5.6.2 INTER-COMMUMICATION EXAMPLES
Example 1: Three-Group “Pipalina”

Groups (and 1 communicate. Groups 1 and 2 communicate. Therelore, group
U requires one inter-communicaton, group 1 requires two inter-communicators,
and group 2 requires | inter-communicator.

painlint arpec, char *+argv)

MFI_Comm myConm; S+ intra-coomanicater of lecal sub-group =/
MPI_Comm nmyFirstCemm: J+ inter-communicacsr =/

MFI_Coamon mydecondConn; f+ second inter-commanicator {E;rml_p 1 nn]_:,r] a)
int membarshipHey;

int ranck;

NPI_Inic{iarge, Rargv);
MPI_Comm_rank (MPI_COMH_WIRLD, krank):;

f= User code sust generate membershipley in the range [0, 1, 2] =/

penbereligfey = rank ¥ 3;

#= Build intra=comounicatar for lacal 51|h-grn|'.'|'.- w/
HPI_Comn_split (MPI_COMM_WORLD, menbershipley, zank, &nylono);

f* Build inter-sompunicators. Tags are hard-coded. =f

if (mepbearshipfey == 0}

{ f* Group O communicates with group 1. =/
MFI_Intercess_create! myQozm, 0, MWPI_COMM_WDRLE, 1,

1, knyFiratComm} ;

I3
mlee if (pDexbershipKey == 1)
i /= Grgup 1 communicates with growps @ and 2., =/
MPI_Iotercomo_craatal n:,r{:wl:r:_, 0, MFI_COMM_WORLD, O,
1, pyFiretComn);
MPI_Iptercano_ceeatal mylomnm, O, MPI_COMM_MOELD, 2,
12, &nySecondConm};
¥

Group 0 —=—3m= | Giroup | === | Group 2

Fig. 5.1 Thraa-group pipalina,

o e

*—T:n-| Crrowp 0 |-H- Ciroup 1 - | Cippup 2 -l
|
1

i

I

!

| |
=S| | .

Fig. B.2 Threa-graup ring.

alzge if (memberabipley == 2}
{ J+ Growp 2 comvunicates with graup 1. =/
HPI_Intercemm_create! nylemm, 0, MPI_COHM_WORLD, 1,
12, EmyFirsvComm) ;

fe Do work ... %

gitchimentershiphey) S+ froe comnmunicators appropriately =7
i
caga 1
HWPI_Comr_free{inySecondCorm} ;
caga 0:
casa 2:
MPI_Comn_fres{fnyFirstConn);

braak;

HFI_Fipalizall;

o

Exarnple 2: Three-Group “Ring™

Croups 0 and 1 communicate, Groups 1 and 2 communicate, Groups 0and 2
communicate. Therefore, each requires Do inler-communicaiors.

pain(int arge, char =rargv)
{
HPI_Ceomre myComm; f= intra-ceammonicater of lecal sub-group =/
WPI_Cooe oyFirstComm; /= inter-comronicators =f
NP I _Comm nfﬁn:nndﬂm;
MPI_Status status;
int membarahiphay;

int rarnk;

MFI_Inivi{karge, Rarvge);
MPI_Comm_rank (MPI_COMM_WIRLD, &ranik);

o Uger code must gensrabe nenbershipley in the range [0, 1, 2] +/

mambershipfey = rank W 3;

S* Build iotra-camournicator for local 51|'n-—5:rn1,|.'|'.- a
MFI_Come_splic{MPI_COMM_WOELD, menbershipiey, rank, fnmyCoon);

S= Build inter-gommmicators, Tags are hard-coded. =f
if (meaxbershipley == 0}
1 £+ Group 0 communicates wivh groups 1 and 2. «f
HPI_Intercomm_createy nyComm, O, WPI_COMH_WORLD, 1,
1, imyFirstComm} ;
HWPI_Intercomm_create{ myComm, O, MPI_COMH_WORLD, 2,
2, kmySecondComm) ;

3
alse 11 (membershipkey == 1)
{ /= Group 1 communicates with groups O and 2.)/

HPI_Intercemm_create!{ mylomm, O, HFI_COHM_WORLD, 0,
1, fmyFirstleomm);
MPIL Intercenn _createl mylome, 0, MFI_COHM_WORLD, Z,
12, dmySecondConn) ;
¥
alegs if {n-:n'br:r:':l:i.pﬁn:.r mm DY
i f= Group 2 communicates with groups O and 1, #f
MPI_Intarcomco_croated myComm, O, WPI_COHM_WIRLD, O,
#, kmyFirstCoeam) ;
MPI_Iantarcooo_croatef oyComm, 0, MPI_COMM_WIRLD, 1,
12, dmydecondfonn) ;

Fo Do sooe work ... #f

Fo Then fres connunicators bafore terpipating. .. *®/f
HPI_Conn_fras (knyFirstlomm)
HPI_Conn_fres(EnySesondCome) ;

MPI _Canm_fras l'_l:n:,rlr{.rlr:jl .

MPI_Fimalizal);

r LTI q..-.- _.--\.-rrg = T .a_.;“-_

T

Exarmnple 3: Building Mame Sarvice for Inter-communication

The following procedures exemplify the process by which a wser could creale
name service for building inter-communicators via a rendesvous involving a
server communicator, and a tag name selecied by both groups

After all MPI processes execute MPLINIT, every process calls the example
function, Init_gerver(), defined below. Then, if the new world returned i NULL,
the process genting NULL is required 1o implement a server function, in a re-
active loop, Do_server{}, Evervone else just does their prescribed computalion,
using new_world as the new effective *global” communicator. One designated
process calls Undo Serverl) 1o get rid of the server when it is not needed any
longer.

Featres of this approach include:

» Support for muldple name servers

Aldlity 1o scope the name 2ervers 1o specilic processes

¢ Ahility to make such servers come and go as desired.

Bdefine INIT_SERVER _TaG_1 665G
tdefine UNDO_SERVEE_TAG_1 TI7

static int serwer_key_wal;

f= for attributs nanagaEant for server_comm, copy callback: =f
vaid]L-&.ﬂd:l.':_l:-:}p_'l'_fﬂl:HF'I_cl:ln.‘ﬂ soldeomn, iAt *Rﬁ}"ﬁ'&ll, vaid =axtra_atate,
void *attribute_val_in, void *+attribute_val_aut, int *flag)
1
f* capy the handle =/
=proribute_wval_out = attribate_wal _in;
*flag = 1; S+ ipdicate that copy ta bappen =/

int Init_server{peer_coemm, rank_of server, Server_comm, new werld)
MPI_Comm poor_caon;
int ranx_of _server:;
MPI_{Comm *servwer_ comm;
HPI_Comn =pew_world; f= naw aeffective werld, sans server =/
{
MPI_Corm Tepp_cemm, lone_camm;
MPI_Group péar_ prougn, Lemp growp;
int rank_in_paer_comm, size, celer, key = 0;
int peer_leader, peer_leader rank io_temy comm;

M¥PI_Comm_rank(peer_conn, brank_in_pesr cops);

MFI_Comm_size(pear_comn, Esizmel;

it {{gize « 21 || {0 > rank_of_server) || {raok_of_server >= aizal)}
raturn (MPI_ERR_QOTHER)

v create two coomunicators, by sSplitting poer_comn
inte The server procegs, and everyone olse =f

paar_leadar = (ranX_of _gerver + 1} ¥ sime; /+ arbitrary choice =/

if ({color = (rami_in_pesr_comm == rank_of_secwer]))

.:'
MPI_Comm_split(peer_corm, ¢olor, key, &lone_comm);
MPI_Interconn_createl(lone comn, O, pesr_comn, peer_leader,

INIT_ZERENER_TAG_1, sarver_comm):

MPI_Cottrr_fres{lklane_coom) ;
=pow_warld = (MPI_Comm} O

1

elsa

{

HPI_Camo_Split{pesr_comm, coelor, Key, &Lenp_comn);

