
J. Parallel Distrib. Comput. 64 (2004) 774–783

ARTICLE IN PRESS
$This work i

contract GRA

GRANT #EIA
�Correspond

E-mail addr

dongarra@cs.u

0743-7315/$ - se

doi:10.1016/j.jp
GrADSolve—a grid-based RPC system for parallel computing with
application-level scheduling$

Sathish S. Vadhiyara,� and Jack J. Dongarrab

aDepartment of Computer Science, University of Tennessee, 107, Ayres Hall, Knoxville, TN 37996-1301, USA
bDepartment of Computer Science, University of Tennessee, Oak Ridge National Laboratory, USA

Received 9 September 2003
Abstract

Although some existing Remote Procedure Call (RPC) systems provide support for remote invocation of parallel applications,

these RPC systems lack powerful scheduling methodologies for the dynamic selection of resources for the execution of parallel

applications. Some RPC systems support parallel execution of software routines with simple modes of parallelism. Some RPC

systems statically choose the configuration of resources for parallel execution even before the parallel routines are invoked remotely

by the end user. These policies of the existing systems prevent them from being used for remotely solving computationally intensive

parallel applications over dynamic computational Grid environments. In this paper, we discuss a RPC system called GrADSolve

that supports execution of parallel applications over Grid resources. In GrADSolve, the resources used for the execution of parallel

application are chosen dynamically based on the load characteristics of the resources and the characteristics of the application.

Application-level scheduling is employed for taking into account both the application and resource properties. GrADSolve also

stages the user’s data to the end resources based on the data distribution used by the end application. Finally, GrADSolve allows the

users to store execution traces for problem solving and use the traces for subsequent solutions. Experiments are presented to prove

that GrADSolve’s data staging mechanisms can significantly reduce the overhead associated with data movement in current RPC

systems. Results are also presented to demonstrate the usefulness of utilizing the execution traces maintained by GrADSolve for

problem solving.

r 2003 Elsevier Inc. All rights reserved.

Keywords: RPC; Grid; GrADSolve; Application-level scheduling; Data staging; Execution traces
1. Introduction

Remote Procedure Call (RPC) mechanisms have been
studied extensively and have been found to be powerful
abstractions for distributed computing [12,13]. In RPC
frameworks, the end user invokes a simple routine to
solve problems over remote distributed resources. A
number of RPC frameworks have been implemented
and are widely used [1,15–17,27,34,38,41,45]. In addi-
tion to providing simple interfaces for uploading
applications into the distributed systems and for remote
invocation of the applications, some of the RPC systems
s supported in part by the National Science Foundation

NT #EIA-9975020, SC #R36505-29200099 and

-9975015.

ing author.

esses: vss@cs.utk.edu (S.S. Vadhiyar),

tk.edu (J.J. Dongarra).

e front matter r 2003 Elsevier Inc. All rights reserved.

dc.2003.10.003
also provide service discovery, resource management,
scheduling, security and information services.
The role of RPC in Computational Grids [23] has

been the subject of many recent studies [19,20,33,37,39].
Computational Grids consist of large number of
machines ranging from workstations to supercomputers
and strive to provide transparency to end users and high
performance for end applications. While high perfor-
mance is achieved by the parallel execution of applica-
tions on a large number of Grid resources, user
transparency can be achieving by employing RPC
mechanisms. Hence, Grid-based RPC systems need to
be built to provide the end users the capability to invoke
remote parallel applications on Grid resources using a
simple sequential procedure call.
Though there are a large number of RPC systems that

support remote invocation of parallel applications
[15,16,22,29,35,37,38], the selection of resources for the



ARTICLE IN PRESS
S.S. Vadhiyar, J.J. Dongarra / J. Parallel Distrib. Comput. 64 (2004) 774–783 775
execution of parallel applications in these systems does
not take into account the dynamic load aspects that are
associated with Computational Grids. Some of the
parallel RPC systems [8,18,21,22,26,28–30,35] are
mainly concerned with providing robust and efficient
interfaces for the service providers to integrate their
parallel applications into the systems, and for the end
users to remotely use these parallel services. In these
systems the users or the service providers have to
provide their own scheduling mechanisms if the
resources for end application execution have to be
dynamically chosen. In most cases, the users and the
service providers lack the expertise to implement
scheduling techniques. Some RPC systems [15,38]
provide scheduling services in addition to the basic
functionality of providing interfaces to the service
providers and users. In these systems, scheduling
methodologies are employed to choose between differ-
ent parallel domains that implement the same parallel
services. But within a parallel domain, the number and
configuration of resources are fixed at the time when the
services are uploaded into the RPC system and hence
are not adaptive to the load dynamics of the Grid
resources.
In this paper, we propose a Grid-based RPC system

called GrADSolve1 that enables the users to invoke MPI
applications on remote Grid resources from a sequential
environment. GrADSolve combines the easy-to-use
RPC mechanisms of NetSolve [2,15] and powerful
application-level scheduling mechanisms inherent in
the GrADS [11] project. Application-level scheduling
has been proven to be a powerful scheduling technique
for providing high performance [9,10].
In addition to providing easy-to-use interfaces for the

