of data cache misses 

to 7.1E5. 

This example illustrates how we can observe the effect of changes in the source code on 

the performance of the application. To conduct this experiment TAU is configured with 

PAPI to measure hardware performance counters, wallclock time and process virtual 

time.

5.2 PETSc

PETSc  (The Portable, Extensible Toolkit for Scientific Computation) is a suite of data 

structures and routines for the scalable (parallel) solution of scientific applications 

modeled by partial differential equations.  It employs the MPI standard for all message-

passing communication.  To evaluate the performance of a 2-d driven cavity code that 

uses a velocity-vorticity formulation and a finite difference discretization on a structured 

grid, we use PAPI and TAU and PDT. The source code of PETSc is written in C. TAU’s

automatic source code instrumentation technique based on PDT is used to instrument 

PETSc source code. Also, TAU’s MPI wrapper interposition library instruments all MPI 

calls. This allows us to deploy instrumentation at two different levels that share the same

API for measurement. The instrumented sources are compiled and linked with the TAU 

measurement library. In this case, we configure TAU to use PAPI for accessing wallclock 

time and hardware performance counters. TAU provides selective instrumentation 

capabilities that allow us to identify lightweight routines that have a high instrumentation 

overhead. These are removed by re-instrumenting the source code and automatically 

generating an exclude list that allows TAU to ignore this set of routines while 

instrumenting others. This helps produce accurate performance data for the remaining 

routines.
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Figure 8: Wallclock time experiment with PETSc

Figure 8 shows the exclusive wallclock time spent in all nodes. The application was run 

with a grid size of 50x50 on four Pentium III/550 MHz processors. 

The floating point instructions executed by the code are shown below in Figure 9.
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Figure 9: Floating point instructions executed by the example

Here, we see that the routine MatLUFactorNumeric_SeqAIJ_Inode executes 59% of 

floating point instructions. To examine the cache characteristics of the code we look at 

the level 1 data cache misses data produced by PAPI and TAU. These data are shown in 

figure 10 below.
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Figure 10: Mean data cache misses on all nodes.

Here, we see that MatLUFactorNumeric_SeqAIJ_Inode takes 40% of all data cache 

misses.

To see the caller-callee relationship of the code, we configure TAU to use a one level 

callpath profile. The results of this experiment are shown below in figure 11. 

Figure 11. Callpath profile of PETSc shows caller-callee relationship
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Tracing shows us global timeline views where interprocess message communication is 

represented by line segments as shown in Figure 12.

Figure 12: Global timeline view of PETSc

The event-traces generated by TAU are visualized in Vampir [Vampir], a commercial 

trace visualization tool from Pallas GmbH. 

With the help of these two examples, we show how PAPI and TAU can be used together 

to generate a wealth of performance data that can guide optimization decisions. 

5.0 Conclusions

Performance analysis on today’s complex computer systems requires robust tool 

capability for flexible and portable performance instrumentation and measurement.  We 

have described a framework for instrumentation and measurement of applications, as well 

as some examples from a suite of tools that implement parts of this framework.  PAPI 

and TAU have been integrated to be able to produce a range of profiling data based on 

both time and hardware counter metrics.  We have illustrated with two examples how 

such data can be used to analyze and tune application performance.
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