MPI_Comm_grouplpesr_comn, Rpeer_proupd;

MFL_Commn_graug ft-l:-mp_-:c!n:l, Etonp_grougnd ;

MPI_Group_translate_ranks (pesr_pgroup, 1, kpeer_leadsr,
tanp_group, kpeer leader _rank_ic_teop_comm) ;

HFI_Interconn_createlLenp_comn, prer_leader_rank_in_temp comm,
Paer_corn, rank of servar,
INIT_SERVER_TAG_1, server_comm)];

A+ attach new world compunicatisn attribuate to server_comm: =4

A= CRITICAL SECTION FOR HULTITHREADING =/
iI'fE-Ervur_kE_'.'\'al == MDT KEYVAL_INVALID

{
F* meguire the process-lacal nome for the server Reyval +/f
HPI_Attr_kayral createlhandle_cowy_fr, NULL,
kserver_keyval, NULL};
}

fnaw_world = TENp SOnn;

F= Cache handle of intra-communicater on ioter-communicatar: =/

HFI_LLL:_puL(Eervur_cnml. sarver_keyval, (void #) (*now_world});:

raturn (MPI_SICCESS)

The actual server process would commil to running the following code:

int Do_server(server_come)

HFI_Comm Servelr _<o0mm;

{

veld init_guenal);

int c:_queuﬂ{], fe_gquauc(}; f* keop triplets of integers
for later matching (ins not shown)
HFI _Comm GO
MPI_Status status;
int ¢119n:_cag, cliant_scuras;
int client_rank_in_new_world, pairs_rank_in_new_world;
int wuffer[10], ceunt = 1;
i =quenka

init_queve{bquoue});

Tar

{

{222

HMPI_Recvibuifar, count, HPI_INT, HPI_ANY_SOURACE, HPI_ANY_TAG,

Earyer_comm, bstatus); fe accopt from any client =/

Fo dersrpioe clispt: *f
cliemt_tag = status, MPI_TAG;
¢limnk _source = status.HPI_SOAECE;

cliemt_rank_in_pew_world = buffer[i];

it (clieot_tag == UKDO_SERVER_TRG_L) f* glient that

terminates server ":'r
while (de_gueve{gqueus, MFI_ANY_TAG, &pairs_rank in_pew_world,

Enairs_rank_in_sarvari)

MPI_Iptercomn_fresigzerver_comm);
hraak;

ir (de_gueus(guews, client_tag, dpairs_rank_in_now_werld,

kpairs_rank_in_server)]

f* matched pair with same tag, tell them
about eash other! =f
tuffar[0] = pairs_rank_in_new_world:
MFI_Send(buffer, 1, MPI_INT, client_erc, cliant_tag,
BATTEY_ComR) ;

baffer[0] = client_rack_in_new_world;
MFI_Send{buoffar, 1, HPI_INT. pairs_rack_in_serwver, client_tag,
SArvar_coamn);
3
zlso
an_queuafqpau&. alisnt_tag, clieat_sourca,
cliant_rank_in_new_world};

A particular process would be respoensible for ending the server when it is
o longer needed. Tis call to Undo_server would terminate server funclion.

int Undo_server{server_comn) A= axanpla client that ends zerver =/
MPI_Comr =zarver comm;
{
int baffer =
MFI_3eod(kbuffer, 1, MPI_IKT, O, UKDO_SERVER_TAG_Ll, =*sarver _oomm) |
MFI_Interconn_freelserver_comm);

The following 15 a blocking name-service for inter-communication, with the
same semanlic restrictions az MPLIntercomm_create. but simplified syntax. It
uses the functonality just defined 1o create the name-service,

int Interceom_name_createl(local_comm, server_coom, tag, comen]
MPI_Comm lecal comm, server comm;
int Tag;
MPI_Comm *comm;
i
int ArTOT;
int found; f* attribute acguisiticn mgmt for new_world =/
f= comm in server comm +/
wiid #val;

HPI _Canmo rew_world;

int buffer[10], rank;
int logal_leadar = 0

HPI_Attr_get{server_comm, server_kayval, kval, &found];
pow_warld = {MPI_Coaom)val; /+ retrieve cached hapdle =/

HPI_Cann_rank{server_conn, keankl); S+ rank in logal group =/

if {rank == lacal leadar)

btuffar[0] = rack;
MFI_Send{faffer, 1, MPI_INT, D, tag, server_comm);
¥PI_Recy{fbulffer, 1, HPI_INT, 0, tag, server_comn);

oyt

arror = MPI_Intarcomm_create{lacal _leader, local_comm, buffarfio]l,

naw_world, tag, COmm) ;

raturnierror) ;

5.7 Caching

MPIl provides a “caching” facility that allows an application to attach arbitary
pieces of information, called attributes, 0 communicators. Maore precisely, the
caching Facility allows a portable library to do the following:

o pass information between calls by associating it with an MP1intra- or inter-
COMIMUnIcalns

o quickly retrieve that information, and

o be guaranieed thar ou-of-date information is never retrieved, even if the
communicator 5 freed and i bandle sulseguently reused by MPI,

The :_'zu:h]:n_L_:" r_"¢||_;-\.'l_L'ui_E'|l_i4:5r in some form, are required by baile-in MPl rou-
tines such as collective communication and applicaton tepology, Defining an
interface 1o these capabilities as part of the MPI standard is valuable because it
permits rontines like collective communication and application topologies 1o be
implemented as portable code, and also because it makes MPl more extensible
by allowing user-written routines to use standard MPI calling sequences.

Adwice fo wsers. The communicator MPLLCOMM_SELF is a suitable choice
for posting process-local attributes, via this atrributing-caching mechanism.
[P of adwice fo wsers)

57.1 FUNCTIOMNALITY

Attributes are attached to communicarors, Aributes are local 1o the process
and specific o the communicator o which they are attached. Atribies are not
propagated by MP] from one communicator 1o another except when the com-
municarar is duplicated using MPLCOMM_DUP {and cven then the application
must give specific permission through callback functions for the attribute 1o be

capied].

Aderice todmflementors. Alributes are scalar values, equal in size to, or larger
than a C-language pointer. Ateributes can always hold an MP1handle, (End
af aduice fo ispilemenion,)

The caching interface defined here represents that attributes be stored by
MPl opaguely within o communicator. Accessor funciions include the following:

o obiain a key value {used to idendfy an atribuce); the user specifies “call-
bawck” functions by which MPIinforms the application when the communi-
cator is destroved or capied.

slore and retrieve the value of an anribuare,

Advice to imflemeniovs. Caching and callback functions are only called
synchronously, in response w explicic application requesis. This avoids
problems that result from repeated crossings between user and system
space, (This synchronous calling rule is a general properoy of MPLL)

The choice of key values is under cantrol of MPIL This allows MPI wo
aptimize i implementation of atribote sets, Tealso avoids condlics hervesn
independent modules caching information on the sime communicators.

A much smaller interface, consisting of just a callback faciliey, would
allow the entire caching facility 1o be implemented by portable code, How-
cver, with the minimal callback interface, some form of table searching is
implied by the necd w handle arbitrary communicators. In contrast, the
more complete interface defined here permits rapid access to anribunes
l]lrcmgh the wse nf"pc::inu:r:: in communicaters (e find the aumbuore tbled
and cleverly chosen keyvvalues (1o retrieve individual attribates). In light of
the efficiency “hit” inherent in the minimal interface, the more complete
interface defined here is seen 1o be superion (Ead of adwice to implereitor.)

MPI provides the Tollowing services related o caching. Theyare all process local.