service providers to upload the parallel applications into
the system and for the end users to remotely invoke the
parallel applications, GrADSolve also provides inter-
faces for the service providers or library writers to
upload execution models that provide information
about the predicted execution costs of the applications.
This information is used by GrADSolve to perform
application-level scheduling and to dynamically choose
the resources for the execution of the parallel applica-
tions based on the load dynamics of the Grid resources.
GrADSolve also uses the data distribution information
provided by the library writers to partition the users’
data and stage the data to the different resources used
for the application execution. Our experiments show
that the data staging mechanisms in GrADSolve help
reduce the data staging times in RPC systems by 20–
50%. GrADSolve also uses the popular Grid computing
tool, Globus [25] for transferring data between the user
and the end resources and for launching the application
1The system is called GrADSolve since it is derived from the

experiences of the GrADS [11] and NetSolve [2,15] projects.
on the Grid resources. In addition to the above features,
GrADSolve also enables the users to store execution
traces for a problem run and use the execution traces for
the subsequent problem runs. This feature helps in
significantly reducing the overhead incurred due to the
selection of the resources for application execution and
the staging of input data to the end resources.
Thus, the contributions of our research are:
(1)
 Design and development of an RPC system that
utilizes standard Grid Computing mechanisms for
invocation of remote parallel applications from a
sequential environment.
(2)
 Selection of resources for parallel application
execution based on load conditions of the resources
and application characteristics.
(3)
 Maintenance of execution traces for problem
runs.
Section 2 describes in brief the GrADS and NetSolve
projects. The architecture of GrADSolve, the various
entities in the GrADSolve system and the support
for the entities in the GrADSolve system are explained
in Section 3. The support in the GrADSolve system for
maintaining execution traces is explained in Section 4. In
Section 5, the experiments conducted in GrADSolve are
explained and results are presented to demonstrate
the usefulness of the data staging mechanisms and
execution traces in GrADSolve. Section 6 looks at the
related efforts in the development of parallel RPC
systems. Section 7 presents conclusions and future
work.
2. Background of GrADSolve

GrADSolve evolved from two projects, GrADS [11]
and NetSolve [15]. In this section, the overviews of
GrADS and NetSolve are presented.

2.1. The GrADS project

The Grid Application Development Software
(GrADS) project is a multi-university research project
which works to simplify distributed heterogeneous
computing in the same way that the World Wide Web
simplified information sharing. The GrADS project
intends to provide tools and technologies for the
development and execution of applications in a Grid
environment. In the GrADS vision, the end user simply
presents their parallel application to the framework for
execution. The framework is responsible for scheduling
the application on an appropriate set of resources,
launching and monitoring the execution, and, if
necessary, rescheduling the application on a different
set of resources. A high-level view of the GrADS



ARTICLE IN PRESS

C
on

fi
gu

ra
bl

e
ob

je
ct

pr
og

ra
mWhole

program
compiler

A
pp

lic
at

io
n

Libraries

Software
components

Program preparation
system (PPS)

Realtime
performance

monitor

Binder

Grid
runtime
system

Scheduler

Program execution
system (PES)

P
ro

bl
em

So
lv

in
g

E
nv

ir
on

m
en

t

Negotiation

Performance
feedback

Fig. 1. The GrADS architecture.

fro
m the agent

1. T
he client re

trie
ves p

roblem sp
ecific

atio
n

2. The client matches input data with problem parameters

fro
m the agent

3. T
he client re

trie
ves li

st o
f se

rvers

4. The client contacts a server on a machine for problem solving

5. Server spawns
    a service

6. Client sends input to service

7. Service solves problem

8. Service sends output

Agent

Client

Server

Service

Fig. 2. Overview of NetSolve system.

S.S. Vadhiyar, J.J. Dongarra / J. Parallel Distrib. Comput. 64 (2004) 774–783776
architecture is shown in Fig. 1. For more details, the
readers are referred to [11].

2.2. NetSolve—a brief overview

NetSolve [15] is a Grid computing system developed
at University of Tennessee. It is a Remote Procedure
Call (RPC)-based system used for solving numerical
applications over remote machines. The NetSolve
system consists of three main components—agent,
server and client. The working of the NetSolve system
is illustrated in Fig. 2. Although NetSolve supports
remote execution of parallel applications, the amount of
parallelism is fixed at the time the server daemons are
started. For more details, the readers are referred to [15].
3. The GrADSolve system

The general architecture of GrADSolve is shown in
Fig. 3. At the core of the GrADSolve system is a XML
database implemented with Apache Xindice [3]. GrAD-
Solve uses XML as a language for storing information
about different Grid entities. This database maintains
four kinds of tables—users, resources, applications and
problems. The Xindice implementation of the XML-
RPC standard [45] was used for storing and retrieving
information to and from the XML database. There are
three human entities involved in GrADSolve—adminis-

trators, library writers and end users. The role of these
entities in GrADSolve and the functions performed by
the GrADSolve system for supporting these entities are
explained in the following subsections.

3.1. Administrators

The GrADSolve administrator is responsible for
managing the users and resources of the GrADSolve
system. The administrator initializes the XML database
and creates entities for different users in the XML
database by specifying a user configuration file. The user
configuration file contains information for different
users, namely the user account names for different
resources and the location of the home directories on
different resources in the GrADSolve system. The
administrator also creates the resources table in the



ARTICLE IN PRESS

Database

XML

Resources
GrADSolve

Library Writers
Providers /
Service Administrators

End Users

Performance
Modeler

add problem

Fill performance model

and add

download performance model

stage out input data,

launch application,

stage in output data

store

exexcutables

get performance

model template
Add user and machine information

receive problem specification

performance modeler
Launch

service

Machine 1
Machine 2

Machine 3

Fig. 3. Overview of GrADSolve system.

Fig. 4. An example GrADSolve IDL for a sparse factorization problem.

S.S. Vadhiyar, J.J. Dongarra / J. Parallel Distrib. Comput. 64 (2004) 774–783 777
Xindice database and adds entries for different resources
in the GrADSolve system by specifying a resource

configuration file. The various information in the
configuration file, namely the names of the different
machines, their computational capacities, the number of
processors in the machines and other machine specifica-
tions, are stored as XML documents.

3.2. Library writers

The library writer uploads his application into the
GrADSolve system by specifying an Interface Definition
Language (IDL) file for the application. Even though
there are a number of robust IDL systems for High
Performance Computing including the OMG IDL [31]
and the SIDL (Scientific IDL) from the BABEL project
[40], GrADSolve implements and uses its own IDL
system. In addition to the primitives for MPI applica-
tions and complex data types that are supported by the
existing IDL systems, GrADSolve supports sparse
matrix data types. Supporting sparse matrix data types
is essential for integrating popular and efficient high
performance libraries including PETSC [5–7], AZTEC
[4], SuperLU [42], etc. Fig. 4 illustrates an IDL with
support for sparse matrices that is unique to GrAD-
Solve IDL. In the IDL file, the 3rd parameter, SM, is a
sparse matrix represented by a compressed-row format.
After the library writer submits the IDL file to the

GrADSolve system, GrADSolve translates the IDL file
to a XML document similar to the mechanisms in SIDL.
The GrADSolve translation system also generates a
wrapper program that acts as an entry point for remote
execution of the actual function. The wrapper program
performs initialization of the parallel environment,
reads input data from files, invokes the actual parallel
routine and stores output data to files. The GrADSolve
system then compiles the wrapper program with the
object files and the libraries specified in the IDL file and
with the appropriate parallel libraries if the application
is specified as a parallel application in the IDL file. The
GrADSolve system then stages the executable to the
different resources in the Grid using the Globus



ARTICLE IN PRESS

Fig. 5. A performance model template generated by the GrADSolve

system for the ScaLAPACK QR problem.

S.S. Vadhiyar, J.J. Dongarra / J. Parallel Distrib. Comput. 64 (2004) 774–783778
GridFTP mechanisms and stores the locations of the
executables in the XML database.
The library writer also has the option of adding an

execution model for the application. If the library writer
wants to add an execution model, he executes the
getperfmodel template utility, specifying the name of the
application. The utility retrieves the problem description
of the application from the XML database and
generates a performance model template file. The
performance model template file contains definitions
for three functions to help the library writers to convey
information about his library to the GrADSolve
system—areResourcesSufficient for conveying if a given
set of resources are adequate for problem solving,
getExecutionTimeCost for conveying the predicted ex-
ecution cost of the application if executed on a given set
of resources and an optional function mapper for
specifying the data distribution of the different data
used by the application. The performance model
template file generated by the getperfmodel template

for a ScaLAPACK QR problem is shown in Fig. 5. The
library writer uploads his execution model by executing
the add perfmodel utility. The add perfmodel utility
uploads the execution model for the application by
storing the location of the execution model in the XML
database corresponding to the entry for the application.

3.3. End users

The end users solve problems over remote GrAD-
Solve resources by writing a client program in C or
Fortran. The client program includes an invocation of a
routine called gradsolve() passing to the function, the
name of the end application and the input and output
parameters needed by the end application.
The invocation of the gradsolve() routine triggers the

execution of the GrADSolve Application Manager. As a
first step, the Application Manager verifies if the user
has credentials to execute applications on the GrAD-
Solve system. GrADSolve uses Globus Grid Security
Infrastructure (GSI) [14] for the authentication of users.
If the application exists in the GrADSolve system, the
Application Manager registers the problem run in the
problems table of the XML database. The Application
Manager then retrieves the problem description from
the XML database and matches the user’s data with the
input and output parameters required by the end
application.
If an execution model exists for the end application,

the Application Manager downloads the execution
model from the remote location where the library writer
had previously stored the execution model. The Appli-
cation Manager compiles the execution model programs
with algorithms for scheduling [32,46] and starts the
application-specific Performance Modeler service. The
Application Manager then retrieves the list of machines
in the GrADSolve system from the resources table in the
XML database, and retrieves various performance
characteristics of the machines including the peak
performance of the resources, the load on the machines,
the latency and the bandwidth of the networks between
the machines and the free memory available on the
machines from the Network Weather Service (NWS)
[44]. The Application Manager passes the list of
machines, along with the resource characteristics to
the Performance Modeler service to determine if the
resources are sufficient to solve the problem. If the
resources are sufficient, the Application Manager
proceeds to the Schedule Generation phase.
In the Schedule Generation phase, the Application

Manager first determines if the end application has an
execution model. If an execution model exists, the
Application Manager contacts the Performance Mode-
ler service and passes the problem parameters and the
list of machines with the machine capabilities. The
Performance Modeler service uses the execution model
supplied by the library writer along with certain
scheduling heuristics [32,46] to determine a final
schedule for application execution and returns the final
list of machines to the Application Manager. Along with
the final list of machines and the predicted execution
cost for the final schedule, the Performance Modeling
service also returns information about the data distribu-
tion for the different data in the end application. If an
execution model does not exist for the end application,
the Schedule Generation phase adopts default schedul-
ing strategies to generate the final schedule for end
application execution. At the end of the Schedule