MPI_KEYVAL CREATE(copy tn, delete fn, keyval, extra_state)

| [y) l::-;:rp-,.--[n l!:-::-|1:.' callback Tuncrion Tor keywial
[l delate fn Delere callback funciion for keywval
ouT kieeval key walue for future access (integer)

[extra state Esra state for callback Tuncticons

ipt MPIKeyval create(dPI Copy function #copy fn, MPL.Delete function

sdplate fn, int *xayval, wvolds extra statel)

HEI_XEYVAL CREATE{COPY_FN, DELETE FH, KEYVAL, EXTRA_STATE, IERROR)
EXTERNAL C0PY.FN, DELETE_FK
INTEGER KEYVAL, EXTRA STATE, ITERROR

Generates a new attribute key. Keys are locally unique in a process, and
opaque Lo user, though they are explicitly stored in integers. Once allocated,
the key value can be used 1o associate attributes and aceess them on any locally
defined commumnicator,

The copy_fn lunction is invoked when a2 communicator s duplicated by
MPI1_COMM_DOUP. copy_fr should be of tvpe MPLCopy_function, which is defined
as follows:

typedaf int MPI_Copy_functisniMPI_Comn =oldcomm, int =keyval,
void +waxtra_state, woid +artribute_val_inm,

vaid ssaltribute_val_sut, int *=flag)

A Fortran declaration for such a function 1s as follows
FURCTION COPY_FUNCTION(OLDZOMM, HEEYVAL, EXTRA_STATE, ATTRIEUTE_VAL_IN,
ATTRIBIUTE VAL OUT, FLAG)
INTEGEE OLDCOMH, KEYVAL, EXTRA_STATE, ATTRIBUTE.VAL.IN, ATTRIBUTE VAL OUT
LOZICAL FLAG

The copy callback function is invoked for each key value in oldesmm in
arbitrary order. Each call to the copy eallback is made with a key value and iz
corresponding atrbute, 170t retarns flag = 0, then the atribace 15 deleted in
the duplicated communicator, Otherwise (flag = 1), the new auribuie valuc is
sct via attribute_val_out, The function returns MPLSUCCESS on success and an
ervor code on failure (in which case MPLCOMM_DUP will fail).

copy_fn may be specificd as MPLNULL_FN from cither C or FORTRAN,
in which ¢ase no copy callback oceurs for keyval; MPLNULL FN is a funcoon
that does nothing other than returning flag = 0. In) the NULL Rmction
pointer has the same behavior as using MPLNULL FN. As a further convenience,
MPI_DUP_FN is a simple-minded copy callback available from C and FORTRAN;
il sens flag = 1, and returns the value of attribute_val_in in attribute val_out.

Note that the C version of this MPLCOMBM DUP assumes that the callback
functions follow the C prowtype, while the corresponding FORTRAN version
assumes the FORTRAN prototvpe.

Advice to users. A valid copy funciion is one that completely duplicates
the infermation by making a full duplicate copy of the dat structures
implied by an attribute; another might just make another reference to that
data structure, while using a reference-count mechanism. Other ypes of
attributes might not copy at all (they might be specific to aldeomm only).
[Fnd of adwice v wsers.)

Analogous wo copy fn iz a callback deletion funciion, defined as follows, The
delete_fn function is invoked when a communicator is deleted by MPLEOMBM.
FREE or when a call is made explicitly wo MPILATTR.DELETE. delete_fn should
e ol type MPI_Delete_function, which is defined as Tollaws:

typedef int HPI_Delete_function{MFI_Cozm +comm, int =keywal,
wold =attribete_val, woid =extra_state))

A Fortan declaration for such a function is as fallows:
FUMCTION DELETE FUNCTIORN(CDMM, KEYVAL, ATTRISUTE VAL, EXTRA_STATE)
INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRE STATE

This function is called by MPI_COMM_FREE and MPI_ATTR_DELETE to do
whatever is needed 1o remove an atiribute, It may be specified as the null
function pointer in Cor as MPLNULLFM from either C or FORTEAN, in which
case no delete callback accurs for keyval,

The special key value MPLEEYVAL INVALID is never returned by MPLKEYVAL.
CREATE. Therefore, it can be used For static initalization of key values.

MPIEEY VAL _FREE(kewwal)
[T keyvval Frees the integer key salue (integer)
int MPT Keyval fraalint +keywal)

HPI_KEYVAL FREE{KEYVAL, IERROR}
INTEGER KEYYAL, IERROR

Frees an extant attribute key, This function sets the value of keyval o
MPLLKEYVAL INVALID, Note that it is not erroneous to free an atribute key that s in
use, because the actual free does not transpire until after all references (in other
communicators on the process) to the key have been freed. These references
need o be explictly freed by the program, either via calls 1o MPLATTR_DELETE
that free one attribute instance, or by calls 1o MPLCOMM FREE that free all
atribute instances associated with the freed communicator,

Adwice o implemendors, The function MPLMULLFN need no be aliased 1o
tvoid (=230 in C, though this is fine. It could be a legitimately callable
function that profiles and so on. For FORTRAN, it is most convenient to
have MPILNULL FN be a legitimate do-nothing function call.{ End of advice
o imfilereriings,)

MPLATTR_PUTicomim, keywal, attribute_ wal]

IM COomim communicator 1o which anribue will be
anached (handle)

[l keyval key value, as returmed by
MPILEEYWVAL CREATE {integer)

M attribute _wal attrilte vilue

i

int HPI_Attr put(MPFl Coom comm, int keywal, wold+ attributa wall

MFI_ATIR_PUTCOHM, HEYVAL, ATTRIGUTE.WAL, IERROR}
INTEGER COHM, KEYWAL, ATTRIEUTE.VAL, IERROR

This function stores the stipulated atribue value attribute val for subse-
guent retrieval by MPLATTR.GET. If the value is already present, then the oul-
come is as if MPILATTR.DELETE was first called 1o delete the previous value
(and the callback functicn delete_fn was executed), and 3 new valie was mext
stored. The call is erroneous if there is no key with value keyval; in particular
MPI_KEYWAL INVALID is an crroneous key value,

MPLATTR_GET(comm, keyval, attribute val, flag)

[COmm communicilor oowhich amribone is acached
{handle]

L kE.“,"-.-'E| bty valoe (integer)

OuT attribute wal anribune vilwe, unless flag = Lalse

ouT flag srue i an awribuce value was eximacied; false il

n aiirihute is sesoctned with the key

int HWPI_Attr get(MPI Comm comnm, int keyval, wold **attribute.val, int +flag)

MFI_ATTR.GET{COHH, XEYVAL, ATTRIBUTE-VAL, FLAG, IERROR)
INTEGER COHH, KEYVAL, ATIRIBUTE.VAL, IERROR
LOGICAL FLAG

Retrieves atribure value by key. The call is erroneous il there is no key with
value keyval. On the other hand, the call is correct if the key value exisis, bt
ne altribute is atached on cama for that key; in such case, the call returns $lag =
false. In particular MPLKEYVALINVALID is an erroneous key value,

MPI_ATTR_DELETE(camm, keywall

I coHmirm communicanr o which atrnbute 5 awached
{handle)
I~ keywval The key value of the deleted annbute Gaeger)

int HPI_Avir delete(®FI Comm comm, int keyvall

MPI_ATTR_DELETECCOMM, XE¥VAL, IERRDR)
IMTEGER COMM, KEYVAL, IEAROR

Dielete anribute from cache by key, This function invokes the attribote delete
function delete_fn specified when the keyval was created,

Whenever a communicator i replicated using the functon MPI_LCOMM_DUP,
all call-back copy functions for attributes that are currently set are invoked

tin arbitrary order). Whenever a communicator is deleted wsing the funclion
MPILCOMM_FREE all callback delete functions for attributes that are currently
set are invaked,

5.7.2 ATTRIBUTES EXAMPLE

Adedce to wsers, This cxample shows how to write a collective communica-
tion operation that uses caching to he more efficient after the first call, The
coding siyle assumes that MP lunction resulis retarn enly error statuses,
{End of aduvice fo wsers.)

f¥ key for this nodule’s stuff: =/
static int gop_key = MPI_KEYVAL_INVALID;

typedef struct

1
int ref_count; F* rafarence coans
4 other stuff, whatever else we want =f

¥ gon_stuff tvpe;

Efficient _Collective_Op (camm, ...]
MPI_Cofii comm;
i

gop_stuff_typa =gop_stufll;
MPI_Group Eroup;
int; foundflag;