ARTICLE IN PRESS
S.S. Vadhiyar, J.J. Dongarra / J. Parallel Distrib. Comput. 64 (2004) 774–783 779
Generation phase, the GrADSolve Application Man-
ager receives a list of machines for final application
execution. The Application Manager then stores the
status of the problem run and the final schedule in the
problems table of the XML database corresponding to
the entry for the problem run.
The Application Manager then creates working

directories on the remote machines of the final schedule
for end application execution and enters the Application

Launching phase. The Application Launching phase
consists of several important functions. The Application
Launcher stores the input data to files and stages these
files to the corresponding remote machines chosen for
application execution using the Globus GridFTP
mechanisms. If data distribution information for an
input data does not exist, the Application Launcher
stages the entire input data to all the machines involved
in the end application execution. If the information
regarding data distribution for an input data exists, the
Application Launcher stages only the appropriate
portions of the data to the corresponding machines.
This kind of selective data staging significantly reduces
the time needed for the staging for entire data especially
if a large amount of data is involved.
After the staging of input data, the Application

Launcher launches the end application on the remote
machines chosen for the final schedule using the Globus
MPICH-G [24] mechanism. The end application reads
the input data that were previously staged by the
Application Launcher and solves the problem. The end
application then stores the output data to the corre-
sponding files on the machines in the final schedule. If
the end application finished execution, the Application
Launcher copies the output data from the remote
machines to the user’s address space. The staging in of
the output data from the remote locations is a reverse
operation of the staging out of the input data to the
remote locations. The GrADSolve Application Man-
ager finally returns success state to the user client
program.
4. Execution traces in GrADSolve—storage,

management and usage

One of the unique features in the GrADSolve system
is the ability provided to the users to store and use
execution traces of problem runs. There are many
applications in which the outputs of the problem depend
on the exact number and configuration of the machines
used for problem solving. For example, considering the
problem of adding a large number of double precision
numbers, one of the parallel implementations of the
problem is to partition the list of double precision
numbers among all processes of the parallel application,
compute local sums of the numbers in each process and
then compute the global sum of the local sums
computed on each process. The final sum obtained for
the same set of double precision numbers may vary from
one problem run to another depending on the number of
elements in each partition, the number of processes used
in the parallel application and the actual processors used
in the computation. This is due to the impact of the
round off errors caused by the addition of double
precision numbers. In general, ill-conditioned problems
or unstable algorithms can give rise to vast changes in
output results due to small changes in input conditions.
For these kinds of applications, the user may desire to
use the same input environment for all problem runs.
Also, during the testing of new numerical algorithms
over the Grid, different groups working on the
algorithm may want to ensure that the same results
are obtained when the algorithms are executed with
same input data on the same configuration of resources.
To guarantee reproducibility of numerical results in

the above situations, GrADSolve provides capability to
the users to store execution traces of problem runs and
use the execution traces during subsequent executions of
the same problem with the same input data. For storing
an execution trace of the current problem run, the user
executes his GrADSolve program with a configuration
file called input.config in the working directory contain-
ing the line, TRACE FLAG ¼ 1.
During the registration of the problem run with the

XML database, the value of the TRACE FLAG
variable is stored. The GrADSolve Application Man-
ager proceeds to other stages of its execution. After the
end application completes its execution and the output
data are copied from the remote machines to the user’s
address space, the Application Manager, under default
mode of operation, removes the remote working
directories used for storing the files containing the input
data for the end application. But when the user wants to
store the execution trace of the problem run, i.e. when
the input.config file contains ‘‘TRACE FLAG ¼ 1’’ line,
the Application Manager retains the input data used for
the problem run in the remote machines. At the end of
the problem run, the Application Manager generates an
output configuration file called output.config containing
the line, TRACE KEY ¼ okey4: The value key in the
output.config is a pointer to the execution trace stored
for the problem run.
When the user wants to execute the problem with the

execution trace previously stored, he executes his client
program specifying the line, TRACE KEY ¼ okey4
in the input.config file. The value key in the input.config,
is the same value previously generated by the GrAD-
Solve Application Manager when the execution trace
was stored. The Application Manager first checks if the
TRACE KEY exists in the problems table of the XML
database. If the TRACE KEY does not exist, the
Application Manager displays an error message to the



ARTICLE IN PRESS

1200

1400

Data Staging and GrADSolve Overhead

Full data staging
Data staging with distribution

Data staging with execution traces
Overhead with full data staging

S.S. Vadhiyar, J.J. Dongarra / J. Parallel Distrib. Comput. 64 (2004) 774–783780
user and aborts operation. If the TRACE KEY exists
for an execution trace of a previous problem run, the
Application Manager registers the current problem run
with the XML database and proceeds to the other stages
of its execution. During the Schedule Generation phase,
the Application Manager, instead of generating a
schedule for the execution of the end application,
retrieves the schedule used for the previous problem
run corresponding to the TRACE KEY, from the
problems table in the XML database. The Application
Manager then checks if the capacities of the resources in
the schedule at the time of trace generation are
comparable to the current capacities of the resources.
If the capacities are not comparable, the Application
Manager displays an error message to the user and
aborts the operation. If the capacities are comparable,
the Application Manager proceeds to the rest of the
phases of its execution. During the Application Launch-
ing phase, the Application Manager, instead of staging
the input data to remote working directories, copies the
input data and the data distribution information, used
in the previous problem run corresponding to the
TRACE KEY, to the remote working directories. The
use of the same number of machines and the same input
data used in the previous schedule also guarantees the
use of the same data distribution for the current
problem run. Thus GrADSolve guarantees the use of
the same execution environment used in the previous
problem run for the current problem run, and hence
guarantees reproducibility of numerical results.
To support the storage and use of execution traces in

the GrADSolve system, two trigger functions are
associated with the XML database. One trigger function
called trace usage trigger updates the last usage time of
an execution trace when the execution trace is used for a
problem run. Another trigger function called cleanup -
trigger is used for periodically deleting entries in the
problems table of the XML database thereby maintain-
ing the size of the problems table in the database. The
cleanup trigger is invoked whenever a new entry
corresponding to a problem run is added to the problems

table. The cleanup trigger employs a longer duration for
those problem runs for which execution traces were
stored.
0

200

400

600

800

1000

1000 2000 3000 4000 5000 6000 7000 8000

T
im

e 
[s

ec
s.

]

Matrix Size

Overhead with distribution
Overhead with execution traces

Fig. 6. Data staging and other GrADSolve overhead.
5. Experiments and results

The GrADS testbed consists of about 40 machines
from University of Tennessee (UT), University of
Illinois, Urbana-Champaign (UIUC) and University of
California, San Diego (UCSD). For the sake of clarity,
our experimental testbed consists of four machines:

* a 933 MHz Pentium III machine with 512 MBytes of
memory located in UT,
* a 450 MHz Pentium II machine with 256 MBytes of
memory located in UIUC and

* two 450 MHz Pentium III machines with 256 MBytes
of memory located in UCSD.

The two UCSD machines are connected to each other
by 100 MBytes switched Ethernet. Machines from
different locations are connected by Internet. In the
experiments, GrADSolve was used to remotely invoke
the ScaLAPACK driver for solving a linear system of
equations, AX ¼ B: The driver invokes ScaLAPACK
QR factorization for the factorization of matrix, A.
Block-cyclic distribution was used for the matrix A. A
GrADSolve IDL was written for the driver routine and
an execution model that predicts the execution cost of
the QR problem was uploaded into the GrADSolve
system. The GrADSolve user invokes the remote
parallel application by passing the size of the matrix A
and the right-hand side vector, B to the gradsolve() call.
GrADSolve was operated in three modes. In the first

mode, the execution model did not contain information
about the data distribution used in the ScaLAPACK
driver. In this case, GrADSolve transported the entire
data to each of the locations used for the execution of
the end application. This mode of operation is practiced
in RPC systems that do not support the information
regarding data distribution. In the second mode, the
execution model contained information about the data
distribution used in the end application. In this case,
GrADSolve transported only the appropriate portions
of the data to the locations used for the execution of end
application. In the third mode, GrADSolve was used
with an execution trace corresponding to a previous run
of the same problem. In this case, data is not staged
from the user’s address space to the remote machines,
but temporary copies of the input data used in the
previous run are made for the current problem run.
Fig. 6 shows the times taken for data staging and

other GrADSolve overhead for different matrix sizes



ARTICLE IN PRESS

Table 1

Machines chosen for application execution

Matrix size Machines

1000 1 UT machine

2000 1 UT machine

3000 1 UT machine

4000 1 UT machine

5000 1 UT, 1 UIUC machines

6000 1 UIUC, 1 UCSD machines

7000 1 UIUC, 1 UCSD machines

8000 1 UT, 1 UIUC, 2 UCSD machines

S.S. Vadhiyar, J.J. Dongarra / J. Parallel Distrib. Comput. 64 (2004) 774–783 781
and for the three modes of GrADSolve operation. Since
the times taken for the execution of the end application
are same in all the three modes, we focus only on the
times taken for data staging and possible Grid over-
heads. The machines that were chosen by the GrAD-
Solve application-level scheduler for the execution of
end application for different matrix sizes are shown in
Table 1. The UT machine was used for smaller problem
sizes since it had larger computing power than other
machines. For matrix size, 5000, a UIUC machine was
also used for the execution of parallel application. For
matrix sizes, 6000 and 7000, the available memory in the
UT machine at the time of the experiments was less than
the memory needed for the problems. Hence UIUC and
UCSD machines were used. For matrix size, 8000, all
four machines were needed to accommodate the
problem. All the above decisions were automatically
made by the GrADSolve system taking into account the
sizes of the problems and the resource characteristics at
the time of the experiments.
Comparing the first two modes in Fig. 6, we find that

for smaller problem sizes, the times taken for data
staging in both the modes are the same. This is because
only one machine was used for problem execution and
the same amount of data is staged in both the modes
when only one machine is involved for problem
execution. For larger problem sizes, the times for data
staging with distribution information is less than 20–
55% of the times taken for staging the entire data to
remote resources. Thus the use of data distribution
information in GrADSolve can give significant perfor-
mance benefits when compared to staging the entire data
that is practiced in some of the RPC systems. Data
staging in the third mode is basically the time taken for
creating temporary copies of data used in the previous
problem runs in remote resources. We find this time to
be negligible when compared to the first two modes.
Thus execution traces can be used as caching mechan-
isms to use the previously staged data for problem
solving. The GrADSolve overheads for all the three
modes are found to be the same. This is because of the
small number of machines used in the experiments. For
experiments when large number of machines are used,
we predict that the overheads will be higher in the first
two modes than in the third mode. This is because in the
first two modes, the application-level scheduling will
explore large number of candidate schedules to deter-
mine the machines used for end application while in the
third mode, a previous application-level schedule will be
retrieved from the database and used.
6. Related work