HPI_Comn_group{camm, Egroup);

if {gop_key == HPI_KEYVAL_INVALID) /+ gat a key oo first call ever +/
i
if (1 MPI_Attr_kayval_createl gop_stuff_copier,
Eop_stull_degtructor,
gpop_key, (wold =30));
£ got the key while assigning its copy and delete cpllback
tahavier. =/

MPI_Abort ("Insufficient kewvs availabhle"};

b

HPI_Attr_get (comm, gop_key, kgop_stull, Efoundflagl;

if (foundflagh

{ /+ This nedule has executed in this group befora.
Wa will use the cached information =/

plsa
{ /= This is 2 group that we have not yat cached anything in.
Me will Bow ds S0
#/

f+ First, allocase storage for the stuff we want,

and ipitialize the referonce count =fF

gop_stuff = {gop_stuff_type +) mallos (zizecd{gop_stuff_typel);
if {gap_stuff == HULL} 4 /* abort on out-of-memory error =5 }

gop_stuff -» ref count = 1;

f= Second, £ill in =gop_stoff with whatever we want.
Thia part isn't shown hore +/

f+ Thivd, store gop_stuff as vhe attribute value +f
MPI_kttr_put (comm, gop_key, gop_stuffl;
¥

/= Than, ic any case, 086 contants of +gop_ptuflfl
te do the glabal op ... */

f* The followiog routine 18 galled by HPI when a group 12 fread =f

gop_stuff_destruetor (comm, keyval, gop_stuff, extira)
HPI _Copn Comm;

int kaywval;

gop_stuff_typa *gop_stuff;

wold *oxtra;

1

if {keyval != gop_key} { /= abort -- programming errer *F

/= The group’e being freed remcves one referends to gop stuff =/
gop.gtuff -» red_count == 1;

/= If ne reforences renain, them fres the storage +/
if (gop_stuff - ref_count == 0} {
fraal {veid =)gop_stuff);

eyt

/= The following routine iz called by MPI when a group is copled *f

pop_estuff copior (comm, keyval, gop_stuff, extra)
MPI_Comn comm;
int keywval;
gop_stuff_type =gop.atull;
void waxtra;
i
if (keyyal 1= gop ko) { /= abort —- progranning ercor +F F

#% The new group adds cne referance to this gop atuff wf
gop_stufd -» waf_count += 1;

3.8 Formalizing the Loosely Synchronous Modael

[n thissection, we make further statements about the loogely synchronous mode],
with particular atention Lo intra-communication.

5.8.1 BASIC STATEMENTS

When a caller passes a communicator (that contains a context and group) to a
callee, that communicator must be free of side effects throughout execution of
the subprogram: there should be noe aclive operatons on that communicator
that might involve the process. This provides one model in which libraries
can be written, and work "salely” For librarvies so designated, the callee has
permission o de whatever communication it likes with the communicaies, and
under the above guaraniee knows that no sther communications will interfere.
Since we permit good implementations to create new communicatars without
synchronization (such as by preallocated contexts on communicators), this does
ned impose 3 sgnifeant overhead,

This form of safery is analogous 1o ather common computerscience usages,
such as passing a descriptor of an array to a library routine. The library routine
has every right to expect such a descriptor 1o be valid and modifiable.

58.2 MODELS OF EXECUTION

In the loosely synchronous model, transfer of control o a parallel procedure i=
eftected by having each executing process invoke the procedure. The invocation
is a collective operation: it is executed by all processes in the execution group,
and invocations are similarly ordered at all processes. However, the invocation
need notl be synchromzed.

We say that a paralle]l procedure is acfie in a process if the process belongs
o a group that may collectively execute the procedure, and some member of
that group is currently executing the procedure code. If a parallel procedure
is active in a process, then this process may be receiving messages pertaining Lo
this procedure, even if it does not currently execute the code of this procedure.

Static communicator sllocation

This covers the case where, ar any point in tme, at most one invocaton of a
parallel procedure can be active al any process, and the group of execuling
processes is fixed, For example, all invocations of parallel procedures involve all
Processes, processes are single-threaded, and there are no FeCLrSIvE ITVEaCalians,

In such a case, a communicator can be statically allocated to each proce-
dure. The static allocation can be done in a preamble, as part of initialization
code. 1f the parallel procedures can be organized into libraries, so that only one
procedure of each library can be concurrently active in each processor, then it
is sufficient to allocare one commumicator per library,

Dynamic communicator allocation

Calls of parallel procedures are well-nested iF a new paralle] procedure is always
invoked in a subset of a group executing the same parallel procedure. Thus,
processes that execute the same parallel procedure have the same execution
stack.

i such a case, a new communicator needs 1o be dynamically allocated for
each new invocation of a parallel procedure. The allocation is done by the
caller. A new communicator can be generated by a call o MPLCOMM_DUR, 5f
the eallee execution group is identical 1o the caller execution group, or by a call
o MPLCOMM_SPLIT if the caller execution group is split into several subgroups
execuling distinet parallel routines. The new communicalor is passerd as an
argument o the invoked routine.

The need for generating a new communicator at each invacation can be
alleviated or avoided altogether in some cases: 1T the execution group is not
split, then ane can allocate a stack of communicators in a preamble, and next
manage the stack in 2 way that mimics the stack of recursive calls.

e can alsa ke advantage of the well-ordering property of communication
to aveid confusing caller and callee communication, even if both use the same
communicator. To do so, ene needs to abide by the following two rules:

® NCESETCS seml before a procedure call (or belore a retwrn from the prace-
dure) are also received before the marching call {or return) anthe receiving
enel;

s messages are always selected by source (no use is made of MPLANY. SOURCE).

The general case

In the general case, there may be multiple concurrently active invocations of the
same paralle]l procedure within the same group; invocalicns may not b well-
nested. A new communicator necds w be ereated for cach invocaticn. [Uis the
user’s responsibility to make sure that, should two distinet parallel procedures
be invoked concurrently on overlapping sets of processes, then communicator
creation e properly coordinated.

CHAFTER &

PROCESS TOPOLOGIES

6.1 Introduction

This chapter discusses the MPI topology mechanism. A topology is an extra, op-
tignal atribule thar one can give o an inra-communicater; opologies canmno
be added o inter-communicators. A topology can provide a convenient naming
mechanism for the processes of & growp (within a communicator), and addi-
tionally, may assist the runtime system in mapping the processes onto hardware.

As stated in chaprer 5, a process group in MP| s a collection of o processes.
Each process in the group is assipned a rank between ¢ and s-1, In many par
allel applications a lincar ranking of processes does not adequately retlect the
Iogical communication pattern of the processes (which is usually determined by
the underlying problem geometry and the numerical algorithm used). Cfien
the proceszes are arranged m wopelogieal patterns such as two- o threedimen-
sional grids. More generally, the logical process armangement is described by a
graph. In this chapter we will refer o this lagical process arcangement as the
“wirtual topology.”

A clear distineticn must be made between the virtual process topalogy ancd
the topology of the underlying, physical hardware. The virtual topology can be
exploited by the svstem in the assignment of processes 1o phvsical processors,
if this helps to improve the communication performance on a given machine.
Heow this mapping is done, however, is oulside the seape of MPL The descrpion
of the virtual topology, on the other hand., depends only on the application, and
iz machine-independent. The luncticns that are proposed in this chapler deal
only with machine-independent mapping.

fationale. Though physical mapping i= not discussed, the existence of
the virtual wpology information mav be used as advice by the runtime sys-
tem. There are well-known technigques for mapping grid S toms stroctures
o hardware opelogies such as hypercubes ar grids, For morve compli-
cated graph structures good heurdstics often yicld nearly optimal results
[20]. O othe other band, if there i3 no way for the user o specily the
logical process arrangement as a “virtual topology,” a random mapping

is most likely to resull,. On some machines, this will lead o unnecessary
contention in the interconnection network, Same details about predicted
and measured performance improvements that result from good process
w-processor mapping on modern wormhbole-routing architectures can be
found i [10, 91,

Besides possible performance benefits, the virmal wopology can func-
tion as a convenient, process-naming structure, with tremendous benefits
for program readability and notational power in message-passing prograur-
ming. {(fnd of vl)

6.2 Virtual Topologies

The communication patern of & set of processes can be represented by a graph.
The nodes siand for the processes, and the edges connect processes thal com-
municate with each other, MPI provides message passing between any pair of
processes in a group. There is no requirement for opening a channel explicitly.
Therefore, a “missing link” in the userdefined process graph does not prevent
the corresponding processes from exchanging messages. [t means rather that
this connection is neglected in the virtual wopology. This strategy implies that
the topology gives no convenient way of naming this pathway of communication.
Another possible consequence is that an aulomatic mapping tool (if one exists
fior the runtime environment) will not iake account of this edge when mapping.
Edges in the communication graph are notweighted, so that processes are cither
simply connected or not connected at all.

Ratisnale. Experience with similar techniques in PARMACS [, 8] show
thar this information is usually sufficient for a good mapping. Additionally,
a more precise specification is more difficult for the user 1o setup, and it
woild make the interface functions substantially more complicated. (End
af rationale.)

Specifving the virtwal topology in terms of a graph is sufficient for all appli-
cations. However, in many applications the graph structure is regular, and the
detailed setup of the graph would be inconvenient for the user and might be
less efficient at run time, A large fraction of all parallel applications use process
topologies like rings, two- or higher<dimensional grids, or tori. These strue-
res are completely defined by the number of dimensions and the numbers of
processes in each coordinate direction. Also, the mapping of grids and tori is
generally an easier problem then that of general graphs. Thus, it 15 desirable 1o
address these cases explicitly.

Process coordinates in a cartesian sinecture begin their numbering ar {0,
Row-major numbering is always used for the processes in a cartesian structure.

This means that, for example, the relation between group rank and coordinates
for four processes im a (2w« 2) grid is as follows,

coord (0,N: rank
coord (0,17 rank 1
coond (141 rank ¥
coord (1,10 rmank 3

6.2 Embeaedding in MFI

The support for virtual topologies as defined in this chapter is consistent with
ather parts of MPI, and, whenever possible, makes use of lunctions that are
defined elsewhere. Topology information is associated with communicators. It
isadded to communicators using the caching mechanism described in Chapter 5.

6.4 Owvarview of the Functions

The functions MPIUGRAPH CREATE and MPI.CART_CREATE are used o create
general (graph) virtual topologies and cartesian wpologies, respectively, These
topology creation functions are collective. As with other collective calls, the
program must be written to work correctly, whether the call smchronizes or not.

The topology creation funcions ke as input an existing communicator
comm_old, which defines the set of processes on which the wpology is o be
mapped. A new communicator comm_topol is created that carries the opo-
logical structure as cached information (see Chapter 5). In analogy 1o func-
tign MPLCOMM CREATE, no cached information propagates from comm_old
b comim_topol.

MPILCART CREATE can be used Lo describe cartesian struciures of arhitrary
dimension. For each coordinate direction one specifies whether the process
structure is pericdic or not. Note that an s<dimensional hypercube is an »-
dimensional torus with 2 processes per coordinate direction. Thus, special sup-
port for hypercube structures is not necessary, The local auxiliary function
MPI_DIMS_CREATE can be used to compute a balanced distribution of processes
among a given number of dimensicns,

Ratienale. Similar functions are contained in EXPRESS [22] and PAR-
MALCE. (Fnd of ratisnie,]

The function MPI.TOPO.TEST can be used 1o inguire about the topol-
ogy associated with a communicator, The topological information can he ex-
tracted from the communicator using the functions MPLGRAPHDIMS GET and
MPI.GRAPH GET, for peneral praphs, and MPILCARTDIM_GET and MPI.CART
GET, for cartesian topologies. Several addidonal funetiens are provided to ma-
nipulate cartesian wpologies: the funcuons MPILCART_RANEK and MPILCART
COORDS translate cartesian coordinates into a group rank, and vice versa; the
function MPLCART SUB can be used to extract a cartesian subspace (analogous

1o MPLCOMM_SPLIT). The functicn MPLCART SHIFT provides the infarmation
needed 1o communicate with neighbors in a cartesian dimension. The two fune-
tions MPILGRAPH_MEIGHEBORS COUNT and MPI.GRAPH MEIGHEORS can he
wsed to extract the neighbors of a node in a graph. The function MPI_CART_SUEB
is collective over the inpul communicator's group; all other lunctions are local.

Twor additional functions, MPLGRAPH MAP and MPILCART MAF are pre-
sented in the last section. In general these functions are not called by the
wser directly, However, together with the communicator manipulation fune-
tions presented in Chaper 5, they are sufficient o implement all ather topology
functonsz, Section 6.5.7 owlines such an implementaon,

6.5 Topology Constructors
8.5.1 CARTESIAN COMSTRUCTOR

MPl CART CREATE(comm_ald, ndims, dims, periods, reorder, comm _cart)

I camm_old impat communicaror (Bandle)

] ncdims number of dimensicns of cartesian grid {intejger)

I dims imtegrer arvay of size ndims specifying e number
of processes in each dimension

I periads loviricaal arvey of siee ndims spealying whether the
grid is periodic (rue) or noc {false) in each di-
IMICETSIC

1M recrder ranking may be reardered (rue) or nos (falze)
[logical)

T oo ocark Cormmunicatar with new cartesiin :rlE:-::-I-::-_in' [Buar-
lle)

int MPI Cart create(MPI_Comn cemm.old, int mdims, ipt *dims, int *periods,

int raorder, HPI Comm *conn_cart)

HPI_CART_CREATE{COMM_OLD, WDIWS, DIMS, PERIODS, REOADER, COMMTART, IEAROR}
IMTEGER COMM_OLD, WDIMS, DIMS{+), COMM_CART, IERROR
LOGICAL FERIODS{=), REORLER

MRPILCART CREATE renerns a handle to a new communicator o which the
cartesian topology information is attached. 1f reorder = false then the rank of
each process in the new group is identical to its rank in the old greup. Other
wise, the function may reorder the processes (possibly 5o as to choose a good
emhbedding of the virtual topology onto the physical machine), IT the toal size
of the cartesian grid s smaller than the size of the group of comm, then some
processes are returned MPLCOMM_NULL, in analogy e MPLCOMM.SPLIT. The
call is erroneous if it specifies a grid that is larger than the group size.

65.5.2 CARTESIAN COMVEMIEMNCE FUMCTION: MPILDIMS CREATE

For cartesian topologies, the function MPI_DIMS_CREATE helps the user select a
balanced distribution of processes per coordinate direction, depending on the
number of processes in the group w be balanced and optional constrains that
can be specified by the user. One use is 10 partidon all the processes (the size of
MPI_LCOMM WORLD s group) into an s-dimensional topolagy.

KPI_DIME CREATE[nnodas, ndims, dims)

I nnades number of nodes inoa grid inceger)
I~ ndims number of cartesian dinensions (integer]
[NOUT dims integrer wrray of size ndins specifving the number

of nodes in cach dimension

int MPI Dims create{int nnedas, int ndimg, int =dims)

NPI_DINS CREATE(KNODES, KWDIMS, DIMS, IERROR)
INTEGER WRODES, KDIM3, DIM3{+), IERROE

The entries in the array dims are set to describe a cartesian grid with ndims
dimensions and a towal of nnodes nodes, The dimensions are set to be as close
1 each other as possibile, usne an appropriate divisibility algorithm. The caller
may further constrain the operation of this routine by specifving elements of
array dims, If dima[1] is sel o a positive number, the routine will not madify
the number of nodes in dimension i; onlv those entres where digs[i] = © are
modilied by (he eall.

f‘*-f\'.‘_!.j’ﬂli.':'t" input valives of gizs [4] are erraneous, An error will ocenr if anedes
is not & muliple of [T, disms il dims[i].