A number of parallel RPC systems have been built in
the context of Object Management Group (OMG) [30],
Common Component Architecture Forum (CCA) [18]
and Grid research efforts [15,38,39].
The Object Management Group (OMG) [30] has been

dealing with specifying objects for both sequential and
parallel applications. The Data Parallel CORBA speci-
fication describes parallel objects that enable the object
implementer to take advantage of parallel resources for
achieving high performance. The specification defines
interfaces for both the implementers of the objects and
the client to use the remote parallel services. The
specification does not deal with dynamic selection of
resources for parallel computing. The PaCO [35,36] and
PaCOþþ [19,18] systems from the PARIS project in
France are implemented within the CORBA [17]
framework to encapsulate MPI applications in RPC
systems. The data distribution and redistribution
mechanisms in PaCO are much more robust than in
GrADSolve and support invocation of remote parallel
applications either from sequential or parallel client
programs. Recently, the PARIS project has been
investigating coupling multiple applications of different
types in Grid frameworks [20,33]. Similar to the Data
Parallel CORBA specification, the parallel CORBA
objects in the PaCO projects do not support dynamic
selection of resources for application execution as in
GrADSolve. The selection of resources for parallel
execution taking into account the load aspects of the
resources is a necessity in dynamic Computational
Grids. Also, GrADSolve supports Grid-related security
models by employing Globus mechanisms. And finally,
GrADSolve is unique in maintaining execution traces
that can help bypass the resource selection and data
staging phases.
The Common Component Architecture Forum

(CCA) [18] has been investigating the deployment and
use of both parallel and sequential components. Their
‘‘MxN Redistribution’’ working group has been dealing
with the issues of data redistribution when multiple
parallel components are coupled together. The CU-
MULVS MxN interface [26] from Oak Ridge National
Laboratory, the PAWS environment [8] from Los
Alamos National Laboratory and the PARDIS SPMD
objects [28] from Indiana University work within the



ARTICLE IN PRESS
S.S. Vadhiyar, J.J. Dongarra / J. Parallel Distrib. Comput. 64 (2004) 774–783782
CCA to develop a parallel RPC standard. The main
goals of these systems include providing interoperability
between different components, building user interfaces
for conveying information about the parallel data,
developing communication schedules to communicate
the data between different components and synchroniz-
ing data transfers. These projects delegate the respon-
sibility of scheduling or choosing the end resources for
parallel application to the implementers of parallel
components. In most cases, the implementers of the
components lack the expertise to include scheduling
technologies. In GrADSolve, application-level schedul-
ing is an integral component of the system and requires
the implementors of the parallel components to only
provide information about their parallel applications.
NetSolve [15] and Ninf [38] are Grid computing

systems that support task parallelism by the asynchro-
nous execution of a number of remote sequential
applications. OmniRPC [37] is an extension of Ninf
and supports asynchronous RPC calls to be made from
OpenMP programs. But similar to the approaches in
NetSolve and Ninf, OmniRPC supports only master-
worker models of parallelism. NetSolve and Ninf also
support remote invocation of MPI applications, but the
amount of parallelism and the locations of the resources
to be used for the execution are fixed at the time when
the applications are uploaded to the systems and hence
are not adaptive to dynamic loads in the Grid
environments. Recently, Grid-RPC [39] has been
proposed to standardize the efforts of NetSolve and
Ninf. The current Grid-RPC standard does not specify
scheduling methodologies to choose the resources for
execution of remote parallel applications.
7. Conclusions and future work

In this paper, an RPC system for efficient execution of
remote parallel software was discussed. The efficiency is
achieved by dynamically choosing the machines used for
parallel execution and staging the data to remote
machines based on data distribution information. The
GrADSolve RPC system also supports maintaining and
utilizing execution traces for problem solving. Our
experiments showed that the GrADSolve system is able
to adapt to the problem sizes and the resource
characteristics and yielded significant performance
benefits with its data staging and execution trace
mechanisms.
Interfaces for the library writers for expressing more

capabilities of the end application are currently being
designed. These capabilities include the ability of the
application to be pre-empted and resumed later with
different processor configuration. These capabilities will
allow GrADSolve to adapt to changing Grid scenarios.
The current GrADSolve system employs application-
level scheduling requiring the implementers to provide
information about their libraries. In the future, we plan
to employ methods for automatic determination of the
information about the libraries similar to the efforts in
the Prophesy [43] project. Though GrADSolve currently
provides basic security by the authentication of users
and service providers through Globus mechanisms, it
does not provide privacy with regard to message
transactions and also does not support validation of
results. We plan to employ encryption of data to provide
privacy and signed software mechanisms to assure
integrity of results.
Acknowledgments

The authors would like to thank the managers of the
GrADS project for providing valuable input during the
development of GrADSolve. We acknowledge the use of
machines in the GrADS testbed for the experiments
conducted in the research. We also thank the research
teams from different institutions, namely the Pablo
research group from the University of Illinois, Urbana-
Champaign, the Grid Research and Innovation Labora-
tory (GRAIL) from the University of California, San
Diego and the Innovative Computing Laboratory (ICL)
from University of Tennessee, for the support and
maintenance of the machines in the GrADS testbed and
for enabling of experiments needed for the research.
References

[1] Apache Xindice, http://xml.apache.org/xindice.