For dina[i] set by the call, dims (3] will he ordered in rir:|1|-i||r_'|_-|:_=;|,:ci|::|5__rh arder,
Array dims is suitable for use as input to routine MPILCART_CREATE. MP1.DIMS
CREATE is local,

Example 6.1

| dims | function call ' | dins

before call LRI FeELUTT
0,0} MPI_DIMS CREATEIS, 2, dims) | (%.2)

(1,00) WP DIMS CREATE(7, 2, dims) | (7.1)

(0,30 MPI_DIMS CREATELS, 3, dims) | (2,5,1)

{05,007 AP DM .CHEATEl:_::'_.: _3, dirmsl | erroncous call

6.5.3 GEMERAL (GRAPH) CONSTRUCTOR

MPILGRAPH_CREATE(comm_old, nnades, index, edges, reorder, comm_graph)

[cormm-old input communicatcr withoul wopalogy (luncdle)
1M nnodes number of nodes in graph (nteger)

™ indez array of integers describing node degrees (see
below)

I o ges array of integers describing graph edjpes {sec
RIS [35T0]

[recrder ranking may be reordered (Iruel or not {false)
{Lovjriczal)

LT comm_graph communicator with graph topology adeded

[Bandle)

int HPI Graph create{HPI Comm comr old, int nnades, int =index, iot wedges,
int recrder, MPI_Comm scomm graphl

MFI_GRAPH CREATE(COM2C DLD, MHMODEZ, INDEX, EDGES, REORDER, COMM_GRAPH, TERRORY
INTEGER COHM_OLD, KHODES, INDEE(+)}, EDGES{+), CLORM_GRAPH, IERROR
LOGICAL REORDER

MPIGRAPH CREATE returns a handle to a new communicator o which the
graph wopology infermation is awached, Ifrearder = false then the rank of each
process in the new group is identical to its rank in the old group. Otherwise,
the function may reorder the processes. IF the size, nnodes, of the graph is
smaller than the size of the group of comm, then some processes are returmed
MPI_COMM_MULL, in analogy 1o MPLCART CREATE and MPILCOMM_SFLIT. The
call is erroneous if it specifies a graph that is larger than the group size of the
INPUL COMITUTCALOT,

The three parameters nnodes, index and edges define the graph sireciure.
nnades is the number of nades of the graph. The nodes are numbered from o
to mnades-1. The ith entry of armay index stores the ol number of neighbors
of the first 1 graph nodes, The lisis of neighbors of nodes 0, 1, ..., §medes-1
are stored in consecutve locations in arcay 2dges. The arrav edges is a flai-
tened representation of the edge lisis. The total number of entries in index is
nnades and the wal number of entries in edges is equal e the number of graph
eddges,

The definitons of the arguments nnodes, indax, and adges are llusirated with
the following simple example.

Example 6.2 Assume there are four processes 0, 1, 2, 3 with the following adja-
CEnCy Matrix:

: process | neighbors
i 1l
1 0
2 3
4 0,2 |

Then, the inpul arguments are;

noodles = 4
mndex = 2.8, 4,6
edges = 1,3,0,5 02

Thus, in C, icdex[0] is the degree of node zero, and index(i] - ipdex[i-1]
is the degree of node 1, i=1, ..., mnedea-1; the list of neighbors of node zero
iz stored in edges(3], for 0 < j = index[0] — 1 and the list of neighbors of node
i, 4 = 0, 15 stored in edgea 3], index[z — 1] = § = indax[i] — 1.

In Fortran, index(1} is the degree of node zero, and index(i+1) - index{i)
is the degree of node 4, i=1, ..., moedes-1; the list of neighbors of nede zero
is stored in edges(j), for 1 = j < index(1) and the list of neighbors of node 1,
1= 0,35 stored in edges(yl, dndexii) + 1 = j = index(i + 1),

Achviee fo drblemendors, The ollowing wpology information is likely o be
stored with a communicator:

o Tvpe of topology (cartesian/graph},
Fora cariesian topology:
adine (number of dimensionz],

dinz {numbers of processes per coordinare direciion],

1.
it
3. pericds (periodicity information],
3.

ovn_peeition (own position in grid, could also be computed from
rank and dims)
+ For a graph topology:

1. index,

2. odges,
which are the vectors defining the graph structure,

For a graph structere the number of nodes is equal o the number of
processes in the group. Therefore, the number of nodes does not have
1o be stored explicitly, An additional zero entry ar the start of array index
simplifies access wo the topology information. (End of adwice fo implementors,)

6.5.4 TOPOLOGY INOQUIRY FUNMCTIONS
If 2 topology has heen defined with one of the above functions, then the wpology
information can be looked up wsing inquiry functions. They all are local calls.

MPITOPO TEST [eomm, status)

I Camm coarumuricator (handle)

T siatus toagsologey tvpe of Communicalor cone {choiee)

int MFI Tops.test(MPI_Comn comm, int *status)

NPI_TOPO_TEST(GIMM, STATWS, IERROR)
INTEGEER COMM, STATUS, IERRUR

The functicn MPILTOPC.TEST returns the type of wopalogy that is assigned
L0 3 COMmnIcalGs
I'he output value etates is one of the following:

PAPI.GRAPH graph topology
MPILCART cariesian opology
MPILUMDEFINED no lopology

MPILGRAPHDIME GETicomm, nnodes, nadges)

1M COmm communicatar for group with graph stroctare
[Bamdle)
L] nnoades numhber of noades in |__r||'.-'|[:-'l:| [‘.|11-e'|;|'|';- [EHEH LR

nurnbier of processes in the groug)
OUT nedges number of edges in graph {intejer)

int MPI Graphdims get{MPI_Conn comm, int *nnodes, int snedges)

MPI_GRAPHDIHS GET(CDMM, NNODES, WEDGES, IERROR)
INTEGER COMM, MMODES, KEDGES, IEREOR

Functions MPI GRAPHDIMS GET and MPI_GRAPH_GET retrieve the graph-
topology informaton that was associated with a communicator by MPLGRAPH
CREATE,

The information provided by MPILGRAPHDIMSE GET can be used 1o dimen-
sion the vecrars index and edges correctly for the following call to MPILGRAFH.

GET.

MPIGRAPH GET{comm, maxindex, maxadges, index, edges)

[COImIm communicator with graph suecoore (handle)

(I8 maxindex length of vector index in the calling progrm
(inLeEer)

I maxedges length of vecter edges in the calling program
finLeger

QUT incax aray of ntegers containing the graph sunacmire
(o details see the definition of MPLGRAPH.
CREATE)

QuT edges arcay of integers containing the graph struciare

int MPI Graph get(MPI Conn comm, ipt maxiodex, int naxedges, 1t =index,
int *adgas)

MPI GRAPH.GET{COHH, MAXINMDEX, MANXEDGEZ, INDEX, EDGES, IERROM}
INTEGER COHH, MAXINDEX, MAREDGES, INDEX{+), EDGES(=), IERROR

MPLCARTDIM _GET [commm, ndimms)

I COmm communicator with camesian simweiure [haodbe)
OUT ndims numbser ol dimensicns of the cartesian structure
[ineger)

int MPI Cartdim Fat (MP] Conme comm, int =ndims)

HPI.CARTDIM GET(COMM, NDIME, IERROR)}
INTEGER COHM, KDIHS, IERROR

The functions MPLCARTOIM_GET and MPILCART_GET return the cartesian
topology information that was associated with a communicator by MPILCART.

CREATE.

MPILCART GETicomm, maxdims, dims, periods, coords)

I COImm carmmunicansr with caresian surucoine (handle)

1 maxdims lengeh of sectors dins, perieds, amd coords in
the calling program (integer)

0T dirns number of processes for each cariesian dimen-
sien Carray of integer]

LT paripds periodiciiy (rue falsa) for each cartesian dimen-

sien Carcay of logical)
CMT coords conrdinates of calling process o cirtesian stroc-
were Carray of integer]
int HPI -':-al"!--gﬂ'!- (HPI _Comm cofEl, Int maxdima, int +=dips, int rari 48,

int =coords)

MPI_CART_GET{COMH, MAXLIHS, DIMS, PERIOZS, CODORDSE, IEMDOR)
INTEGER COHM, MAXDIHS, DINSC=), COORDS(+}, IERROR
LOGICAL PERIODS{+)

MELCART _RAMElcomm, conrds, rank)

I+ SO commmunicater with carvesinn suuciure (handle)

1M coords 'i:ll-e:gm' Ty foab size ndios) 5-'|:-|.'-:'i!:.'i.||;_.: Lhe carte-
sian coordinaies af a process

LT rank itk -::-I':v|:-|.'-:'i:|'z|.'-:i Jrroaces l:i:lil.l.'j{!!l.’]

int MPI Cart rank(MPI_Comm caomm, int *coords, iot +*cank)

MPICART RANE(COHM, OIORDS, RANE, IERROR)
INTEGER COHM, SOORDS(=), RANE, IERROR

For a process group with cartesian structure, the function MPLCART_RANK
translates the logical process coordinates w process ranks as they are used by
the poini-to-peeint routines.

For dimension i@ with periods(i} = true, il the coordinate, coards(i}, is out
of range, that is, coords(i} < © Or coords(i} = dine(i}, it is shifted back w the
interval ¢ < cosrde{il - dins(i) automatically, Ou-olrange coordinates are
erraneaus for non-pericdic dimensions.

MPILLCART _COORDS(camm, rank, maxdims, coords)

[COMmm communicator with carteszan stiecture (handle)

M rank rank ol & process within group of comm (intejrer)

[maxdinms length of vector coord in the calling program
finLeger

OuT coards inbeger arnay {of axe ndins) containing the care-

sian coordinates of specified process
fintegeer)

int MPI_Cart ceoords(HPI Comm comm, int raok, int paxdims, int =ceords)

HPI_CAET COORDS{COMM, RANX, HAXDIMG, CDOADS, IERROR)
INTEGER COMM, RANE, MAEDIMS, COORDSG(s), IERROR

The inverse mapping, rank-tocoordinates ranslation is provided by rAFIL

CART COORDE,

MPI GRAPH _MNEIGHBORE_COUMTIcomm, rank, nneighbars)

I~ COMmim commumicator with graph wpology (handle)

] rank rank of process in group of comm (interer)

OUT nneighbors number of neggphboors of specified process
finLeger

int HPI Graph.noeighbore_count{MPI Comnm comm, int rank, int *nnaighbars)

MPT_GRAPH NEIGHEORS_.COUNT{COMM, RANKE, HNEIGHEIRS, IERROR)
INTEGER COMM, RANK, NMEIGHEDRS, IERROR

MPILGRAPH _MEIGHEORS COUNT and MPI.GRAFH_NEIGHBORS provide

adjacency information for a general, graph opology.

MPIGRAPH_NEIGHEDRScomm, rank, maxnaighbors, neighbors)

i Camm communicator with graph topalogy (handle)

I rank rank of process in growp of comm {integer)

il rnaxneighbors sige of arvay rxighbars (integer)

ouUT neighbors ranks of processes that are neaghbors wspecicd

process (array of integer)

int HFIGraph neighbors (MFI_Comm comm, int rank, int maxneighbars,

int *neighbors]

MPI_GRAPH NEIGHEDRS{COMM, RAME, MAXNEIGHRORS, KEIGHBORS, IERROR}
INTEGER COMM, RAKK, MAKKEIGHBORS, NEIGHEDRS(=). IERROR

Example 6.3 Suppose that ceam 15 a communicator with a shuffle-exchange topol-
ogy. The group has 2° members. Each process is labeled by m. ..., o, with
a; £ {0, 1}, and has three neighbors: exchange({m. ..., @) = @, ... @4y, @3y
(3= 1=a), shuffle{a, ..., a,) = ae, ..., a3, 2, and unshuifleda;. ..., 8, =
flyy @11+ - 1o the_1. The graph adjacency list is illustrated below for » = 3.

node exchange shuifle unshuffle

neighbors{l} neighbors(2}) neighbors(3) |

0 (000) 1 0 0
1 (001) i) 2 4
2 (010 3 4 1
$ (011) 2 & 5
(4 (1000 & 1 2
5 {101) | 4 3 &
G {11m 7 & 3
|7 {111 i 7 T

Suppose that the communicator comn has this topology associated with it
The Wollowing code fragment cveles through the three wpes of neighl=oes and
performs an appropriate permutation for each.

¢ assume: ocach process has stored a real number A.
o extrast nelghtarhoed informaticn
CALL HPI_COMM_RAKK{coon, myrank, ierT)
CALL HMPI_GRAPH_WEIGHBORS(comm, myrank, 3, neighbors, ierr)
C perforn exchange permutation
CALL MPI_SENDRECY_REPLACE(A, 1, MPI_REAL, neighborsa{l), O,
¥ Luighhurs(i}. 0, comm, status, iarr)
C perform shuffle permotation
CALL MPI_SENMDRECV_REPLACE{A, 1, MPI_REAL, neoighbors{2), O,
+ neighbors(31}, 0, cemm, status, ierr)
G perforn unshuffle peroutation
CALL MPT_SENDRECV_REPLACE(A, I, MFI_REAL, meighbora(3d, &,

+ neighbere(2), 0, comn, status, iecr)

6.5.5 CARTESIAN SHIFT COORDINATES

If the process wpology is a cartesian structure, a MPLSENDRECY operation is
likely to be used along a coordinate direction o perform a shift of dara. As
input, MPLSENDRECY 1akes the rank of a source process for the receve, and

the rank of a destination process for the send. If the function MPILCART SHIFT is
called for a cartesian process group, it provides the calling process with the above
idlentifiers, which then can be passed o MPILSENDRECY, The user specifies the
coordinate direction and the size of the step (positive or negative). The function
i lacal,

MPI_CART _SHIFT|comm, direction, disp, rank_source, rank_dest)

I Camim coammenicalor with cartesian soruciure (hancdle)

I direction coardimate dimension of sheby (integer)

1M disp displacement (= 0 wpwards shift, < ik down
wiarels shift] (integer)

QLT rank_source rank of sowrce process (inmeger)

U rank_dest ramk of destination process (integer)

int MPI_Cart_shifti(MPI_Comm comm, int direction, int disp, int +rcank_source,

int *rark_dest)

HPI_CART SHIFT{COHH, DIRECTION, DISP, RANK_SOURCE, RAKK_DEST, ITERROR)
INTEGER COMM, DIRECTION, DISP, RANE_SOURCE, RANK._DEST, IERRDR

Depending on the periodicity of the cartesian group in the specified coor-
dinate direction, MPILCART_SHIFT provides the identifiers for a circular or an
erpcd-off shift. In the case of an end-off shift, the value MPILPROC_MULL may be re-
terned in rank_source or rank_dest, indicating that the source or the destination
for the shift 1= aul of mange,

Example 6.4 The communicaion, comm, has a two-dimensional, peniadic, cane-
sian topology associated with it A two-dimensional array of REALS is stored one
element per process, in variable & One wishes to skew this array, by shifting
column i (vertically, i.e., along the column} by i steps.

i find pracess rank
CALL HPI_COMM_BAMK(comm, rank, iorr})
find cartosian coordipates
CALL MPI_CART_COORDE{camn, rank, maxdims, coords, ierrl
cappute shift ecurce and destination
CALL MPI_CART_SHIFT(camm, i, coorde(Z}, source, dest, ierr)d
skow arcay
CALL MPI_SENDRECY_REFLACE(A, 1, HPI_REAL, deat, 0, scurce, [, comno,

+ status, iecrl

]

L]

L]

6.5.6 PARTITIOMING OF CARTESIAN STRUCTURES

MPI_CART_SUBcomm, remain dims, newcamim)

I COMMm cormmunicatoer with canmesian straciure Chandle)
I remain_dims the ith entry of remaindims specifies whether

the ith dimension s kepr in the subgrid {zoee)
or % |:I|'-::-'|:-|1-:'rl {false] (lngical vector)
ouT nNawoomm communicater containing the subgrid

achades the calling process {hancdle}

int MPI_Cart sub(HPI_Comnm comm, int *remain_dims, MPI_Comm snewconn)

MPI_CART_SUB{COMM, REMATH DIMS, KEWCOMM, IERROE)
INTECER COHM, WEWCOMM, IEREDR
LOGICAL REHAIN DIME(=)

If a cartesian topology has heen created with MPI.CART_CREATE, the fune-
tion MPILCART_SUB can be used to partition the communicator group into sub-
ETOWpRS that form lowerdimensional cartesian subgrids, and w buld for each
subgroup a communicator with the associated subgrid cartesian topology. {This
function is closely related 1o MPLCOMM_SPLIT.)