[2] P. Arbenz, W. Gander, M. Oettli, The remote computation

system, Parallel Comput. 23 (1997) 1421–1428.

[3] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K.

Seymour, K. Sagi, Z. Shi, S. Vadhiyar, Users’ Guide to NetSolve

V1.4.1, Innovative Computing Dept. Technical Report ICL-UT-

02-05, University of Tennessee, Knoxville, TN, June 2002.

[4] AZTEC, http://www.cs.sandia.gov/CRF/aztec1.html.

[5] S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, Efficient

management of parallelism in object oriented numerical software

libraries, in: E. Arge, A.M. Bruaset, H.P. Langtangen (Eds.),

Modern Software Tools in Scientific Computing, Birkhauser

Press, Basel, 1997, pp. 163–202.

[6] S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, PETSc home

page, http://www.mcs.anl.gov/petsc, 1999.

[7] S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, PETSc 2.0

users manual, Technical Report ANL-95/11 - Revision 2.0.24,

Argonne National Laboratory, 1999.

[8] P.H. Beckman, P.K. Fasel, W.F. Humphrey, S.M. Mniszewski,

Efficient Coupling of Parallel Applications Using PAWS, in:

Proceedings of the Seventh IEEE International Symposium on

High Performance Distributed Computing, IEEE, New York,

1998, pp. 215–223.

[9] F. Berman, High-performance schedulers, in: I. Foster, C.

Kesselman (Eds.), The Grid: Blueprint for a New Computing

Infrastructure, Morgan Kaufmann, Los Altal, CA, 1999, pp. 279–

203, ISBN 1-55860-475-8.

&ast;http://xml.apache.org/xindice
&ast;http://www.cs.sandia.gov/CRF/aztec1.html
&ast;http://www.mcs.anl.gov/petsc


ARTICLE IN PRESS
S.S. Vadhiyar, J.J. Dongarra / J. Parallel Distrib. Comput. 64 (2004) 774–783 783
[10] F. Berman, R. Wolski, The AppLeS Project: a status report,

Proceedings of the Eighth NEC Research Symposium, Berlin,

Germany (1997).

[11] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D.

Gannon, L. Johnsson, K. Kennedy, C. Kesselman, J. Mellor-

Crummey, D. Reed, L. Torczon, R. Wolski, The GrADS project:

software support for high-level grid application development,

Internat. J. High Performance Appl. Supercomput. 15 (4) (2001)

327–344.

[12] B. Bershad, T. Anderson, E. Lazowska, H. Levy, Lightweight

remote procedure call, ACM Trans. Comput. Systems 8 (1) (1990)

37–55.

[13] A. Birrell, B. Nelson, Implementing remote procedure calls, ACM

Trans. Comput. Systems 2 (1) (1984) 39–59.

[14] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J.

Volmer, V. Welch, A national-scale authentication infrastructure,

IEEE Comput. 33 (12) (2000) 60–66.

[15] H. Casanova, J. Dongarra, NetSolve: a network server for solving

computational science problems, Internat. J. Supercomputer

Appl. High Performance Comput. 11 (3) (1997) 212–223.

[16] C.-C. Chang, G. Czajkowski, T. von Eicken, MRPC: a high

performance RPC system for MPMD, Parallel Comput. 29 (1)

(1999) 43–66.

[17] CORBA, http://www.corba.org.

[18] Common Component Architecture, http://www.cca-forum.org.

[19] A. Denis, C. Prez, T. Priol, Portable parallel CORBA objects: an

approach to combine parallel and distributed programming for

grid computing, in: Proceedings of the Seventh International

Euro-Par’01 Conference (EuroPar’01), Springer, Berlin, 2001,

pp. 835–844.

[20] A. Denis, C. Prez, T. Priol, Towards high performance CORBA

and MPI middlewares for grid computing, in: C.A. Lee (Ed.),

Proceedings of the Second International Workshop on Grid

Computing, Lecture Notes in Computer Science, Vol. 2242,

Springer, Berlin, 2001, pp. 14–25.

[21] A. Denis, C. Pérez, T. Priol, PadicoTM: an open integration

framework for communication middleware and runtimes, Future

Generation Comput. Systems 19 (2003) 575–585.

[22] A. Denis, C. Pérez, T. Priol, Achieving portable and efficient

parallel CORBA objects, Concurrency and Computation: Prac-

tice and Experience 15 (10) (2002) 891–909.

[23] I. Foster, C.K. (Eds.), The Grid: Blueprint for a New Computing

Infrastructure, Morgan Kaufmann, Los Altos, CA, 1999, ISBN 1-

55860-475-8.

[24] I. Foster, N. Karonis, A grid-enabled MPI: message passing in

heterogeneous distributed computing systems, in: Proceedings of

SuperComputing’98 (SC98), Orlando, FL (1998).