Example 6.5 Azzume that MPILCART CREATEC. .., comm) hasdefined a (2x 5 x
4 gl'i.l:i. Let repsic ding = {true, false, trua). Then a call o,

MPI_CART _SUB{comm, remain_dims, comm_new),

will create three communicators cach with eight processes in a 2 x4 carte-
sian topology. Il remadn dins = {falsze, false, true) then the call w MPLCART.
SUB{comm, remain_dims, comm_new] will create six non-overlapping commu-
nicators, each with four processes, in a one-dimensional cartesian topology.

6.5.7 LOW-LEVEL TOPOLOGY FUNCTIONS

The two additional functions introduced in thissection can be used o implement
all other topology functions, In general they will not be called by the user directly,
unless he or she is creating additional virtual topology capahility other than thar
provided by MPI,

MFILCART _MAPcomm, ndims, dims, paricds, newrank)

1™ Comm . cormaruneeatar §hanedle)

1M ndims numkeer of dimensions of cariesian sIrscmine
Laneger)

1 dims i.|11-e'|__r||'r:4.|'r.4.1_.' of sire ndins 1]1:_'i:if:.'i|'|g'1'l'.r rrmhber

of processes in each coordinae direction
IN paricds lopical array of size ndies specifiing the periodic-
i specificaton in each coordimie direction
auT newrank recrdered rank of the {:l'lli11g process; MR LIM-
DEFINED if calling process does not belong o

irricl {intejrer]

int WFI_Cart pap(MP] Comn coom, iot ndips, int =dima, int *paTiods,
int +nedrankl

MPT_CART MAP(COMM, NDIMS, DINMS, PERIODS, NEMRAKK, IERROR)
IKTEGER COMM, MDIWS, DIHS(+}, MEWRAKX, IERROR
LOGICAL PERIODS(=)

MPILCART_MAP compules an “optimal” placement for the calling process
on the physical machine. A possible implementation of this function is to always
return the rank of the calling process, that is, not wo perform any recrdering.

Aduice to implementors. The function MPLCART CREATE(comm, ndims,
dims, periods, reorder, comm_cart), with recrder = trua can be imple-
mented by calling MPLLCART_MAPicomm, ndims, dims, periods, newrank),
then calling MPIL.COMM_SPLIT{comm, color, key, comm_cart), with celos
= 0 if newrank = MFI_UNDEFIKED, color = MPI_UNDEFIMED otherwise, and key =
BEWEANE.

The function MPLCART _SUB[comm, remain_dims, comm_naw) can
be implemented by a call to MPILCOMM_SPLIT{comm, calor, key, comm.
new), using a single number encoding of the lost dimensions as color and
asingle number encoding of the preserved dimensions as key.

All other cartesian topology functions can be implemented locally, us-
ing the topology information that is cached with the communicator. (£
of advice to imflemeniorns,)

The corresponding new function for general graph strucoures is as follows.

MELGRAPH_MAFcomm, nnades, index, edoes, newrank)

1M Comim tnput communicaror (handle)

1M nnades numnber of graph nodes (inweger)

I indes integer array speaifying the graph siructure, see
BEPILGRAPH_CREATE

I adgas integer array specifying the grapl siosctare

ouT nesrank recrdered rank of the calling process; MPLUMN-

DEFINED if the calling process does not belong
fop graeph {Inneger)

int MPI_Graph map{MPI Cann ecfn, int onedes, int +ipdex, iot +edges,

int enaurack)

NPI_GRAPH_MAPCCOMM, MNODES, INDEX, EDGES, WEWRANE, IERRORD
IKTEGER COMM, NHMODES, IRDEX{=), EDGES(+=}, HEWRANE, IERRIR

Aduvice o implemeniors, The Muncion MPIGRAPH CREATE[comm,
nnodes, index, edges, rearder, comm_graph), with recrder = true can be
implemented by calling MPLGRAPH MAP(comm, nnodes, index, edges,

L]

integer ndims, numneigh
logical reorder
parameter (odims=2, num neigh=4, reorder=.truc.}
integer <omn, cono.cart, dimsindims), nelgh def(ndime), ierr
icteger neigh rankinun neighl, ovo positicnindims), 4, j
legical periods(ndims)
seal+d wid:101,8:101), £{3:101,0:101)
data dims / pdime + 0/
tomn = MPT_COMMWIRLED
Sat progcess prid size and pericdicity
call MPIDIMNS CREATE(comm, ndimg, dimsz,ierr)
parieds(1} = ,TRUE.
pericds(2) = _TRIE.
Create a grid structurs ip WORLD group and inquire about own pesiticon
call MPICART CREATE {(comm, ndima, dims, perisds, recrcder, comm.cart,ierr)
call MPICART GET (come cart, odims, dins, parieds, own_positien,iers)
Lok up the racks far the neighbors. 0Oen procese coordinates are (1,10,
Neighbors are (i-1,§), (i+1,j). (i,j=-1), {i,j+1)
i = own positien{i)
1 = own.position(2)
naigh delf (1} = i=1
neigh def (3} = j
call MFI_CART RANY (comm.cars, naigh daf, neigh ranx(i}, ierr)
oeighdef{l] = i+l
nelgh def{2) = j
call MPI CART RANK (comm cart, oeigh def, neigh rack(2),ierr)
naigh def{l) = i
neigh defi2) = j-1
call HPI_CARET BANE {comm cart, neighded, neigh rank{3),iece)
naigh defii) = i
naighodaf (22 = j=+1
<all MPI_CART_RAKY {commocart, neigh-def, neigh rank(d),ierr)
Initialize the grid fenctions and start the iteration
call init (uw, £)
do 10 it=1,100
call relax {u, £3
Exchange data with neighbor procosses
call exchange (w, comoocatt, melgh rany, mum osighl
continue
call output (u)
cnd

Fig. 6.1 Sat-up of process structure for two-dimansional paralles] Poissaon
Aalvar.

e

! i & RS
o
Sl

newrank], then calling MPI_COMM_SPLIT{cormm, color, key, comm_graph],
with gelor = 0ifaevrank # MPIUNDEFINED, color = HPIUNDEFINED otherwise,
and key = nawrank,

All ather graph topology functions can be implemented locally, using
the topology information that is cached with the communicator. {Fnd of
advice o fmilenmen o)

6.6 An Application Example

Example 6.6 The example in figure 6.1 shows how the prid definition and in-
quiry functions can be used in an application program. A partial differential
equation, for instance the Peisson equation, is 1o be selved on a rectangular do-
main, Firsl, the processes organize themselves in a two-dimensional structure.
Each process then inquires about the ranks of its neighbors in the four dircctions
{up, down, right, left). The numerical problem is solved by an iverative method,
the: details of which are hidden in the subroutine relax,

I each relaxation step each process computes new values for the solution
grid function at all points owned by the process. Then the values at inter-process
boundaries have 1o be exchanged with neighboring processes. For example, the
exchange subroutine might contain a call like MPLSEND(. . . neigh_rank(1),...)
o send updated values to the lefe-hand neighbor (i-1, 3.