[25] I. Foster, C. Kesselman, Globus: a metacomputing infrastructure

toolkit, Internat. J. Supercomput. Appl. 11 (2) (1997) 115–128.

[26] G.A. Geist, J.A. Kohl, P.M. Papadopoulos, CUMULVS:

providing fault-tolerance, visualization and steering of parallel

applications, Internat. J. High Performance Comput. Appl. 11 (3)

(1997) 224–236.

[27] Java Remote Method Invocation (Java RMI), java.sun.com/

products/jdk/rmi.

[28] K. Keahey, D. Gannon, PARDIS: a parallel approach to

CORBA, in: Proceedings of the Sixth IEEE International

Symposium on High Performance Distributed Computing, IEEE,

New York, 1997, pp. 31–39.
[29] J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal, T.

Kielmann, C. Jacobs, R. Hofman, Efficient Java RMI for parallel

programming, ACM Trans. Programming Languages Systems 23

(6) (2001) 747–775.

[30] Object Management Group, http://www.omg.org.

[31] OMG IDL, http://www.omg.org/gettingstarted/omg idl.htm.

[32] A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche,

S. Vadhiyar, Numerical Libraries and the Grid: The GrADS

Experiments with ScaLAPACK, J. High Performance Appl.

Supercomput. 15 (4) (2001) 359–374.

[33] C. Prez, T. Priol, A. Ribes, A parallel CORBA component model

for numerical code coupling, in: C.A. Lee (Ed.), Proceedings of

the Third International Workshop on Grid Computing, Lecture

Notes in Computer Science, Springer, Berlin, 2002.

[34] R. Rabenseifner, The DFN remote procedure call tool

for parallel and distributed applications, in: K. Franke, U.

Huebner, W. Kalfa (Eds.), Proceedings of Kommunikation in

Verteilten Systemen—KiVS’95, Chemnitz-Zwickau, 1995,

pp. 415–419.

[35] C. René, T. Priol, MPI code encapsulation using parallel CORBA

object, in: Proceedings of the Eighth IEEE International

Symposium on High Performance Distributed Computing, IEEE,

New York, 1999, pp. 3–10.

[36] C. René, T. Priol, MPI code encapsulating using parallel CORBA

object, Cluster Comput. 3 (4) (2000) 255–263.

[37] M. Sato, M. Hirano, Y. Tanaka, S. Sekiguchi, OmniRPC: A grid

RPC facility for cluster and global computing in OpenMP, in:

Workshop on OpenMP Applications and Tools (WOM-

PAT2001), 2001.

[38] H.N.M. Sato, S. Sekiguchi, Design and implementations of ninf:

towards a global computing infrastructure, Future Generation

Comput. Systems, Metascomputing Issue 15 (5–6) (1999)

649–658.

[39] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, H.

Casanova, Overview of GridRPC: a remote procedure call API

for grid computing, in: M. Parashar (Ed.), Lecture Notes in

Computer Science, Grid Computing—GRID 2002, Vol. 2536,

Third International Workshop, Springer, Baltimore, MD, USA,

2002, pp. 274–278.

[40] SIDL from BABEL project, http://www.llnl.gov/CASC/compo-

nents/babel.html.

[41] Simple Object Access Protocol (SOAP), http://www.w3.org/TR/

SOAP.

[42] SuperLU, http://crd.lbl.gov/~xiaoye/SuperLU.

[43] V.E. Taylor, X. Wu, J. Geisler, R. Stevens, Using kernel couplings

to predict parallel application performance, in: Proceedings

of the 11th IEEE International Symposium on High

Performance Distributed Computing, IEEE, New York, 2002,

pp. 125–135.

[44] R. Wolski, N. Spring, J. Hayes, The network weather service: a

distributed resource performance forecasting service for meta-

computing, J. Future Generation Comput. Systems 15 (5–6)

(1999) 757–768.

[45] XML-RPC, http://www.xmlrpc.com.

[46] A. Yarkhan, J. Dongarra, Experiments with scheduling using

simulated annealing in a grid environment, in: M. Parashar (Ed.),

Lecture Notes in Computer Science, Grid Computing—GRID

2002, Vol. 2536, Third International Workshop, Springer,

Baltimore, MD, USA, 2002, pp. 232–242.

&ast;http://www.corba.org
&ast;http://www.cca-forum.org
&ast;http://java.sun.com/products/jdk/rmi
&ast;http://java.sun.com/products/jdk/rmi
&ast;http://www.omg.org
&ast;http://www.omg.org/gettingstarted/omg_idl.htm
&ast;http://www.omg.org/gettingstarted/omg_idl.htm
&ast;http://www.llnl.gov/CASC/components/babel.html
&ast;http://www.llnl.gov/CASC/components/babel.html
&ast;http://www.w3.org/TR/SOAP
&ast;http://www.w3.org/TR/SOAP
&ast;http://crd.lbl.gov/~xiaoye/SuperLU
&ast;http://www.xmlrpc.com

	GrADSolve-a grid-based RPC system for parallel computing with application-level scheduling
	Introduction
	Background of GrADSolve
	The GrADS project
	NetSolve-a brief overview

	The GrADSolve system
	Administrators
	Library writers
	End users

	Execution traces in GrADSolve-storage, management and usage
	Experiments and results
	Related work
	Conclusions and future work
	Acknowledgements
	References


